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Introduction What is the Schwarzian derivative?

What is the Schwarzian derivative?

Let f(z) be a non-constant meromorphic function of one complex
variable. We define

the pre-Schwarzian derivative: Tf =
f ′′

f ′

the Schwarzian derivative:

Sf = (Tf )
′ − 1

2
(Tf )

2 =

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

Traditionally, Sf is denoted by {f(z), z}.
Note that Tf and Sf are meromorphic functions.
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Introduction Basic properties of pre-Schwarzian derivative

Basic properties of pre-Schwarzian derivative

Since Tf = [log f ′]′, we have the following:

Tf = 0 iff f is an affine transformation of the form
f(z) = az + b (a ̸= 0).

Tg◦f = (Tg ◦ f) · f ′ + Tf

In particular,

Tg◦f = Tf , Tf◦g = (Tf ◦ g) · g′

for an affine transformation g.

Tf (z) is analytic at z = z0 iff f is a locally univalent
holomorphic at z0.
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Introduction Basic properties of Schwarzian derivative

Basic properties of Schwarzian derivative

Sf = 0 iff f is a Möbius transformation.

Sg◦f = (Sg ◦ f) · (f ′)2 + Sf

In particular,

Sg◦f = Sf , Sf◦g = (Sf ◦ g) · (g′)2

for a Möbius transformation g. By using them, Sf (z) can be
defined when f(z) = ∞ or z = ∞.

Sf (z) is analytic at z = z0 iff f is locally univalent meromorphic
at z0.
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Introduction Examples

Examples

Let us look at a couple of examples. First, for w = ez, we have
w′ = ez so that Tw = (logw′)′ = 1. Hence,

Sexp = −1

2
.

We next consider w = zα for a constant α ̸= 0. Then, w′ = αzα−1

and thus Tw = (α− 1)/z. Finally, we get

{w, z} = −α− 1

z2
− 1

2
· (α− 1)2

z2
=

1− α2

2z2
.

Other important examples:

{z/(1− z)2, z} =
−6

(1− z2)2
, {log z, z} =

1

2z2
.
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Introduction Early History

Early History

J. L. Lagrange (1779) Related computations

E. Kummer (1836) in Gauss hypergeometric equation

H. A. Schwarz (1869) defined Sf to construct a “triangle
function”

H. A. Schwarz (1873) solved the Fuchs problem on
hypergeometric functions

A. Cayley (1880) named ”Schwarzian derivative”

H. A. Schwarz (1890) mentioned the work of Lagrange in the
notes on his treatise II.
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Introduction H. A. Schwarz

H. A. Schwarz

Karl Hermann Amandus Schwarz
(From Wikipedia)
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Introduction Schwarz’s discovery

Schwarz’s discovery

H. A. Schwarz, Ueber einige Abbildungsaufgaben
Journal für die reine und angewandte Mathematik, 70 (1869), 105?120.
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Introduction Computations due to Schwarz

Computations due to Schwarz

According to Schwarz, put

u′ =
C1u+ C2

C3u+ C4

for a function u = u(t). Then,

Tu′ =
d

dt
log

du′

dt
=

d

dt

[
log

du

dt
+ log

C1C4 − C2C3

(C3z + C4)2

]
=

d2u

dt2

/du

dt
− 2

C3

C3u+ C4

du

dt
= Tu − 2

C3

C3u+ C4

du

dt

and

d

dt
Tu′ =

d

dt
Tu + 2

C2
3

(C3u+ C4)2
du

dt
− 2

C3

C3u+ C4

d2u

dt2
.

Hence,

Su′ =
d

dt
Tu′ − 1

2
T 2
u′ =

d

dt
Tu −

1

2
T 2
u = Su.
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Introduction Differential operator annihilating Möbius maps

Differential operator annihilating Möbius maps

The Schwarzian derivative can be thought of as the simplest
(non-linear) differential operator which annihilates all the Möbius
transformations. Recalling that w = (az + b)/(cz + d) satisfies

w′ =
ad− bc

(cz + d)2
,

we observe

0 =
d2

dz2
(w′)−1/2 = −

w′′′/w′ − 3
2
(w′′/w′)2

2(w′)1/2
.

