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Introduction What is the Schwarzian derivative?

What is the Schwarzian derivative?

Let f(z) be a non-constant meromorphic function of one complex

variable. We define
1/

@ the pre-Schwarzian derivative: T = F

@ the Schwarzian derivative:

1 f// / 1 f// 2 f/// 3 f// 2
5= =300 =(7) -3(5) ~F7-1(%
Traditionally, Sy is denoted by {f(2), z}.
Note that 7 and S; are meromorphic functions.
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Basic properties of pre-Schwarzian derivative
Basic properties of pre-Schwarzian derivative

Since Ty = [log f]’, we have the following:

e Ty = 0 iff f is an affine transformation of the form
f(z) = az+b(a#0).

© Tyor = (Tyo f)- f' + Ty

@ In particular,

Tyor =Tp, Trog=(Trog)-g

for an affine transformation g.

e T4(z) is analytic at z = 2 iff f is a locally univalent
holomorphic at z.
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Basic properties of Schwarzian derivative
Basic properties of Schwarzian derivative

e Sy =0iff fis a Mobius transformation.
® Sgor = (Sg0 f)- (f)?+ 5

@ In particular,
Sgor =St Spog =(Syo9)-(¢)"

for a Mobius transformation g. By using them, Sy(z) can be
defined when f(z) = oo or z = oc.

@ S¢(z) is analytic at z = z; iff f is locally univalent meromorphic
at 2.
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Introduction Examples

Examples

Let us look at a couple of examples. First, for w = e*, we have
w' = e* so that T;, = (logw’)’ = 1. Hence,
1
Sox = 3
P 2
We next consider w = z® for a constant o % 0. Then, w' = az*~
and thus T, = (o — 1)/z. Finally, we get

O{ —
(w2} = - 22 2 22 232

1 1 (a—1?2 1-a?

Other important examples:

s v 6 1
{z/(1 - 2) 72}7m’ {logz,z}fg.
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Bty (o
Early History

e J. L. Lagrange (1779) Related computations
e E. Kummer (1836) in Gauss hypergeometric equation

e H. A. Schwarz (1869) defined Sy to construct a “triangle
function”

e H. A. Schwarz (1873) solved the Fuchs problem on
hypergeometric functions

e A. Cayley (1880) named " Schwarzian derivative”

e H. A. Schwarz (1890) mentioned the work of Lagrange in the
notes on his treatise 1.
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Introduction H. A. Schwarz

H. A. Schwarz

T

fn-

Karl Hermann Amandus Schwarz
(From Wikipedia)
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Introduction Schwarz’s discovery

Schwarz’s discovery

116 Schwars, iiber einige Abbildungsaufgaben.
dung geradlinig begrenzter Polygone angegeb ganz analoge Schlussfolgerung
zum Ziele.
Wenn die von Kreisbogen begrenzte Figur in der Ebene (u) durch
die Function
¥ = Cu+C,
T Cu+C,

auf eine Ebene (u') abgebildet wird, so ist die entsprechende Figur in der
Ebene (u') ebenfalls von Kreisbogen begrenzt, unter denen sich auch gerad-
linige Strecken befinden konnen.

Um ein fir alle diese Abbildungen, welche aus einander durch Trans-
formation miltelst reciproker Radii vectores abgeleitet werden konnen, zugleich
gellendes Resultat zu erhalten, eliminire man die Constanten C.

Es ist
A jeg @ A g A o G du
@ 8 = o 08 2o R
& du! a du c: duyt, ¢ A
o i S ol il 3 __ (%) 9 C3 O X
e g = wheg P mtorly) s
Bezeichnet man die Function ey Racid Jly

d’ du d du\ .
Wlogﬁw%(ﬁlog—m—) mit ¥(u, t),
so folgt hieraus, dass ¥ (v, t) = ¥(u, ¢) ist, dass mithin der Ausdruck ¥ von
den Constanten C unabhéngig ist.

