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Monstrous Moonshine

Before going to the moonshine phenomenon in string
theory let me briefly recall the story of monstrous
moonshine which is well-known. Modular J func-

tion has a g-series expansion

1
J(q) = . + 744 + 196884q + 21493760g° + 864299970q°

—|—20245856256q4 -+ 3&‘_’)202640600q5 + .-

g = 2™ Im(t) >0, J(1) = J( ) € SL(2,2)

aT—I—b) (a, b
cr+d’ \ ¢ d



It turns out g-expansion coefficients of J-function
are decomposed into a sum of dimensions of irre-

ducible representations of the monster group M as

196884 = 1 4 196883, 21493760 = 1 4 196883 4 21296876,
864299970 = 2 X 1 4+ 2 X 196883 4 21296876 4 842609326,
20245856256 =1 X 1 + 3 X 196883 + 2 X 21296876
4842609326 + 19360062527, - - -

Dimensions of some irreducible representations of
monster are in fact given by
{1, 196883, 21296876, 842609326,



18538750076, 19360062527 - - - }

Monster group is the largest sporadic discrete group,
of order =~ 10°° and the strange relationship be-
tween modular form and the largest discrete group

was first noted by McKay.

To be precise we may write as

J(r)=J(@) —T44= Y e(n)g",  ¢(0) =0

n=—1

= Z Trym)l X q", dimV (n) = c(n)

n=——1



McKay-Thompson series is given by

Jg(T) = Z TrV(n)g Xq', geEM

n=—1

where T'ry (,,) g denotes the character of a group
element g in the representation V' (n). This depends
on the conjugacy class g of M. If McKay-Thompson
series is known for all conjugacy classes, decom-
position of V' (n) into irreducible representations be-
come uniquely determined. Series J, are modu-
lar forms with respect to subgroups of SL(2, Z) and
possess similar properties like the modular J-function
such as the genus=0 (Hauptmodul) property.



Phenomenon of monstrous moonshine has been un-
derstood mathematically in early 1990’s using the
technology of vertex operator algebra. However,
we still do not have a ’simple’ physical explanation
of this phenomenon.

Elliptic genus

We now consider string theory compactified on K3
surface. K3 surface is a complex 2-dimensional hy-
perKahler manifold and ubiquitous in string theory.
It possesses SU (2) holonomy and a holomorphic
2-form. Thus the string theory on K3 has an N=4



superconformal symmetry with the central charge
c = 6 which contains SU (2),—; affine symmetry.

Now instead of modular .J-function we consider the
elliptic genus of K5 surface. Elliptic genus describes
the topological invariants of the target manifold and
counts the number of BPS states in the theory. Using
world-sheet variables it is written as

T C
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Zelliptic(z;T) — TT’HLx’HR(—l) LtFRe

Here Ly denotes the zero mode of the Visasoro op-
erators and F; and Fr are left and right moving



fermion numbers. In ellitpic genus the right mov-
Ing sector is frozen to the supersymmetric ground
states (BPS states) while in the left moving sector all
the states in the Hilbert space ‘H; contribute.
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In general it is difficult to compute elliptic genus,
however, we were able to evaluate it by making
use of Gepner models. Elliptic genus of K3 surface is
EOTY

given by:

Zgs3(z;T7) =8

(i) + (o

Here 6, (7, z) are Jacobi theta functions.

)+

04(z; 1)

04(0;7)

1
Zis(z =0) =24, Zky(z =) =16+ O(q),

1

T

1 1
Zica(z = ——) = 2472 + 0(q?)

It is known that the elliptic genus of a complex D-
dimensional manifold is a Jacobi form of weight=0

;




and index=D/2. When D=2, space of Jacobi form is
one-dimensional and given by the above formula.
Jacobi form (weight & and index m)

(T, 2 + ar + b) = e7 2@ TH202) (12
atT + b z 2mimez?

. — d k cT+d .
ct +d C’T—I—d) (e +d)7e p(7:2)
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We would like to study the decomposition of the el-
liptic genus in terms of irreducible representations
of N=4 SCA. In N=4 SCA, hightest-weight states |h, ¢)
are parametrized by

Lo|h, £) = h|h, £), JS|hy £) = £|h, £)



and the theory possesses two different type of rep-
resentations, BPS and non-BPS representations. In
the case of &k = 1 there are representations (in Ra-

mond sector)

BPS rep. h =

non-BPS rep. h >
Character of a representation is given by

T3
T’PR(— 1)FqL0647szO



Its index is given by the value at z = 0, T'rx (—1) ¢'o.
BPS representations have a non-vanishing index

index (BPS, ¢ =0) =1
1
index (BPS, ¢ = 5) = —2

Character function of £ = 0 BPS representation has

the form ET
- 91(z;7')2
chft Z;T) = 25T
() = ()
where
_jeTtz 1)nq%n(n—|—1)62ﬂ-inz




On the other hand the character of nhon-BPS repre-

sentations are given by

~ . )2
ChR ) L =q _% 91(27 T)
h>1t=3 n(r)?

