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1. The mean curvature type flow 1.1. The mean curvature flow

1.1. The mean curvature flow

Let Mn be an n-dimensional manifold and assume that

X : Mn → Rn+1

is an n-dimensional hypersurface in the (n + 1)-
dimensional Euclidean space Rn+1.
A family X(t) = X(·, t) of smooth immersions:

X(t) : Mn → Rn+1

with X(0) = X is called mean curvature flow if they
satisfy

∂X(p, t)
∂t

= H(p, t),
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1. The mean curvature type flow 1.1. The mean curvature flow

where H(p, t) denotes the mean curvature vector of
hypersurface Mt = X(Mn, t) at point X(p, t).

The simplest mean curvature flow is given by the
one-parameter family of the shrinking spheres
Mt ⊂ Rn+1 centered at the origin and with radius√
−2n(t − T) for t ≤ T.

This is a smooth flow except at the origin at time t = T
when the flow becomes extinct.
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1. The mean curvature type flow 1.1. The mean curvature flow

For an n-dimensional compact convex hypersurface
M0 = X(Mn) in Rn+1,

Huisken (J. Diff. Geom. 1984) proved that the mean
curvature flow Mt = X(Mn, t) remains smooth and
convex until it becomes extinct at a point in the finite
time. If we rescale the flow about the point, the
resulting converges to the round sphere.

When M0 is non-convex, the other singularities of the
mean curvature flow can occur.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 5 / 52



1. The mean curvature type flow 1.1. The mean curvature flow

For an n-dimensional compact convex hypersurface
M0 = X(Mn) in Rn+1,
Huisken (J. Diff. Geom. 1984) proved that the mean
curvature flow Mt = X(Mn, t) remains smooth and
convex until it becomes extinct at a point in the finite
time. If we rescale the flow about the point, the
resulting converges to the round sphere.

When M0 is non-convex, the other singularities of the
mean curvature flow can occur.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 5 / 52



1. The mean curvature type flow 1.1. The mean curvature flow

For an n-dimensional compact convex hypersurface
M0 = X(Mn) in Rn+1,
Huisken (J. Diff. Geom. 1984) proved that the mean
curvature flow Mt = X(Mn, t) remains smooth and
convex until it becomes extinct at a point in the finite
time. If we rescale the flow about the point, the
resulting converges to the round sphere.

When M0 is non-convex, the other singularities of the
mean curvature flow can occur.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 5 / 52



1. The mean curvature type flow 1.1. The mean curvature flow

In fact, Grayson (Duke Math. J. 1989) constructed a
rotationally symmetric dumbbell with a sufficiently long
and narrow bar, where the neck pinches off before the
two bells become extinct.

For the rescaling of the singularity at the neck, the
resulting blows up, can not extinctions. Hence, the
resulting is not a sphere.
In fact, the resulting of the singularity converges to a
shrinking cylinder.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 6 / 52



1. The mean curvature type flow 1.1. The mean curvature flow

In fact, Grayson (Duke Math. J. 1989) constructed a
rotationally symmetric dumbbell with a sufficiently long
and narrow bar, where the neck pinches off before the
two bells become extinct.

For the rescaling of the singularity at the neck, the
resulting blows up, can not extinctions. Hence, the
resulting is not a sphere.

In fact, the resulting of the singularity converges to a
shrinking cylinder.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 6 / 52



1. The mean curvature type flow 1.1. The mean curvature flow

In fact, Grayson (Duke Math. J. 1989) constructed a
rotationally symmetric dumbbell with a sufficiently long
and narrow bar, where the neck pinches off before the
two bells become extinct.

For the rescaling of the singularity at the neck, the
resulting blows up, can not extinctions. Hence, the
resulting is not a sphere.
In fact, the resulting of the singularity converges to a
shrinking cylinder.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 6 / 52



1. The mean curvature type flow 1.1. The mean curvature flow

Let X : Mn → Rn+1 be a hypersurface satisfying

H + 〈X, N〉 = 0,

where H denotes the mean curvature of the
hypersurface.
One can prove that

X(t) =
√
−2tX : Mn → Rn+1,

is a solution of the mean curvature flow equation,
which is called a self-similar solution of the mean
curvature flow.
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1. The mean curvature type flow 1.1. The mean curvature flow

One of the most important problems in the mean
curvature flow is to understand the possible
singularities that the flow goes through.