More generally, for a function w = f(z), we let
φ(z) = 1/

√
f ′(z) = (w′)−1/2 and compute

φ′′(z) =
d

dz

[
−1

2
w′′(w′)−3/2

]
= −φ(z)

2
Sf (z).
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Introduction Lagrange’s paper

Lagrange’s paper

J. L. Lagrange, Sur la construction des cartes géographiques, 1779.
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Conformal mappings and Schwarzian

Conformal mappings and Schwarzian
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Conformal mappings and Schwarzian Schwarz-Christoffel mapping

Schwarz-Christoffel mapping
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Conformal mappings and Schwarzian Near the vertex

Near the vertex

By Schwarz reflection principle, g(z) := (f(z)− wj)
1/αj extends to a

conformal mapping near z = xj. Since f(z) = wj + g(z)αj , one gets

Tf (z) = (αj − 1)
g′(z)

g(z)
+ Tg(z) =

αj − 1

z − xj

+O(1) z → xj.
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Conformal mappings and Schwarzian Schwarz-Christoffel formula

Schwarz-Christoffel formula

Since f behaves like 1/z at ∞, we have Tf (z) = −2/z +O(1/z2) as
z → ∞. We thus obtain

Tf (z) =
n∑

j=1

αj − 1

z − xj

,

with
n∑

j=1

(αj − 1) = −2.

By integrating the above, we finally get

f ′(z) = C
n∏

j=1

(z − xj)
αj−1,

where C is a non-zero constant.
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Conformal mappings and Schwarzian Conformal mapping onto curvilinear polygon

Conformal mapping onto curvilinear polygon
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Conformal mappings and Schwarzian Near the vertex

Near the vertex
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Conformal mappings and Schwarzian Local analysis

Local analysis

By the Schwarz reflection principle, g(z) := (L ◦ f(z))1/αj extends to
a conformal mapping near z = xj, where L(w) = (w−wj)/(w−w′

j).
Since f(z) = L(g(z)αj) and {zα, z} = (1− α2)/2z2, one gets

Sf (z) = (1− α2
j )

g′(z)2

2g(z)2
+ Sg(z) =

1− α2
j

2(z − xj)2
+

βj

z − xj

+O(1)

as z → xj. We can also see that βj ∈ R.
Since the point at infinity is an ordinary point, we can observe that
Sf (z) = O(1/z4) as z → ∞.
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Conformal mappings and Schwarzian The form of Schwarzian

The form of Schwarzian

Sf (z) =
n∑

j=1

[
1− α2

j

2(z − xj)2
+

βj

z − xj

]
,

where βj are real numbers with

n∑
j=1

βj = 0,
n∑

j=1

(2xjβj + 1− α2
j ) = 0,

n∑
j=1

(x2
jβj + xj(1− α2

j )) = 0.

Problems:
...1 Determination of the parameters βj

...2 Solve the equation Sf = φ for a given φ!

We consider the latter problem in the next section.
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Inverse problem

Inverse problem
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Inverse problem ODE of Sturm-Liouville type

ODE of Sturm-Liouville type

Let φ(z) be a holomorphic function defined on a plane domain Ω.
Find a (possibly multiple-valued) meromorphic function f(z) on Ω
such that Sf = φ. Recall that ω = 1/

√
f ′ satisfies

ω′′

ω
= −1

2
Sf = −φ

2
.

Consider the ODE

2y′′ + φy = 2
d2y

dz2
+ φ(z)y = 0

and let y0, y1 be two linearly independent solutions. Then the
Wronskian W = W (y0, y1) = y0y

′
1 − y′0y1 satisfies W ′ = 0. We may

assume that W ≡ 1. Then the function f = y1/y0 satisfies

f ′ =
W

y20
= y−2

0 ⇔ y0 = 1/
√

f ′,

and thus Sf = φ.
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Inverse problem Monodromies

Monodromies

When Ω is not simply connected, solutions to the ODE
2y′′ + 2φy = 0 are not necessarily single-valued.
Let y0 and y1 be local solutions to the ODE around z0 ∈ Ω with
W ≡ 1. Then yj continues analytically along a curve γ ∈ π1(Ω, z0) to
ỹj near z0. We can write ỹ1 = Ay1 +By0 and ỹ0 = Cy1 +Dy0 for
some constants A,B,C,D. Since W (ỹ0, ỹ1) = W (y0, y1) = 1, we
have AD −BC = 1. In this way, we obtain the monodromy
homomorphism