H. A. Schwarz, Ueber einige Abbildungsaufgaben
Journal fiir die reine und angewandte Mathematik, 70 (1869), 1057120.
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Introduction Computations due to Schwarz

Computations due to Schwarz

According to Schwarz, put

/

B Clu + CQ
N Ogu + 04
for a function u = u(t). Then,

d du d du 0104 — 0203
T, =—1o 1 log ———
BT {Og @ TG O

_du du_2 Cs du_T_2 Cs du
Code2/ dt Cou+Cydt " “Ciu+Cydt
and
d d C? du Cs d*u
Ty =—-—T,4+2——3 — 9 ==
@@ T Gt GRdt S Chut Oy di?
Hence, p p
1 1
w=—Ty—=-T>=—-T,—-T?>=28,.
5 dt 27 T dt 24 5
March 16, 2016
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Differential operator annihilating M&bius maps
Differential operator annihilating Mobius maps
The Schwarzian derivative can be thought of as the simplest

(non-linear) differential operator which annihilates all the Mdbius
transformations. Recalling that w = (az + b)/(cz + d) satisfies

, ad—bc
GO
we observe
B d_Q(w/)—l/Q B ////w ( ///w)
dz2 N 2(w )1/2 ’

l\/lore generally, for a function w = f(2), we let

=1/v/f(2) ~1/2 and compute

) = di {—éw%w’rﬂ =500
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’
Lagrange’s paper
DES CARTES GEOGRAPHIQUES. 653

ou bien (étant indifférent quelle que soit la variable sous les signes des
fonctions) on aura plus simplement ces deux-ci

o(s) sy
ol O gy
savoir
Folz) ., d*0lz)

=,

el(z)dst ' ©(z1dzs
ui sont intégrables par les regles connues.
On aura done, en intégrant,

s g(s)=MeVh+ Ne=k, O(z) =PevF+ Qe

M, N, P, Q étant des coefficients quelconques positifs ou négatils, réels
ou imaginaires.
Oor

J. L. Lagrange, Sur la construction des cartes géographiques, 1779.
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Conformal mappings and Schwarzian

Conformal mappings and Schwarzian
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Selriz i) GeRmiE
Schwarz-Christoffel mapping

T. Sugawa (Tohoku Univ.) Schwarzian derivative March 16, 2016 15 / 52



Conformal mappings and Schwarzian Near the vertex

Near the vertex

By Schwarz reflection principle, g(2) := (f(2) — w;)/® extends to a
conformal mapping near z = x;. Since f(z) = w; + g(2)%, one gets

q'(2) _
9(2) T1olz) = Z—

Oéj—l

T(z) = (oj — 1) +0(1) z—ux,.
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Conformal mappings and Schwarzian Schwarz-Christoffel formula

Schwarz-Christoffel formula

Since f behaves like 1/z at oo, we have Ty(z) = —2/z + O(1/z?) as
z — 00. We thus obtain

n

a; — 1
Ti(z) =Y
1(2) Z P
7=1
with .
D (a;—1)=-2.
j=1

By integrating the above, we finally get

where C is a non-zero constant.
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Conformal mapping onto curvilinear polygon
Conformal mapping onto curvilinear polygon
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Conformal mappings and Schwarzian Near the vertex

Near the vertex
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Lozl arellsts
.
Local analysis

By the Schwarz reflection principle, g(z) := (L o f(2))Y/% extends to
a conformal mapping near z = ;, where L(w) = (w —w;)/(w — w}).
Since f(z) = L(g(2)*) and {2%, 2} = (1 — a?) /222, one gets

/() 1-a g,
2¢g(z)? +5(2) = 2(z — :1:;)2 * z—x;

as z — xj. We can also see that 3; € R.
Since the point at infinity is an ordinary point, we can observe that
Si(z) = O(1/z%) as z — oo.