A key starting point for singularity analysis is Huisken’s
monotonicity formula because the monotonicity implies
that the flow is asymptotically self-similar near a given
singularity which is modeled by self-shrinking solutions
of the flow.

For simple, one calls a hypersurface X : Mn → Rn+1 a
self-shrinker if it satisfies

H + 〈X, N〉 = 0.
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1. The mean curvature type flow 1.1. The mean curvature flow

It is also known that self-shrinkers play an important
role in the study of the mean curvature flow

because they describe all possible blow ups at a given
singularity of the mean curvature flow.

On the other hand, if we consider weighted area
functional

F (s) =
∫

M
e−

|X(s)|2
2 dµs

By computing the first variation formula, we know
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1. The mean curvature type flow 1.1. The mean curvature flow

that X : Mn → Rn+1 is a critical point of F (s) if and
only if X : Mn → Rn+1 is a self-shrinker, that is,

H + 〈X, N〉 = 0.

Furthermore, we know that X : Mn → Rn+1 is a
minimal hypersurface in Rn+1 equipped with the metric

gAB = e−
|X|2

n δAB if and only if X : Mn → Rn+1 is a
self-shrinker, that is,

H + 〈X, N〉 = 0.
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1. The mean curvature type flow 1.2. The mean curvature type flow

1.2. The mean curvature type flow

As one knows, for a family of immersions
X(t) : M → Rn+1 with X(0) = X, the volume of M is
defined by

1
n + 1

∫
M
〈X(t), N(t)〉dµt

Huisken (J. Reine Angew Math. 1987) studied the
mean curvature type flow:

∂X(t)
∂t

=
(−h(t)N(t) + H(t)),

where X(t) = X(·, t), h(t) =
∫

M H(t)dµt∫
M dµt

and N(t) is the

unit normal vector of X(t) : M → Rn+1.
Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 11 / 52



1. The mean curvature type flow 1.2. The mean curvature type flow

It can be proved the above flow preserves the volume
of M. Hence, one calls this flow the volume-preserving
mean curvature flow.
Huisken (J. Reine Angew Math. 1987) proved that if the
initial hypersurface is uniformly convex, then the above
volume-preserving mean curvature flow has a smooth
solution and it converges to a round sphere.

It is natural and important to study critical points of the
weighted area functional for the volume-preserving
variations.
But since this definition of the volume of M is not good
enough from the view point of variations for the
weighted area functional, we need to find new
definitions of the volume and a flow.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 12 / 52



1. The mean curvature type flow 1.2. The mean curvature type flow

It can be proved the above flow preserves the volume
of M. Hence, one calls this flow the volume-preserving
mean curvature flow.
Huisken (J. Reine Angew Math. 1987) proved that if the
initial hypersurface is uniformly convex, then the above
volume-preserving mean curvature flow has a smooth
solution and it converges to a round sphere.

It is natural and important to study critical points of the
weighted area functional for the volume-preserving
variations.

But since this definition of the volume of M is not good
enough from the view point of variations for the
weighted area functional, we need to find new
definitions of the volume and a flow.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 12 / 52



1. The mean curvature type flow 1.2. The mean curvature type flow

It can be proved the above flow preserves the volume
of M. Hence, one calls this flow the volume-preserving
mean curvature flow.
Huisken (J. Reine Angew Math. 1987) proved that if the
initial hypersurface is uniformly convex, then the above
volume-preserving mean curvature flow has a smooth
solution and it converges to a round sphere.

It is natural and important to study critical points of the
weighted area functional for the volume-preserving
variations.
But since this definition of the volume of M is not good
enough from the view point of variations for the
weighted area functional, we need to find new
definitions of the volume and a flow.

Qing-Ming Cheng (Fukuoka University) Geometry of λ-hypersurfaces March 16, 2016 12 / 52



1. The mean curvature type flow 1.2. The mean curvature type flow

In Cheng and Wei (arXiv 2014), we introduce a
definition of the weighted volume of M.
For a family of immersions X(t) : M → Rn+1 with
X(0) = X, we define a weighted volume of M by

V(t) =
∫

M
〈X(t), N〉e−

|X|2
2 dµ.