ρφ : π1(Ω, z0) → SL(2,C),

which describes the monodromy for φ

ρφ : π1(Ω, z0) → PSL(2,C); γ 7→ Ay1 +By0
Cy1 +Dy0

=
Af +B

Cf +D
.
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Inverse problem Fuchsian group

Fuchsian group

Let Ω be a domain in Ĉ = CP 1 with #∂Ω ≥ 3 (or, more generally, a
hyperbolic Riemann surface). Then, by the Uniformization Theorem,
there is an analytic universal covering projection π : H → Ω. The
covering transformation group

Γ = {γ ∈ Aut(H) = PSL(2,R) : π ◦ γ = π}

is a (torsion-free) Fuchsian group. Unfortunately, it is almost
impossible to obtain an explicit form of π, like Riemann mapping
functions.
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Inverse problem Poincaré’s idea

Poincaré’s idea

Even though the inverse mapping of the covering projection π is
multiple-valued in general, the branches are related by Möbius
transformations γ ∈ Γ. Therefore, the Scwarzian derivative
ΨΩ = Sπ−1 is (single-valued) analytic function on Ω.
When Ω is an n-times punctured sphere with n ≥ 3, the form of ΨΩ

is determined to some extent:

ΨΩ(z) = Sπ−1(z) =
n∑

j=1

[
1

2(z − zj)2
+

βj

z − zj

]
,

where βj are complex constants, called accessory parameters. It is,
however, not easy to determine the parameters βj when n ≥ 4.
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Inverse problem Remark

Remark

For instance, when φ = ΨΩ, the above monodromy yields an
isomorphism π1(Ω, z0) → Γ (up to conjugate). A slight perturbation
ρΨΩ+φ gives a holomorphic deformation of the Fuchsian group Γ.
Even though we do not have exact forms of the solutions, we can
compute the monodromy by numerical integration.
Such an approach has been used to visualize the Bers embedding of
Teichmüller spaces of dimension 1 (Komori-S. -Wada-Yamashita).
Also, this method can be extended to “uniformize” a Riemann
furface with conical singularities.
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Inverse problem Nehari’s theorem

Nehari’s theorem

Let f be a nonconstant meromorphic function on the unit disk
D = {z ∈ C : |z| < 1}.

If f is univalent, then

(1− |z|2)2|Sf (z)| ≤ 6, |z| < 1.

Conversely, if

(1− |z|2)2|Sf (z)| ≤ 2, |z| < 1,

then f is univalent.

The constants 6 and 2 are sharp.
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Inverse problem Proof of Nehari’s Theorem

Proof of Nehari’s Theorem

A crusial fact is that the quantity H(z, f) = (1− |z|2)2|Sf (z)| is
invariant under the pull-back by analytic automorphisms of D.
Namely,

H(g(z), f ◦ g) = H(z, f) for g(z) =
αz + β

β̄z + ᾱ
, |α|2 − |β|2 = 1.

The first assertion at the origin is equivalent to |a3 − a22| ≤ 1 for
f(z) = z + a2z

2 + a3z
3 + · · · , which follows from the

Bieberbach-Gronwall area theorem.
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Inverse problem Proof of Nehari’s Theorem, 2

Proof of Nehari’s Theorem, 2

For the second assertion, put φ = Sf so that

|φ(z)| ≤ 2

(1− |z|2)2
.

Suppose, to the contrary, that f(z0) ̸= f(z1) for z0 ̸= z1 ∈ D. By the
invariance, we may assume that z0 = 0, 0 < z1 < 1 and f = y1/y0
with 2y′′j + φyj = 0, y0(0) = y′1(0) = 0, y′0(0) = y1(0) = 1. We note
that the function F (z) = arctanhz = 1

2
log 1+z

1−z
satisfies

SF (z) =
2

(1− z2)2
.

Then a comparison theorem for the solutions to an ODE of
Sturm-Liouville type, we have y1(x) ̸= 0 for 0 < x < 1, which is a
contradiction.