Si(z) = (1 —a?) +0O(1)

J
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Tt o & Selivaren
The form of Schwarzian

" 1—-af B
Sr(z) = Z {2(2 — x;)? N 2 —JSCJ'

=1
where f3; are real numbers with

> Bi=0, > (228 +1—a?) =0,
i=1 i=1

> (@3B + (1 —a?)) = 0.

j=1

Problems:
© Determination of the parameters 3;
@ Solve the equation Sy = ¢ for a given ¢!
We consider the latter problem in the next section.
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Inverse problem

Inverse problem
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OIRLE @ Siamii-limuill Gy
ODE of Sturm-Liouville type

Let ¢(2) be a holomorphic function defined on a plane domain €.
Find a (possibly multiple-valued) meromorphic function f(z) on Q
such that Sy = ¢. Recall that w = 1/4/ 7 satisfies

"

wo Lo
w 97 T Ty
Consider the ODE

2

d*y
2y" + @y = 2o+ e(2)y=0

and let g, y; be two linearly independent solutions. Then the
Wronskian W' = W (yo, y1) = yoy; — yyvh satisfies W' = 0. We may
assume that W = 1. Then the function f = y;/y, satisfies

w _
f/:?:?JOQ s w=1/VF
0
and thus S; = .
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Inverse problem Monodromies

Monodromies

When €2 is not simply connected, solutions to the ODE
2y" + 2py = 0 are not necessarily single-valued.
Let yo and y; be local solutions to the ODE around z; € €2 with
W = 1. Then y; continues analytically along a curve v € (€2, o) to
y; near zy. We can write §; = Ay, + By and gy = Cy1 + Dy for
some constants A, B, C, D. Since W (4o, 71) = W (yo,y1) = 1, we
have AD — BC = 1. In this way, we obtain the monodromy
homomorphism

py = m1(€2, 20) = SL(2,C),

which describes the monodromy for

Ay, + By _Af+B

s (92 PSL(2,C); = .
p‘ﬂ ﬂ-l( 7ZO>—> ( I )77'—> Cy1+Dy0 Cf+D
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Fuchsian group

Let Q be a domain in C = CP" with #0$2 > 3 (or, more generally, a
hyperbolic Riemann surface). Then, by the Uniformization Theorem,
there is an analytic universal covering projection 7 : H — €2. The
covering transformation group

I'={y € Aut(H) = PSL(2,R) : moy =7}

is a (torsion-free) Fuchsian group. Unfortunately, it is almost
impossible to obtain an explicit form of 7, like Riemann mapping
functions.
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Inverse problem Poincaré's idea

Poincaré’s idea

Even though the inverse mapping of the covering projection 7 is
multiple-valued in general, the branches are related by Mobius
transformations v € I'. Therefore, the Scwarzian derivative

Vg = S,-1 is (single-valued) analytic function on €.

When 2 is an n-times punctured sphere with n > 3, the form of Uq
is determined to some extent:

Vo(z) = Sr1(2) = Z {Q(z —1 2;)? - z fjzj ’

J=1

where [3; are complex constants, called accessory parameters. It is,
however, not easy to determine the parameters 3; when n > 4.
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Inverse problem Remark

Remark

For instance, when ¢ = Ug, the above monodromy yields an
isomorphism 7 (€2, zg) — I" (up to conjugate). A slight perturbation
Pwo+p gives a holomorphic deformation of the Fuchsian group I
Even though we do not have exact forms of the solutions, we can
compute the monodromy by numerical integration.

Such an approach has been used to visualize the Bers embedding of
Teichmiiller spaces of dimension 1 (Komori-S. -Wada-Yamashita).
Also, this method can be extended to “uniformize” a Riemann
furface with conical singularities.
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Inverse problem Nehari's theorem

Nehari’s theorem

Let f be a nonconstant meromorphic function on the unit disk
D={zeC:|z| <1}

o If f is univalent, then

(1= 2)?Ss(2)] <6, |2 < 1.
o Conversely, if

(1= 2)?8:(2) <2, |2 <1,

then f is univalent.

