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§0 Geometric group theory
dealing with infinite, discrete, (non-commutative) groups

Sample groups:

I Zn, Aut(Zn) = GL(n,Z), SL(n,Z).
I Lattices in Lie groups:

I SL(n,Z) < SL(n,R) (arithmetic)
I G = π1(M), M is a closed hyperbolic n-manifold. (geometric).

G < Isom(Hn). Hn is the n-dim real hyperbolic space.

I Let Sg be the closed surface of genus g .
π1(Sg ), surface group.
Out(π1(Sg )) = MCG (Sg ), the mapping class group of Sg .
MCG (Sg ) = Homeo+(Sg )/ ∼ isotopy .
Example. MCG (sphere) = 1,MCG (torus) = SL(2,Z).

I Free groups of rank n, Fn. Aut(Fn),Out(Fn).
Out(F2) = GL(2,Z).

I “Hyperbolic groups” (Gromov, 85)
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§1 Abelianize

I The abelianization of SL(3,Z) is trivial, ie,
H1(SL(3,Z),Z) = 0 and [SL(3,Z), SL(3,Z)] = SL(3,Z).

I It is generated by 6 elementary matrices, and each one (or its
inverse) is the commutator of other two. For example,(

1 0 0
0 1 −1
0 0 1

)
=
[(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
1 1 0
0 0 1

)]
[a, b] = aba−1b−1 is the commutator of a and b.

I SL(3,Z) is a lattice in the Lie group SL(3,R), namely, a
discrete subgroup such that the volume of SL(3,R)/SL(3,Z)
is finite.

Theorem (Matsushima 1964, Borel et al)

If Γ is an irreducible lattice in a semi-simple Lie group G of rank at
least two, then H1(G ,R) = 0, ie, β1(G ) = 0.

I H1(G ,R) = {all homomorphisms, f : G → R}
β1 = dim H1(G ,R), the 1st Betti number.

I The rank of SL(n,R) is (n − 1). Rn−1 < SL(n,R)
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F2 < SL(2,Z) < SL(2,R). Rank-1 case.

I H1(G ,R) = {all homomorphisms, f : G → R}
I Matsushima’s theorem says:

Let G < Γ be a lattice in a s.s. Lie group.
The rank of Γ is at least 2 ⇒ H1(G ,R) = 0.

I The converse is not true.
Take SL(2,Z) as a lattice in SL(2,R), which is rank-1.
H1(SL(2,Z),R) = 0 since it is generated by

A =

(
0 1
−1 0

)
,B =

(
0 −1
1 1

)
s.t. A4 = B6 = 1.

But there is a free group F2 < SL(2,Z) of finite index (=12).
So, F2 < SL(2,R) is a lattice and H1(F2,R) = R2 6= 0.

I “rank is at least 2” is necessary in the theorem.
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§2 Quasi-morphism

I A function on a group G , f : G → R, is a quasi-morphism if

D(f ) = sup
g ,h∈G

|f (gh)− f (g)− f (h)| <∞

D(f ) is the defect of f .

I f is a homomorphism iff D(f ) = 0.

I Also, all bounded functions on G are quasi-morphisms.

I Define vector spaces:

QH(G ) = {all quasi morphisms on G}

Q̃H(G ) = QH(G )/{homomorphisms + bounded functions}

I Is quasi-morphism useful for anything at all?
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Application 1. rank 1 vs rank at least 2

Theorem
Let Γ be an irreducible lattice in a semi-simple Lie group G .
Then Q̃H(Γ) = 0⇔ the rank of G is at least 2.

Proof.
(⇐) Theorem (Burger-Monod, 02) If the rank of G is at least 2,

then Q̃H(Γ) = 0.
For example G = SL(n,R), n ≥ 3.

(⇒) If the rank of G is 1, then Q̃H(Γ) 6= 0 [F, 98].
For example G = SL(2,R),SL(2,C) etc.

I Remember that free groups Fn, n ≥ 2 are lattices in SL(2,R).

It was the first example for Q̃H 6= 0 by a concrete
construction.

Theorem (Brooks, 80)

Q̃H(Fn) 6= 0 if n ≥ 2.