T. Sugawa (Tohoku Univ.) Schwarzian derivative March 16, 2016 30 / 52



Bers embedding of the Teichmüller space

Bers embedding of the Teichmüller space
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Bers embedding of the Teichmüller space Quasiconformal mapping

Quasiconformal mapping

A(n orientation-preserving) homeomorshism f : Ω → Ω1 between
plane domains is called quasiconformal (or qc for short) if f belongs
to the Sobolev class W 1,2

loc (Ω) and satisfies

|∂z̄f(z)| ≤ k|∂zf(z)| a.e. on Ω

for a constant k < 1. It is known that fz = ∂zf ̸= 0 a.e. for a qc map
f. The quotient

µ = µf =
∂z̄f

∂zf

is a measurable function on Ω with ∥µ∥∞ ≤ k and called the
Beltrami coefficient of f. The mapping f is sometimes called
µ-conformal. For conformal mappings g, h, we have

µg◦f◦h = µf ◦ h · h
′

h′ .

Thus the notion of quasiconformality extends to Riemann surfaces.
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Bers embedding of the Teichmüller space Measurable Riemann mapping theorem

Measurable Riemann mapping theorem

.
Measurable Riemann mapping theorem
..

.

. ..

.

.

Let µ ∈ L∞(C) with ∥µ∥∞ < 1. Then there exists a unique
quasiconformal homeomorphism f : C → C with µf = µ and
normalized so that f(0) = 0, f(1) = 1.

Such a map will be denoted by wµ.
Let Γ be a subgroup of Möb = Aut(Ĉ) acting on a domain Ω ⊂ Ĉ.
Set

M(Ω,Γ) = {µ ∈ L∞(Ω) : µ ◦ γ · γ̄′/γ′ = µ a.e.}.

Then µ-conformal mapping f conjugates Γ into an analytic
automorphism groups of f(Ω). In particular, if Ω = Ĉ, then
fΓf−1 ⊂ Möb.
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Bers embedding of the Teichmüller space Lift of a qc homeo

Lift of a qc homeo
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Bers embedding of the Teichmüller space Simultaneous uniformization

Simultaneous uniformization

Let R0 be a fixed hyperbolic Riemann surface and πR0 : H → R0 be
an analytic universal covering projection. We consider quasiconformal
deformations of R0. Let f1 : R0 → R1 be a quasiconformal
homeomorphism and µ1 the lift of the Beltrami tensor of f. Namely,
µ1 is the Beltrami coefficient of a lift f̃1 : H → H relative to πR0 and
πR1 . Then µ1 is Γ-invariant (−1, 1) form on H. Similarly, we consider
f2 : R0 → R2.
We now define

µ = (µ1, µ2) =

{
µ1(z) if z ∈ H,

µ∗
2(z) = µ2(z̄) if z ∈ H∗.

Then the µ-conformal mapping w = wµ deforms Γ into a Möbius
group Γµ, which acts on Dµ = w(H) and Dµ,∗ = w(H∗). By
construction, Dµ/Γµ ∼= R1 and Dµ,∗/Γµ ∼= R∗

2, where R∗
2 is the

mirror image of R2.
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Bers embedding of the Teichmüller space Simultaneous uniformization (scheme)

Simultaneous uniformization (scheme)
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Bers embedding of the Teichmüller space Teichmüller space

Teichmüller space

Let Γ be a Fuchsian group acting on H. For µ ∈ M(H,Γ), it is
known that the mapping wµ = w(µ,µ) has the property

wµ(z̄) = wµ(z). In particular, wµ(H) = H and Γµ = wµΓw
−1
µ is again

a Fuchsian group. (In other words, wµ uniformizes a pair of mirror
symmetric surfaces.) Two Beltrami coefficients µ1, µ2 ∈ M(H,Γ) are
called Teichmüller equivalent if wµ1 = wµ2 on R. The set of
Teichmüller equivalence classes [µ] for µ ∈ M(H,Γ) is called the
Teichmüller space of Γ and will be denoted by T (Γ). The distance

d(µ, ν) = ess sup
z∈H

arctanh

∣∣∣∣ µ(z)− ν(z)

1− ν̄(z)µ(z)