Furthermore, we consider a new type of mean
curvature flow:

∂X(t)
∂t

=
(−α(t)N(t) + H(t))
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1. The mean curvature type flow 1.2. The mean curvature type flow

with

α(t) =

∫
M H(t)〈N(t), N〉e−

|X|2
2 dµ∫

M〈N(t), N〉e−
|X|2

2 dµ
,

where N is the unit normal vector of X : M → Rn+1.
We can prove that the flow:

∂X(t)
∂t

=
(−α(t)N(t) + H(t))

preserves the weighted volume V(t). Hence, we call
this flow a weighted volume-preserving mean curvature
flow.
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2. The weighted volume-preserving variations 2.1. The weighted volume-preserving variations

2.1. The weighted volume-preserving
variations

Let X : Mn → Rn+1 be an n-dimensional hypersurface
in the (n + 1)-dimensional Euclidean space Rn+1.

We denote a variation of X by X(t) : M → Rn+1,
t ∈ (−ε, ε) with X(0) = X.
We define a weighted area functional A : (−ε, ε) → R
by

A(t) =
∫

M
e−

|X(t)|2
2 dµt,

where dµt is the area element of M in the metric
induced by X(t).
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2. The weighted volume-preserving variations 2.1. The weighted volume-preserving variations

∫
M
〈X(t), N〉dµ

is called the volume of M.

The weighted volume function V : (−ε, ε) → R of M is
defined by

V(t) =
∫

M
〈X(t), N〉e−

|X|2
2 dµ.
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2. The weighted volume-preserving variations 2.1. The weighted volume-preserving variations

We say that a variation X(t) of X is a weighted
volume-preserving normal variation if V(t) = V(0) for
all t and ∂X(t)

∂t |t=0 = f N.

Proposition 2.1. Let X : M → Rn+1 be an immersion.
The following statements are equivalent:

.

.

.

1 For all weighted volume-preserving variations,
A′(0) = 0.

.

.

.

2 〈X, N〉 + H = λ, which is constant.
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2. The weighted volume-preserving variations 2.1. The weighted volume-preserving variations

Definition 2.1. Let X : M → Rn+1 be an
n-dimensional hypersurface in Rn+1.

If

〈X, N〉 + H = λ,

we call X : M → Rn+1 a λ-hypersurface.

Remark. When λ = 0, the λ-hypersurface becomes a
self-shrinker of mean curvature flow.
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2. The weighted volume-preserving variations 2.1. The weighted volume-preserving variations

Theorem 2.1 (Cheng and Wei, 2014).
Let X : M → Rn+1 be a hypersurface. The following
statements are equivalent:

.

.
.

1 X : M → Rn+1 is a λ-hypersurface.

.

.

.

2 X : M → Rn+1 is a critical point of the weighted
area functional A(t) for all weighted volume-
preserving variations.

.

.

.
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2. The weighted volume-preserving variations 2.2. Examples of λ-hypersurfaces

2.2. Examples of λ-hypersurfaces

As standard examples of λ-hypersurfaces, we know
that all of self-shrinkers of mean curvature flow are
λ-hypersurfaces. For examples, Angenent’s compact
embedded self-shrinker:

X : S1 × Sn−1 → Rn+1,

Drugan’s topological sphere self-shrinker:

X : Sn → Rn+1

and compact self-shrinkers with higher genus due to
Møller and so on.
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2. The weighted volume-preserving variations 2.2. Examples of λ-hypersurfaces

Furthermore,
Example 2.1.

X : Sn(r) → Rn+1, r > 0

is a compact λ-hypersurface in Rn+1 with λ = n
r − r.

Example 2.2. For a positive integer k,

X : Sk(r) × Rn−k

is an n-dimensional complete noncompact
λ-hypersurface in Rn+1 with λ = k

r − r.
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2. The weighted volume-preserving variations 2.2. Examples of λ-hypersurfaces

Example 2.3. For n = 1, and for some λ < 0, we can
prove that there exist closed embedded λ-curves Γλ in
R2, which is not circle.

Remark.
There are no closed embedded self-shrinker curves of
mean curvature flow except circle with radius 1.