I He found a combinatorial way to construct many quasi
morphisms. Key: a free group acts on a simplicial tree.
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§3 Hyperbolic spaces

I Take a geodesic triangle ∆(a, b, c) in the hyperbolic plane H2.
By Gauss-Bonnet theorem, Area(∆) < π.

I Then each side is contained in the 2-neighborhood of the
union of the other two:

a ⊂ N2(b ∪ c), b ⊂ N2(c ∪ a), c ⊂ N2(a ∪ b)

We say the triangle is 2-thin.

Definition. A geodesic space X is δ-hyperbolic if every geodesic
triangle is δ-thin for a uniform constant δ.
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Hyperbolicity and quasi-morphism
Examples of hyperbolic spaces.

I Hyperbolic spaces Hn, complex hyperbolic spaces CHn, etc
are all δ-hyperbolic for some δ.

I Trees are 0-hyperbolic. A geodesic triangle looks like“T”.
I Euclidean spaces are not δ-hyperbolic for any δ.

Definition. A group G that acts on a δ-hyperbolic space X
properly discontinuously, by isometries (ie, preserving the distance),
with X/G compact, is called a hyperbolic group.
Examples. Free groups Fn, π1(Sg ), (g ≥ 2), but NOT Z2.

I (strangely enough) the notion of hyperbolicity is very useful.

Our guiding principle.
if G acts on a δ-hyperbolic space X by isometries, then G tends to
have lots of quasi-morphisms.

I Actions do not have to be proper nor compact. This principle
applies to hyperbolic groups, but also to MCG, Out(Fn),
which are not hyperbolic groups.
For those groups, we will produce desired actions.
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Application 2. Are SL(n,Z) different from MCG?
Remember MCG (torus) = SL(2,Z). Maybe MCG (Sg ) are all
isomorphic to some SL(n,Z)?
H1(MCG (Sg )) = 0 if g ≥ 2 and H1(SL(n,Z)) = 0 if n ≥ 3.

Theorem (Kaimanovich-Masur, 96)

Let Γ be an irreducible lattice in a semi-simple Lie group of rank at
least 2. Then Γ 6< MCG (S), where S is a closed surface.

I They use Poisson boundary of groups.

I We present another proof using the following result on Q̃H(G ) to

distinguish groups.

Theorem (Bestvina-F,02)

Let G < MCG (S) be a finitely generated group. Then Q̃H(G ) 6= 0
unless G contains Zn as a subgroup of finite index.

Proof of Kaimanovich-Masur thm. Remember Q̃H(Γ) = 0 for all lattices
in s.s. Lie group of rank at least 2 (Burger-Monod). Also Γ does not
contain Zn as a subgroup of finite index. So, Γ 6< MCG .
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§4 Application 3. Stable commutator length (scl)
I H1(G ) = 0 is equivalent to [G ,G ] = G . Such group is called

perfect. For example, MCG (Sg ), g ≥ 2 and SL(n,Z), n ≥ 3.
I By definition, g ∈ [G ,G ] is written as a product of

commutators

g = [a1, b1] · · · [an, bn], (ai , bi ∈ G )

The commutator length of g , cl(g) is min n. If g 6∈ [G ,G ],
define cl(g) =∞.

cl(g) is the least genus of a surface that bounds g in G
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§4 Application 3. Stable commutator length (scl)

I The sequence
cl(g), cl(g2), cl(g3), · · ·

is sub-additive (cl(gn+m) ≤ cl(gn) + cl(gm)), but does it
grow linearly? Define the stable commutator length by

scl(g) = lim inf
n→∞

cl(gn)

n
≤ ∞

scl(gn) = n × scl(g), scl(1) = 0.

I We want to know its image scl(G ) ⊂ R≥0 ∪∞.
Contained in Q? Discrete? Is 0 isolated? etc

Theorem (Burger-Monod, 02)

If G is an irr. lattices in a s.s. Lie group of rank at least 2, then
scl(g) = 0 for every g ∈ G .

This immediately follows from Q̃H(G ) = 0 and “Bavard duality”.
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scl on MCG, known cases
I We are curious about scl on MCG.