∣∣∣∣
induces a distance on T (Γ), called the Teichmüller distance.
Unfortunately, the correspondence µ 7→ wµ is not complex analytic

because the definition of (µ, µ) involves the conjugate µ(z̄). Thus the
above construction does not give us a complex structure directly.
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Bers embedding of the Teichmüller space Bers’ idea

Bers’ idea

To get rid of complex conjugation, Bers considered the map w(µ,0) for
µ ∈ M(H,Γ). For simpicity, we write wµ = w(µ,0) through the
understanding that µ is extended to the lower half-plane H∗ as 0.
Note that the map wµ uniformizes the Riemann surface
fµ(R0) = H/Γµ and R∗

0.
.
Proposition
..

.

. ..

.

.

Let µ1, µ2 ∈ M(H,Γ). The following conditions are equivalent:
...1 wµ1 = wµ2 on R.
...2 wµ1 = wµ2 on R.
...3 wµ1 = wµ2 on H∗.
...4 Swµ1 = Swµ2 on H∗.
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Bers embedding of the Teichmüller space Bers embedding

Bers embedding

We define
Φ[µ](z) = Swµ(z), z ∈ H∗.

Hence, µ1 is Teichmüller equivalent to µ2 iff Φ[µ1] = Φ[µ2] on H∗.
Let B2(H∗,Γ) be the complex Banach space consisting of
holomorphic quadratic differentials φ for Γ with finite norm

∥φ∥2 = sup
z∈H∗

(1− |z|2)2|φ(z)| < ∞.

Recall that φ is called a quadratic differential for Γ (or an
automorphic form for Γ of weight 4) if φ ◦ γ · (γ′)2 = φ for all γ ∈ Γ.
.
Theorem (Bers embedding, circa 1961)
..

.

. ..

.

.

The mapping Φ induces a topological embedding
β : T (Γ) → B2(H∗,Γ). Moreover, the image of β is a domain
contained in the open ball ∥φ∥2 < 6.
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Bers embedding of the Teichmüller space Picture of Bers embedding

Picture of Bers embedding

Computer graphics of the Bers enbedding of the Teichmüller space of
a once-punctured squre torus, due to Yasushi Yamashita
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Generalizations

Generalizations
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Generalizations Attempts for higher dimensions or manifolds

Attempts for higher dimensions or manifolds

M. Yoshida (around 1980) via projective geometry

Ahlfors (1989) Schwarzian for curves in Rn and diffeomorphisms
of Rn

Osgood-Stowe (1992) Schwarzian for conformal maps between
Riemanian manifolds

Carne (1990), Wada (1998) approach via Clifford algebras

FitzGerald-Gong (1993) in several complex variables

Molzon-Mortenson (1996) maps between complex mfds with
complex projective connections

Kobayashi-Wada (2000) relation with concircular geometry

Many more: Sato, Sasaki, Ovsienko-Tabachnikov,
Chuaqui-Gevirtz, and so on.
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Generalizations Higher-order Schwarzians

Higher-order Schwarzians

Aharonov (1969), followed up by Harmelin (1982) (called
“Aharonov invariants”)

Tamanoi (1995) more later

Schippers (2000) extension of Sf−1

Kozlovski and Sands (2009) a dynamical approach

Chuaqui, Gröhn and Rättyä (2011) via the ODE
y(n) + φ(z)y = 0

Seong-A Kim and Sugawa (2011) “invariant” and “projective”
Schwarzians

In this talk, we will introduce the projective Schwarzians based on
Tamanoi’s one.
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Generalizations Another interpretation of Schwarzian

Another interpretation of Schwarzian

Let f(z) be a locally univalent meromorphic function. Assume that
f(z) ̸= ∞ for a fixed point z. Then one can find a Möbius
transformation Mz(w) = (aw + b)/(cw + d) such that

Mz(0) = f(z), M ′
z(0) = f ′(z), M ′′

z (0) = f ′′(0).