Example 2.4. For any positive integer n, there exist
complete embedded λ-hypersurfaces, which are given
by Γλ × Rn−1 in Rn+1.
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2. The weighted volume-preserving variations 2.2. Examples of λ-hypersurfaces

Theorem 2.2 (Cheng and Wei, 2015). For n ≥ 2 and
λ ≥ 0, there exists embedding revolution
λ-hypersurface X : S1 × Sn−1 → Rn+1 in Rn+1.

Proof of theorem 2.2. Let (x(s), r(s)), s ∈ (a, b) be a
curve in the xr-plane with r > 0 and Sn−1(1) denote the
standard unit sphere of dimension n − 1. Then we
consider

X : (a, b) × Sn−1(1) → Rn+1

defined by X(s, α) = (x(s), r(s)α), s ∈ (a, b),
α ∈ Sn−1(1). Namely, X is obtained by rotating the
plane curve (x(s), r(s)) around x axis.
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2. The weighted volume-preserving variations 2.2. Examples of λ-hypersurfaces

Thus, X : (a, b) × Sn−1(1) → Rn+1 is a λ-hypersurface if
and only if (x, r) satisfies(x′)2 + (r′)2 = 1

x′′ = −r′[xr′ + ( n−1
r − r)x′ + λ].

Let (xδ, rδ) be the maximal solution of the above
equations with initial value (xδ, rδ, xδ′(0)) = (0, δ, 1).
Then for small enough δ > 0, there is a simple closed
curve (xδ, rδ) in xr-plane.
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2. The weighted volume-preserving variations 2.2. Examples of λ-hypersurfaces

It can be proved that it is a graph of x = fδ(r). Hence,
there exists an embedding revolution λ-hypersurface
X : S1 × Sn−1 → Rn+1 in Rn+1.
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3. F -functional and stability of λ-hypersurfaces 2. 1 F -functional

3.1. F -functional

We define a F -functional by

F (s) = FXs,t s(X(s))

= (4πt s)−
n
2

∫
M

e−
|X(s)−Xs|2

2t s dµs

+ λ(4π)−
n
2

1
√

t s

∫
M
〈X(s) − Xs, N〉e−

|X|2
2 dµ,

where Xs and t s denote variations of X0 = O, t0 = 1,
respectively and ∂X(0)

∂s = f N.
One calls that X : M → Rn+1 is a critical point of F (s)
if it is critical with respect to all normal variations and all
variations Xs and t s of X0 = O, t0 = 1.
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3. F -functional and stability of λ-hypersurfaces 2. 1 F -functional

Theorem 3.1 (Cheng and Wei, 2014).
Let X : M → Rn+1 be a hypersurface. The following
statements are equivalent:

.

.
.

1 X : M → Rn+1 is a λ-hypersurface.

.

.

.

2 X : M → Rn+1 is a hypersurface with constant
weighted mean curvature λ in Rn+1 equipped with

the metric gAB = e−
|X|2

n δAB.

.

.

.

3 X : M → Rn+1 is a critical point of the weighted
area functional A(t) for all weighted volume-
preserving variations.

.

.

.

4 X : M → Rn+1 is a critical point of F (s).
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3. F -functional and stability of λ-hypersurfaces 3.2. Stability of compact λ-hypersurface

3.2. Stability of compact λ-hypersurface

Definition 3.1. One calls that a critical point
X : M → Rn+1 of the F -functional F (s) is F -stable

if, for every normal variation X(s) of X, there exist
variations Xs and t s of X0 = O, t0 = 1 such that

F ′′(0) ≥ 0.

One calls that a critical point X : M → Rn+1 of the
F -functional F (s) is F -unstable
if there exist a normal variation X(s) of X such that for
all variations Xs and t s of X0 = O, t0 = 1 ,

F ′′(0) < 0

holds.
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3. F -functional and stability of λ-hypersurfaces 3.2. Stability of compact λ-hypersurface

Theorem 3.2 (Cheng and Wei, 2014)

.

. .
1 If r ≤

√
n or r >

√
n + 1,

the n-dimensional round sphere

X : Sn(r) → Rn+1

is F -stable;

.

.

.

2 If
√

n < r ≤
√

n + 1,
the n-dimensional round sphere

X : Sn(r) → Rn+1

is F -unstable.
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3. F -functional and stability of λ-hypersurfaces 3.2. Stability of compact λ-hypersurface

According to our theorem 3.2, we would like to propose
the following:

Problem 3.1. Is it possible to prove that spheres Sn(r)
with r ≤

√
n or r >

√
n + 1 are the only F -stable

compact λ-hypersurfaces?