The constants 6 and 2 are sharp.
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Inverse problem Proof of Nehari's Theorem

Proof of Nehari’s Theorem

A crusial fact is that the quantity H(z, f) = (1 — |2]*)?|S;(2)] is
invariant under the pull-back by analytic automorphisms of D.
Namely,

az+f3
Bz+a’

H(g(z), fog) = H(z, f) for g(z) =

The first assertion at the origin is equivalent to |az — a3| < 1 for
f(2) =z + asz® + azz® + - - -, which follows from the
Bieberbach-Gronwall area theorem.
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Inverse problem Proof of Nehari's Theorem, 2

Proof of Nehari’'s Theorem, 2

For the second assertion, put ¢ = Sy so that

2
lp(2)] < m

Suppose, to the contrary, that f(zg) # f(z1) for zg # z; € D. By the
invariance, we may assume that zp = 0,0 < z; < 1 and f = y; /v
with 2y + oy; =0, y0(0) = y1(0) = 0,y,(0) = y1(0) = 1. We note

J
that the function F(z) = arctanhz = § log 1= satisfies

2

Sp(z) = A= 2e

Then a comparison theorem for the solutions to an ODE of
Sturm-Liouville type, we have y;(z) # 0 for 0 < x < 1, which is a

contradiction.
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Bers embedding of the Teichmiiller space

Bers embedding of the Teichmiiller space
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_________Bers embedding of the Teichmiiller space  [SIEEEUEREIUELITY
Quasiconformal mapping

A(n orientation-preserving) homeomorshism f : Q2 — Q; between
plane domains is called quasiconformal (or qc for short) if f belongs
to the Sobolev class W,'?(€) and satisfies

10:f(2)| < k|0,f(2)] a.e.on ()

for a constant k < 1. It is known that f, = 0, f # 0 a.e. for a qc map
f. The quotient
o:f

9. f
is a measurable function on € with |||/ < k and called the
Beltrami coefficient of f. The mapping f is sometimes called
p~conformal. For conformal mappings g, h, we have
n
,ugofoh - ,Uf oh- ﬁ
Thus the notion of quasiconformality extends to Riemann surfaces.
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Wieeselils RIEme GERpRG Ui
Measurable Riemann mapping theorem

Measurable Riemann mapping theorem

Let u € L>(C) with ||u|lcc < 1. Then there exists a unique
quasiconformal homeomorphism f : C — C with puy = ;1 and
normalized so that f(0) =0, f(1) = 1.

Such a map will be denoted by w". R
Let I' be a subgroup of Méb = Aut(C) acting on a domain 2 C C.
Set

ML) ={pe L>(Q):poy v /7 =pael}.
Then pi-conformal mapping f conjugates I" into an analytic
automorphism groups of f(€2). In particular, if Q@ = C, then
JfTf~t C Mob.
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L 7 @ e tromee
Lift of a qc homeo

v
R, e,
¢
N o G F N ;
—> o
zc ‘wmo, "
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Bers embedding of the Teichmiiller space Simultaneous uniformization

Simultaneous uniformization

Let Ry be a fixed hyperbolic Riemann surface and 7, : HH — R, be
an analytic universal covering projection. We consider quasiconformal
deformations of Ry. Let f; : Ry — Ry be a quasiconformal
homeomorphism and i, the lift of the Beltrami tensor of f. Namely,
(1 is the Beltrami coefficient of a lift f : H — H relative to TR, and
TR,. Then py is I-invariant (—1,1) form on H. Similarly, we consider

f2 : RO — RQ.
We now define
0= (i, 1z) = w1 (2) if z € H,
i wi(z) = pe(2) if z e H*.