Then Mz(w) is the best Möbius approximation of f(z + w) in a
sense. Observe that

M−1
z (f(z + w)) = z +

Sf (z)

3!
w3 +O(w4)

as w → 0. Note also

M−1
z (t) =

f ′(z)(t− f(z))
1
2
f ′′(z)(t− f(z)) + f ′(z)2

.
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Generalizations Tamanoi’s Schwarzian derivatives

Tamanoi’s Schwarzian derivatives

Tamanoi (1995):

W = M−1
z (f(ζ)) =

f ′(z)(f(ζ)− f(z))
1
2
f ′′(z)(f(ζ)− f(z)) + f ′(z)2

=
∞∑
n=0

Sn[f ](z)
(ζ − z)n+1

(n+ 1)!
.

Sn[f ] is called (Tamanoi’s) Schwarzian derivative of
virtual order n.
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Generalizations First several ones

First several ones

S0[f ] = 1

S1[f ] = 0

S2[f ] = Sf

S3[f ] = S ′
f

S4[f ] = S ′′
f + 4S2

f

S5[f ] = S ′′′
f + 13SfS

′
f .
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Generalizations Representation in terms of S
(k)
f

Representation in terms of S
(k)
f

Define a sequence of polynomials Tn = Tn(x2, · · · , xn) of n− 1
indeterminates inductively by T0 = 1, T1 = 0, T2 = x2, and

Tn =
n−1∑
k=2

∂Tn−1

∂xk

· xk+1 +
x2

2

n−1∑
k=1

(
n

k

)
Tk−1Tn−k−1, n ≥ 3.

Then, for instance, T3 = x3, T4 = x4 + 4x2
2 and T5 = x5 + 13x2x3.

.
Lemma
..

.

. ..

.

.

Sn[f ] = Tn(Sf , S
′
f , . . . , S

n−2
f ), n ≥ 3.
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Schwarzian on Riemann suface?

Recalling the relation

Sg◦f = (Sg ◦ f) · (f ′)2 + Sf ,

we immediately recognize that the Schwarzian derivative is not
well-defined for a holomorphic map between Riemann surfaces. On
the other hand, if we consider finer structure than complex one, then
the Schwarzian can be defined. Indeed, the Schwarzian derivative of
a (non-constant) holomorphic map between Riemann surfaces with
projective structure can be defined as a holomorphic quadratic
differential. This idea, however, breaks down when we try to extend
it to higher-order Schwarzians. We propose one possible way to
accomplish it below, based on the joint work with S.-A Kim.
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Setting

Let f : Ω → Ω′ be a nonconstant holomorphic map between Riemann
surfaces with projective structures. If the source domain Ω is
equipped with conformal metric ρ, we can define a kind of invariant
Schwarzian derivatives of higher order, called projective Schwarzian
derivatives. (We do not need a conformal metric on Ω′.)
For simplicity, we will consider only plane domains (with standard
projective structures) in the sequel.
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Covariant derivatives

Let φ = φ(z)dzn be an n-differential on Ω. Then its covariant
derivative in z-direction w.r.t. the Levi-Civita connection of ρ is
defined by

Λρ(φ) =
[
∂φ− 2n(∂ log ρ)φ

]
dzn+1.

We define Dn
ρf by

Dn
ρfdz

n = Λn−2
ρ (Sf (z)dz

2), n ≥ 2.

By naturality, for a Möbius transformation h, we have

Dn
h∗ρ(f ◦ h) = (Dn

ρf) ◦ h · (h′)n.
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Definition of projective Schwarzians

Define V n
ρ f (n ≥ 2) by

V n
ρ f = Tn(D

2
ρf, . . . ,D

n
ρf).

Note that V n
ρ f = Sn[f ] when ρ = |dz|.
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Univalence criteria with V 3f

From now on, we suppose that
Ω = D = {|z| < 1}, ρ = |dz|/(1− |z|2) and Ω′ = Ĉ with standard
projective structure. We simply write V nf = V n

ρ f and Vf = V 3f for

a nonconstant meromorphic function f : D → Ĉ. A straightforward
computation yields

Vf (z) = (Sf )
′(z)− 4z̄

1− |z|2
Sf (z).

.
Theorem (S.-A Kim and S. 2011)
..

.

. ..

.

.

Let f be a non-constant meromorphic function on the unit disk D. If
f is univalent in D, then ∥Vf∥3 ≤ 16. The number 16 is sharp.
Conversely, if ∥Vf∥3 ≤ 3/2, then f is univalent in D.
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