Remark. Colding and Minicozzi (Ann. of Math., 2012)
have proved that the sphere Sn(

√
n) is the only

F -stable compact self-shrinkers.
In order to prove this result, the property that
the mean curvature H is an eigenfunction of Jacobi
operator plays a very important role.
But for λ-hypersurfaces, the mean curvature H is not
an eigenfunction of Jacobi operator in general.
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4. Complete λ-hypersurfaces

4. Complete λ-hypersurfaces

For complete λ-hypersurfaces, we have

Theorem 4.1. (Cheng and Wei, 2014)
Let X : M → Rn+1 be an n-dimensional complete
embedded λ-hypersurface with polynomial area growth
in Rn+1. If H − λ ≥ 0 and

λ( f3(H − λ) − S) ≥ 0,

then X : M → Rn+1 is isometric to one of the following:

.

.

.

1 Sn(r) with λ = n
r − r,

.

.

.

2 Rn,

.

.

.

3 Sk(r) × Rn−k, 0 < k < n,
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4. Complete λ-hypersurfaces

where S =
∑

i, j h2
i j

is the squared norm of the second
fundamental form and f3 =

∑
i, j,k hi jh jkhki.

Remark. For λ = 0, Huisken (J. Diff. Geom. 1990 and
Colding and Minicozzi (Ann. of Math., 2012) proved this
result. In this case, from the maximum principle, one
can prove H > 0 if H ≥ 0, since

LH = ∆H − 〈X,∇H〉 = H − SH.

H ≥ 0 is essential.
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4. Complete λ-hypersurfaces

Remark. For λ , 0, we can not prove H − λ > 0 if
H − λ ≥ 0 from the maximum principle only.

We need to use the condition λ( f3(H − λ) − S) ≥ 0.
This condition

λ( f3(H − λ) − S) ≥ 0

is essential.
In fact, for any positive integer n, complete embedded
λ-hypersurfaces Γλ × Rn−1 in Rn+1 do not satisfy this
condition, where Γλ is a closed embedded λ-curve in
R2.
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4. Complete λ-hypersurfaces

Proof of theorem 4.1

Since X : M → Rn+1 is an n-dimensional complete
embedded λ-hypersurface,

we can not use Stokes
formula directly.
Hence, if X : M → Rn+1 is an n-dimensional complete
embedded λ-hypersurface with polynomial area growth,
we can make use of Stokes formula for several special
functions.
Proof of theorem 4.1.
Since

LH = H + S(λ − H),

H − λ ≥ 0
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4. Complete λ-hypersurfaces

and
λ( f3(H − λ) − S) ≥ 0,

we are able to prove H − λ > 0.

Thus, we consider function log(H − λ).
We have

L log(H − λ) = 1 − S +
λ

H − λ
− |∇ log(H − λ)|2

and

L
√

S ≥
√

S −
√

SS +
λ f3
√

S
.
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4. Complete λ-hypersurfaces

In order to use Stokes formula for functions S,
log(H − λ) and

√
S, we need to prove the following:

.

. . 1

∫
M S(1 + |X|2)e−

|X|2
2 dµ < +∞

.

.
.

2

∫
M S2e−

|X|2
2 dµ < +∞.

.

.

.

3

∫
M |∇

√
S|2e−

|X|2
2 dµ < +∞,

.

.

.

4

∫
M
∑
i, j,k

h2
i jk

e−
|X|2

2 dµ < +∞.

.

.

.

5

∫
M S|∇ log(H − λ)|2e−

|X|2
2 dµ < +∞.

We give a proof of

.

.

.

1

∫
M S(1 + |X|2)e−

|X|2
2 dµ < +∞
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. . 1

∫
M S(1 + |X|2)e−

|X|2
2 dµ < +∞

.

.
.

2

∫
M S2e−

|X|2
2 dµ < +∞.

.

.

.

3

∫
M |∇

√
S|2e−

|X|2
2 dµ < +∞,

.

.

.

4

∫
M
∑
i, j,k

h2
i jk

e−
|X|2

2 dµ < +∞.

.

.

.

5

∫
M S|∇ log(H − λ)|2e−

|X|2
2 dµ < +∞.