Then the p-conformal mapping w = w* deforms I" into a Mobius
group I'*, which acts on D" = w(H) and D** = w(H*). By
construction, D*/T'* = Ry and D**/T'* = R}, where R} is the
mirror image of Rs.
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Bers embedding of the Teichmiiller space Simultaneous uniformization (scheme)

Simultaneous uniformization (scheme)

M

H

— =\

/I" l,(‘mll. ’ Wﬁ:)

iR
£,
r
— R
mivvoy]
SY —“\\"{;:'-
N~ ——7 _
* I~
.
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el gpeee
Teichmiiller space

Let T" be a Fuchsian group acting on H. For € M(H,T), it is
known that the mapping w, = w1 has the property

wy,(2) = wy(2). In particular, w,(H) = H and I';, = w,T'w;" is again
a Fuchsian group. (In other words, w,, uniformizes a pair of mirror
symmetric surfaces.) Two Beltrami coefficients pq, o € M(H, T") are
called Teichmiiller equivalent if w,, = w,, on R. The set of
Teichmiiller equivalence classes [u] for € M(H,T') is called the
Teichmiiller space of I' and will be denoted by 7'(I"). The distance

d(u,v) = esssup arctanh
zeH

‘ p(z) —v(z)
1= 7))
induces a distance on T'(I"), called the Teichmiiller distance.
Unfortunately, the correspondence yi — w,, is not complex analytic
because the definition of (1, 1) involves the conjugate ju(Z). Thus the
above construction does not give us a complex structure directly.
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Bers embedding of the Teichmiiller space Bers' idea

Bers’ idea

To get rid of complex conjugation, Bers considered the map w®? for
p € M(H,T). For simpicity, we write w" = w*? through the
understanding that p is extended to the lower half-plane H* as 0.
Note that the map w* uniformizes the Riemann surface

fu(Ro) =H/I',, and Rj,.

Proposition

Let p1, 1o € M(H,T'). The following conditions are equivalent:
Q w,, =w,, onR.
Q@ w" = w" on R.
Q@ w' = w? on H".

o Swm = Swuz on H*
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Bers embedding
Bers embedding
We define
Olu)(z) = Sun(z), ze€H"

Hence, p; is Teichmiiller equivalent to pip iff ®[u] = P[us] on H*.
Let Bo(H*,T") be the complex Banach space consisting of
holomorphic quadratic differentials ¢ for I with finite norm

lll2 = sup (1 = |2]*)*]o(2)] < oo
zeH*
Recall that ¢ is called a quadratic differential for I" (or an
automorphic form for ' of weight 4) if o oy - (7/)? = ¢ for all v € T..

Theorem (Bers embedding, circa 1961)

The mapping ® induces a topological embedding
B :T(I') - By(H*,T'). Moreover, the image of § is a domain
contained in the open ball ||¢||2 < 6.
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Picture of Bers embedding

Computer graphics of the Bers enbedding of the Teichmiiller space of
a once-punctured squre torus, due to Yasushi Yamashita
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Generalizations

Generalizations
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Attempts for higher dimensions or manifolds
Attempts for higher dimensions or manifolds

@ M. Yoshida (around 1980) via projective geometry

@ Ahlfors (1989) Schwarzian for curves in R™ and diffeomorphisms
of R"

@ Osgood-Stowe (1992) Schwarzian for conformal maps between
Riemanian manifolds

e Carne (1990), Wada (1998) approach via Clifford algebras
o FitzGerald-Gong (1993) in several complex variables

@ Molzon-Mortenson (1996) maps between complex mfds with
complex projective connections

@ Kobayashi-Wada (2000) relation with concircular geometry

@ Many more: Sato, Sasaki, Ovsienko-Tabachnikov,
Chuaqui-Gevirtz, and so on.

T. Sugawa (Tohoku Univ.) Schwarzian derivative March 16, 2016 42 /52



Igher-enalay Selavaeizns
Higher-order Schwarzians

@ Aharonov (1969), followed up by Harmelin (1982) (called
“Aharonov invariants”)

Tamanoi (1995) more later

Schippers (2000) extension of S-1

Kozlovski and Sands (2009) a dynamical approach
Chuaqui, Gréhn and Rattya (2011) via the ODE
™+ p(z)y =0

e 6 o6 o

@ Seong-A Kim and Sugawa (2011) “invariant” and “projective”

Schwarzians

In this talk, we will introduce the projective Schwarzians based on
Tamanoi's one.
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Another interpretation of Schwarzian
Another interpretation of Schwarzian

Let f(z) be a locally univalent meromorphic function. Assume that
f(z) # oo for a fixed point z. Then one can find a Mobius
transformation M, (w) = (aw + b)/(cw + d) such that

M.(0) = f(z), M(0) = f'(z), MZ(0) = f"(0).