Since [MCG, MCG]=MCG, scl(g) <∞ for every g .
I Elements of MCG are classified into:

(1) pseudo-Anosov elements, (2) reducible elements (Dehn
twists etc), and (3) torsions.

Some known cases:

Theorem (For pseudo-Anosov and Dehn-twists)

1. scl(g) > 0 for every Dehn twist. [Endo-Kotschick, 01]
2. For a pseudo-Anosov element g, scl(g) > 0 iff there are no
h ∈ MCG (S) and n > 0 with hgnh−1 = g−n. [Calegari-F, 10]

I Endo-Kotschick uses Seiberg-Witten theory to show
scl(g) > 0.

I Calegari-F uses

Proposition (cf. Milnor, 58)

If f is a “homogeneous” quasi-morphism on G such that f (g) > 0
on g ∈ [G ,G ] then scl(g) > 0.
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scl on MCG

Theorem (Bestvina-Bromberg-F, 14)

1. We can decide, in terms of Nielsen-Thurston theory, which
elements g ∈ MCG (S) have scl(g) > 0.
2. Moreover, there exists C (S) > 0 such that if scl(g) > 0 then
scl(g) ≥ C (S).

I Nielsen-Thurston theory is a refined classification of elements
of MCG (like Jordan normal forms for matrices).

I Two sufficient algebraic conditions for scl(g) = 0 were known
(one is in the Calegari-F thm). We showed that they are
necessary, and also decide which g ∈ MCG satisfies them.

I For the necessary part, for each candidate element g ∈ MCG ,
we find a homogeneous quasi-morphism f with f (g) > 0,
which verifies scl(g) > 0 using the proposition by Milnor. To
produce f , we construct a suitable action on a hyperbolic
space.

I In particular, we recover Endo-Kotschick theorem without
using Seiberg-Witten theory.
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§5 Bass-Serre theory. Group actions on trees.

Theorem (Ihara, 66)

Every torsion-free discrete subgroup G in SL(2,Qp) is a free group.

I Serre interpreted Ihara’s combinatorial argument as follows:
construct a simplicial tree T on which SL(2,Qp) acts by
automorphism. Then prove G acts on T freely. It follows
T → T/G is a covering, and G ' π1(T/G ) is a free group.

Serre established a theory of
groups acting on trees. It’s called
Bass-Serre theory.
For example,
SL(2,Z) = Z/4Z ∗Z/2Z Z/6Z
acts on a tree s.t. the quotient is
one edge with a blue vertex and
a red vertex.

Figure: SL(2,Z) = Z/4Z∗Z/2ZZ/6Z
acts on a tree.
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§5 Bass-Serre theory. Group actions on trees.

Theorem (Ihara, 66)

Every torsion-free discrete subgroup G in SL(2,Qp) is a free group.

I Serre interpreted Ihara’s combinatorial argument as follows:
construct a simplicial tree T on which SL(2,Qp) acts by
automorphism. Then prove G acts on T freely. It follows
T → T/G is a covering, and G ' π1(T/G ) is a free group.

The theory only applies when G
acts on some tree T without a
fixed point (non-trivial action).
For example, SL(3,Z) does not
have any non-trivial actions on
trees, which is equivalent to that
SL(3,Z) is not decomposed as an
amalgamation or an
HNN-extension (property FA).

Figure: SL(2,Z) = Z/4Z∗Z/2ZZ/6Z
acts on a tree.

13 / 19



Quasi-isometry and quasi-tree

Unfortunately, MCG(S) does not act on any trees non-trivially.
We will make it act on something else, but similar, that is
quasi-trees.

I Let X ,Y be metric spaces, and f : X → Y a map.

1. f is a quasi-isometric (QI) embedding if ∃K , L such that

∀x , y ∈ X ,
|x − y |

K
− L ≤ |f (x)− f (y)| ≤ K |x − y |+ L

2. Moreover, X and Y are quasi-isometric if
∀y ∈ Y ,∃x ∈ X , |y − f (x)| ≤ L

Definition. A graph is a quasi-tree if it is quasi-isometric to a
simplicial tree.