We give a proof of

.

.

.

1

∫
M S(1 + |X|2)e−

|X|2
2 dµ < +∞
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4. Complete λ-hypersurfaces

Suppose η is a function with compact support,∫
M
〈∇η2,∇ log(H − λ)〉e−

|X|2
2 dµ

= −
∫

M
η2(L log(H − λ))e−

|X|2
2 dµ

=

∫
M
η2
(
S − 1 − λ

H − λ
+ |∇ log(H − λ)|2

)
e−

|X|2
2 dµ.

Combining this with inequality:

〈∇η2,∇ log(H − λ)〉 ≤ ε|∇η|2 + 1
ε
η2|∇ log(H − λ)|2,
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4. Complete λ-hypersurfaces

we have∫
M

(η2S + η2(1 − 1
ε

)|∇ log(H − λ)|2)e−
|X|2

2 dµ

≤
∫

M
(ε|∇η|2 + η2 +

λ

H − λ
η2)e−

|X|2
2 dµ,

for ε > 0.

Since

λ

H − λ
≤
λ f3

S
≤ |λ|

√
S ≤ |λ|( S

2δ
+
δ

2
)

for δ > 0, we have
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4. Complete λ-hypersurfaces

∫
M

{
(1 −

|λ|
2δ

)η2S + η2(1 − 1
ε

)|∇ log(H − λ)|2
}
e−

|X|2
2 dµ

≤
∫

M

(
ε|∇η|2 + (1 + |λ|

2
δ
)
η2
)
e−

|X|2
2 dµ.

By choosing ε, δ and constant c(n, λ), we get∫
M
η2(S + |∇ log(H − λ)|2)e−

|X|2
2 dµ

≤ c(n, λ)
∫

M
(|∇η|2 + η2)e−

|X|2
2 dµ.
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4. Complete λ-hypersurfaces

Since X : M → Rn+1 has polynomial area growth, we
can prove, for any m > 0,∫

M
(1 + |X|m)e−

|X|2
2 dµ < ∞.

By replacing η with |X|η, we have∫
M
η2S(1 + |X|2)e−

|X|2
2 dµ

≤ c(n, λ)
∫

M
(1 + |X|2)e−

|X|2
2 dµ.
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4. Complete λ-hypersurfaces

Thus, we have∫
M

S(1 + |X|2)e−
|X|2

2 dµ < ∞.

So, we can apply Stokes formula to our functions.∫
M
〈∇S,∇ log(H − λ)〉e−

|X|2
2 dµ

= −
∫

M
SL log(H − λ)e−

|X|2
2 dµ

and ∫
M
|∇
√

S|2e−
|X|2

2 dµ = −
∫

M

√
SL
√

Se−
|X|2

2 dµ.
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4. Complete λ-hypersurfaces

Putting

L log(H − λ) = 1 − S +
λ

H − λ
− |∇ log(H − λ)|2

and

L
√

S ≥
√

S −
√

SS +
λ f3
√

S
into the above two formulas, we have

0 ≥
∫

M

∣∣∣∇√S −
√

S∇ log(H − λ)
∣∣∣2e−

|X|2
2 dµ

+

∫
M
λ( f3 −

S
H − λ

)e−
|X|2

2 dµ.
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4. Complete λ-hypersurfaces

From λ( f3(H − λ) − S) ≥ 0, we have

λ( f3 −
S

H − λ
) = 0,

S
(H − λ)2

= constant

hi jk(H − λ) = hi jH,k,

for any i, j, k.
We obtain that X : M → Rn+1 is isometric to Rn or
Sk(r) × Rn−k with λ = k

r − r.
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5. Area of complete λ-hypersurfaces 5.1. Upper bound growth of area of complete λ-hypersurfaces

5.1. Upper bound growth of area of
complete λ-hypersurfaces

It is well-known that the comparison volume (area)
theorem of Bishop and Gromov is a very powerful tool
for studying Riemannian geomery. Namely,

The comparison volume theorem (Bishop and
Gromov).
For n-dimensional complete and non-compact
Riemannian manifolds with nonnegative Ricci
curvature, geodesic balls have at most polynomial area
growth:

Area(Br(x0)) ≤ Crn.
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5. Area of complete λ-hypersurfaces 5.1. Upper bound growth of area of complete λ-hypersurfaces

Furthermore, Cao and Zhou (J. Diff. Geom., 2010)
have studied upper bound growth of area of geodesic
balls for n-dimensional complete and non-compact
gradient shrinking Ricci solitons. They have proved

Theorem ( Cao and Zhou, J. Diff. Geom., 2010).
For n-dimensional complete and non-compact gradient
shrinking Ricci solitons, geodesic balls have at most
polynomial area growth:

Area(Br(x0)) ≤ Crk.