These have vanishing index

index (non-BPS rep) = 0

At the unitarity bound non-BPS representation splits

info a sum of two BPS representations

2
3 0 : >
lim "8 L = chR_l 1+ 2chR_1 B
] 3 h=1 =1 h=1 =0
h—x i —1t=2 —1t=



Function . (z; 7) is a typical example of the so-called
Mock theta functions (Lerch sum or Appell function).
Mock theta functions look like theta functions but
they have anomalous modular transformation laws
and are difficult fo handle. Recently there were de-
velopments in understanding the nature of Mock theta
functions due to Zwegers. He has infroduced a method
of regularization which is similar to the ones used

in physics and improved the modular property of
mock theta functions so that they transform as ana-

lytic Jacobi forms.



It is possible to derive the following idenities

R, () = (REDV o)
hh=%,£=0( i) = (92(0;7)>2+H2( ) 77(7')32
- () et
B 94(Z,T) 2 91(2,7')2
- (e4<o;r>> METEE
where
u2(7):“(z:%;7),;1,3(7'):[1,(2:1;;T),[JJ4(T):H(ZZ§3T)
Tz q%n(n—l—l)GZﬂ'inz
u(zT) = 01(z;7) 2" 1 — qne?m=



Then we can rewrite the ellitpic genus as

01(2; )2

n(T)3

4
Zig = 24chh_}l,£ O(z; T) — 8 Z i ()

Using g-expansion of functions p; we find

8 (n2(7) + n3(r) + pa(r)) = —2 3 A(n)g" s
n=0

Zrs = 24chh_41p oz T) + 2 %;)A(n)chh_ﬁn £_2(z ,T)
n_



At smaller values of n, Fourier coefficients A(n) may
be obtained by direct inspection. We find, A(0) =
—1

n |1 2 3 4 5 6 7 8 -
A(n) 45 231 770 2277 5796 13915 30843 65550 ...

Surprize: Dimensions of irreducible reps. of Mathieu
group M-, appear

dimensions : { 45 231 770 990 1771 2024 2277
3312 3520 5313 5544 5796 10395 ---}

A(6) = 13915 = 3520 + 10395,
A(7) = 30843 = 10395 + 5796 + 5544 + 5313 + 2024 + 1771



Mathieu moonshine? I.E.-Ooguri-Tachikawa

M, is a subgroup of So4 (permutation group of 24
objects) and its order is given by =~ 10, Moy i
known for its many interesting arithmetic properties
and in particular intimately tied to Golay code of

efficient error corrections.

Monster D Conway D Mathieu



cf. Monsterous moonshine:
1

J(gq) = — + 744 + 1968844 + 21493760qg* + - - -
q

g-expansion coeffcients of J-function are decom-
posed infto a sum of irred. reps. of the monster

group.

196884 = 1 4 196883, 21493760 = 1 4 196883 4 21296876

Mathieu group appeared before in the work of Mukai
on K3 surface.

Mukai: K3 surfaces with finite automorphism group.
All these groups are sugbgroups of NM>3.



& Twisted Elliptic Genus
Dimension of the representation equails the trace of
the identity element: we may identify

A(n) =Try 1
Vi = 45 + 45%, Vo = 231 + 231%, V3 = 770 + 770%,- - -

We consider the trace of other group elements in
M2y

Ag(n) =Try, g, g € Moy



Tr g depends only on the conjugacy class of g.
There exists 26 conjugacy classes {g} in M54 and
also 26 irreducible representations { R}. We have

the character table given by

XRg =Trp g
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There are two types of conjugacy classes in Moy,
type | and type ll.

Conjugacy class of type | fixes at least one element
out of 24 and thus they arise from the conjugacy
classes of NMo3.

On the other hand conjugacy class of type Il does
not have a fixed point and is intrinsically Mo 4.

For each conjugacy class we want to construct a
twisted genus (analogue of Thompson series in mon-
strous moonshine)

o

n=1



For instance,
A g = —6q + 14¢* — 28¢° + 42¢* — 564° + 86¢° + - - -
and has the right modular property (Z5 4 € I'g(2)).

Twisted genus is decomposed info massless and mas-
sive parts

Zg(T,2) = Xg Chh_}l,ﬁ 0 + Z Ag(n)chR 1(z,1)

—I—n E—
n>0

Here x is the Euler number assigned to the class g

g [1A 2A 3A 5A 4B 7A 8A 6A 11A 15A 14A 23A others
Xg| 24 8 6 4 4 3 2 2 2 1 1 1 0



X g vanishes for type Il classes. We note that x4, can
be written as x4 = x{ + x55 Which is equal to the
number of fixed points of the permutation rep. of g.