I A quasi-tree is δ-hyperbolic. It turns out group actions on
quasi-trees give lots of information on G .
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Example of a quasi-tree
The hyperbolic plane H2 is tessellated by ideal triangles.
Make it into a planer graph, that is the Farey graph, F , s.t.
each edge has length 1 and F is a geodesic space. F is a quasi-tree.
If you remove any edge from F , then F is disconnected.
(cf, if you remove a point from a tree, then the tree is disconnected. )

Figure: Farey tesselation of H2
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§6 Group actions on quasi-trees

We now discuss a group action on a quasi-tree by isometries (ie,
preserving the distance).
Def. A group action on a quasi-tree is non-trivial if it has an
unbounded orbit of a point.

Theorem (BBF, 14)

The following groups act on some quasi-trees, non-trivially.
1. MCG (Sg ), g ≥ 1.
2. Out(Fn), n ≥ 2
3. every infinite hyperbolic groups.

I MCG, Out(Fn) do not act trees non-trivially.
For hyperbolic groups, some do, and some don’t.

I Every group actions by SL(n,Z), n ≥ 3, on a quasi-tree is
trivial.[Manning, 06]

I Unknown for general lattices in SL(n,R).
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Embedding of MCG
I Our method for the construction of quasi-trees and group

actions is systematic and produces many actions for a given
group.

I Bass-Serre theory relies on the algebraic structure of the
group while our method relies on geometry using nearest point
projections.

I The following is the main theorem. We first produce many
actions of MCG on quasi-trees. Then we put them together
and produce one nice action.

Main Theorem (BBF, 14)

MCG(S) properly acts on a finite product of hyperbolic graphs,
X = X1 × · · · × Xn, such that embedding MCG (S)→ X by an
orbit is a quasi-isometric embedding: fix a base point x0 ∈ X ,

g ∈ MCG (S) 7→ g(x0) ∈ X

We put a “word metric” on MCG in the theorem.
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Consequences of Main thm

Using the embedding of MCG into a finite product of hyperbolic
graphs, we can prove with some extra efforts,

Theorem (BBF, 2014)

The asymptotic dimension of MCG is finite.

Remark. Asymptotic dimension (Gromov, 93) is defined for a
metric space. It is a quasi-isometric invariant. It is defined for a
finitely generated group using its “Cayley graph” with a word
metric. Sometimes dimension is infinite.
Example. asdim(En) = n, asdim(Hn) = n, asdim(tree) ≤
1, asdim(Zn) = n, asdim(Fn) = 1. Exact number is unknown for
asdim(MCG).
In many case, it coincides with its (virtual) cohomological
dimension.
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Consequences of Main thm

Using the embedding of MCG into a finite product of hyperbolic
graphs, we can prove with some extra efforts,

Theorem (BBF, 2014)

The asymptotic dimension of MCG is finite.

One motivation to define the asym. dim is Novikov conjecture. It
follows from the theorem, combined with a theorem by Yu,

Theorem (Kida 06, Hamenstaedt 09)

Novikov conjecture holds for MCG.

Another immediate corollary of Main thm is

Theorem (Farb-Lubotzky-Minsky 01)

Every element g ∈ MCG of infinite order is not distorted.

ie, lim infn→∞
||gn||
n > 0, where ||g || is a word norm.

18 / 19



§7 Quasi-homomorphism into non-commutative groups

I Let’s change the target group R to a non-commutative, discrete
group, H. For example, a free group.

f : G → H is a quasi-homomorphism if

{(f (gh))−1 f (g)f (h) | g , h ∈ G} ⊂ H is finite.

I It turns out that we do not gain any new information on G .

Theorem (Kapovich-F, 2015)

Let G be any group and H a torsion-free hyperbolic group. Then any
quasi-homomorphism f : G → H is either a homomorphism or the image
is cyclic (ie, a quasi-morphism into Z).

I In fact, the target group H can be any discrete group, and every
quasi-homomorphism is “essentially” either

1. homomorphism, or

2. quasi-morphism into Zn ⊂ H.

I Ozawa (2011) showed the result when G is an irr. lattice in a s.s.
Lie group of rank at least two, and H is a hyperbolic group.
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