Remark. There exist n-dimensional complete and
non-compact gradient shrinking Ricci solitons, which
Ricci curvature is not nonnegative.
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5. Area of complete λ-hypersurfaces 5.1. Upper bound growth of area of complete λ-hypersurfaces

It is natural to ask the following:

Problem 5.1. Whether is it possible to give an upper
bound growth of area for complete and noncompact
λ-hypersurfaces?

For the above problem 5.1, Cheng and Wei (arXiv
2014) have proved the following:
Theorem (Cheng and Wei, arXiv 2014).
Let X : M → Rn+1 be a complete and non-compact
proper λ-hypersurface in the Euclidean space Rn+1.
Then, there is a positive constant C such that for r ≥ 1,

Area(Br(0) ∩ X(M)) ≤ Crn+ λ
2
2 −2β− inf H2

2 ,

where β = 1
4 inf(λ − H)2.
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5. Area of complete λ-hypersurfaces 5.1. Upper bound growth of area of complete λ-hypersurfaces

Remark. The estimate in our theorem is best possible
because the cylinders Sk(r0) × Rn−k satisfy the equality.

Remark. When λ = 0, that is, for self-shrinkers,
this result is proved by Ding and Xin (Asia, J. Math.,
2013),
and X. Cheng and Zhou (Proc. Amer. Math. Soc.
2013).

Furthermore, we have proved

Theorem (Cheng and Wei, arXiv 2014) . A complete
and non-compact λ-hypersurface X : M → Rn+1 in the
Euclidean space Rn+1 has polynomial area growth if
and only if X : M → Rn+1 is proper.
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5. Area of complete λ-hypersurfaces 5.2. Lower bound growth of area of complete λ-hypersurfaces

5.2. Lower bound growth of area of
complete λ-hypersurfaces

Calabi and Yau studied lower bound growth of area for
n-dimensional complete and non-compact Riemannian
manifolds with nonnegative Ricci curvature. They
proved the following:

Theorem (Calabi and Yau).
For n-dimensional complete and non-compact
Riemannian manifolds with nonnegative Ricci
curvature, geodesic balls have at least linear area
growth:

Area(Br(x0)) ≥ Cr.
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5. Area of complete λ-hypersurfaces 5.2. Lower bound growth of area of complete λ-hypersurfaces

Cao and Zhou (J. Diff. Geom., 2010) have proved that
n-dimensional complete and non-compact gradient
shrinking Ricci solitons must have infinite area.

Furthermore, Munteanu and Wang (Comm. Analy.
Geom., 2012) have proved that areas of geodesic balls
for n-dimensional complete and non-compact gradient
shrinking Ricci solitons have at least linear growth:

Area(Br(x0)) ≥ Cr.
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5. Area of complete λ-hypersurfaces 5.2. Lower bound growth of area of complete λ-hypersurfaces

For complete and noncompact λ-hypersurfaces, Cheng
and Wei (arXiv 2014) have proved the following:

Theorem (Cheng and Wei, arXiv 2014).
Let X : M → Rn+1 be an n-dimensional complete
proper λ-hypersurface.
Then, for any p ∈ M, there exists a constant C > 0
such that

Area(Br(0) ∩ X(M)) ≥ Cr,

for all r > 1.
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5. Area of complete λ-hypersurfaces 5.2. Lower bound growth of area of complete λ-hypersurfaces

Remark. The estimate in our theorem is best possible
because the cylinders Sn−1(r0) × R satisfy the equality.

When λ = 0, that is, for self-shrinkers, Li and Y. Wei
(Proc. Amer. math. Soc., 2014) have proved this result.
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5. Area of complete λ-hypersurfaces 5.2. Lower bound growth of area of complete λ-hypersurfaces

Thank you!
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