conjugacy class
1A
2A
3A
5A
4B
7A
7B
8A
6A
11A
15A
15B
14A
14B
23A
23B
12B
6B
4C
3B
2B
10A
21A
21B
4A
12A

cycle shape
124
18 . 28
16 . 36
14 . 54




Twisted genera for all conjugacy classes of M-, have
been obtained by our collective efforts. They re-
produce correct lower-order expansion coefficients
and are invariant under the Hecke subgroup I'g(IV)

I‘O(N):{<CCL Z),ad—bczl,czﬂ, mod N}

NN denotes the order of the element g.
M.Cheng, Gaberdiel,Hohenegger and Volpato,
I.E. and K.Hikami

From the study of K3 surface with Z,(p = 2,3,---)
symmetry, for instance, twisted genera of classes



pA(p = 2,3,---) are known A.Sen

Zpa(z:7) =~ d0(z57) + =6 (1)9 2 (257)

where

1 01(z;7)?
®0,1(2;T) = §ZK3(Z;T), ¢—2,1(27) = — 177((1;5)

are the basis of Jacobi forms with index=1 and
24
sP) (1) = 48, log (n(m)) |
p—1 n(T)
24

— E Ul(k)(qk — Pqpk)
k=1




is an element of I'y(p).

In the case of type Il twisted genera are modular

forms of I'g (V) (with a multiplier system) . They are



given in terms of quotients of eta functions.

Zap(zi) =206 2
Zop(zi) = 2062 (2:)
Zuazi) = 210 6 (i)
Zic(zim) = 2" )

etc.
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& Proof of Mathieu moonshine

Orthogonality relation of characters:
> ngXpXg = |Glogr
g

ngq is the number of elements in the conjugacy class
g and |G| denotes the order of the group. Let cp(n)
be he multiplicity of representation R in the decom-
postion of K3 elliptic genus at level n. We then have

Z CR(”)XRg = Ag(n)
R



Then using the orthogonality relation we find

Zf;ngxﬁftg(n) = cp(n)
g

We have checked that the multiplicities cp(n) are
all positive integers upto n = 1000 and this gives a
very strong evidence for Mathieu moonshine con-

jecture.
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Recently Gannon has proved by mathematical in-
duction that the multiplicities are all positive inte-
gers.

Unfortunately the proof so far did not provide much
insight into the nature of Mathieu moonshine. The
situation is a bit like the case of Monstrous moon-
shine. 24 of M-, will certainly be the Euler number
of K3 and M4 permutes homology classes. There
are, however, various indications that string theory



on K3 can not have such a high symmetry as Mo4.
Instead of the total Hilbert space the BRS subsector
of the theory may possibly possess an enhanced
symmetry. It will be interesting to look into the al-
gebraic structures of BPS states to explain Mathieu
moonshine.

More Moonshine Phenomena

Recently there have been intense interests in ex-
ploring new types of moonshine phenomena other



than Mathieu moonshine. Already several types of
new moonshine phenomena have been discovered.

e Umbral moonshine Cheng-Duncan-Harvey
e free fermions on 24 dim. lattice
e moonshine of Spin(7) manifolds

Umbral moonshine was first discovered by general-
izing the Mathieu moonshine for the case of Jacobi



forms with higher index such as

02(2)03(2)\?  (02(2)04(2)\? = [03(2)04(2)\?
_92(0)93(0)> +(92(0)94(0)> | (93(0)94(0)>

|Ge) @@ o)

Z(k=2)=a (

When we take a special value a = 4,b = 0 and
decompose Z(k = 2) info a sum of N = 4, level=2
representations, one finds a moonshine phenomenon
with the symmetry group M5 acting on this theory.

A similar construction works for higher values of &
which divides 12. A unique linear combination of



index k Jacobi form is derived by the condition
24
Z(k) =29+ (- —1)+2y"

These are the so-called extremal Jacobi forms. Moon-
shine groups acting on the extremal Jacobi forms
are given by

Group

2. 23L3(2)
2.55
2. Ay

(o W N VLR O BE I



There is a mysterious relation between Umbral moon-
shine and Niemeier lattice (self-dual lattices in 24
dimensions). Niemeier lattice is given by a com-
bination of A-D-E type root lattice with appropriate
weight vectors so that the lattice becomes self-dual.
If one divides the automorphisim group of Niemeier
lattice by the automorphism group of A-D-E lattice
one obtains discrete groups

G1 = May, Gy = Mz, Gg = 2.2°L3(2), G4 = 2.5, G = 2.A4

which agrees exactly with the symmetry groups of
Umbral moonshine. At the moment there is no ex-
planation of this coincidence.



Recently we have used N=4 Liouville theory which
Is known to have a special duality property of string
theory. It is possible to embed Umbral series into
IN=4 Liouvile theory and by using duality we can
map Umbral theory at ¢ = 6k to its dual theory at
c = 6. Thus a Umbral moonshine at ¢ = 6k can
be mapped to a dual moonshine at ¢ = 6. We
hope this is going to help geometrical interpretation
of Umbral moonshine.

Moonshine symmetries recently discovered in string
theory are still very mysterious and we may encounter
many more surprises in the near future.