Then M, (w) is the best Mobius approximation of f(z + w) in a
sense. Observe that

MY f(z+w)) =2+ Sf3—(!z)w3 + O(w?)

as w — 0. Note also

A R)
- 1) + R
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Tamanoi's Schwarzian derivatives
Tamanoi’s Schwarzian derivatives

Tamanoi (1995):

e — RO - 1)
MO T RO - Fe) T e
ISR
D ICICRT i

Splf] is called (Tamanoi's) Schwarzian derivative of
virtual order n.
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First several ones

So[f] =1

Sl[f] =0

Salf] = 55

S3[f] = S}

Silf] = S}/—i-élS]%
Ss[f] = }" + 135}5}.
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.. k
Representation in terms of S} )

Define a sequence of polynomials T,, = T, (za, -+ ,z,) of n — 1
indeterminates inductively by Ty = 1,77 = 0,75 = x-, and

n—1 n—1
8Tn_1 ) n
T, = . — Te 1Th k1, > 3.
;&Uk $k+1+22(k>k1 k=1, 1T

k=1

Then, for instance, T3 = 13, Ty = x4 + 423 and T5 = x5 + 13z973.

Lemma
Sn[f]:Tn<Sf,S},...,S?72), n > 3.
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Generalizations Schwarzian on Riemann suface?

Schwarzian on Riemann suface?

Recalling the relation
Sgor = (Sgo f) - (f')* + S5,

we immediately recognize that the Schwarzian derivative is not
well-defined for a holomorphic map between Riemann surfaces. On
the other hand, if we consider finer structure than complex one, then
the Schwarzian can be defined. Indeed, the Schwarzian derivative of
a (non-constant) holomorphic map between Riemann surfaces with
projective structure can be defined as a holomorphic quadratic
differential. This idea, however, breaks down when we try to extend
it to higher-order Schwarzians. We propose one possible way to
accomplish it below, based on the joint work with S.-A Kim.
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Setting

Let f: Q — Q' be a nonconstant holomorphic map between Riemann
surfaces with projective structures. If the source domain € is
equipped with conformal metric p, we can define a kind of invariant
Schwarzian derivatives of higher order, called projective Schwarzian
derivatives. (We do not need a conformal metric on (2'.)

For simplicity, we will consider only plane domains (with standard
projective structures) in the sequel.
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Generalizations Covariant derivatives

Covariant derivatives

Let ¢ = ¢(z)dz" be an n-differential on 2. Then its covariant
derivative in z-direction w.r.t. the Levi-Civita connection of p is

defined by
Ay(p) = [0p — 2n(dlog p)p]dz"T".

We define ©7 f by
O fd2" = A7 *(Sp(2)dz%), n>2.
By naturality, for a Mobius transformation h, we have

hep(f o h) = (D5 f) o h- (R)".
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Definition of projective Schwarzians
Definition of projective Schwarzians

Define V' f (n > 2) by
VI =T (D2f,..., D).

Note that V' f = S,[f] when p = |dz|.
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Urifeelimes iee witth V24
Univalence criteria with V3 f

From now on, we suppose that

Q=D={|z| <1}, p=|dz|/(1 = |z[?) and € = C with standard
projective structure. We simply write V" f = V" f and V; = V3 f for
a nonconstant meromorphic function f : D — C. A straightforward
computation yields

4z
1|z

Vi(z) = (Sp)'(2) = S¢(2)-

Theorem (S.-A Kim and S. 2011)

Let f be a non-constant meromorphic function on the unit disk D. If
f is univalent in D, then ||V}||3 < 16. The number 16 is sharp.
Conversely, if ||Vy]|s < 3/2, then f is univalent in D.
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