Regular Polyhedra and the Football
(F. Hirzebruch)

The regular polyhedra are discussed in Euclid’s book (300
B.C.). I show them to you here.
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They occur in nature and in art. Here are two examples for the

dodecahedron.

Coccosphare von Braarudosphaera bielowi

Vergroflerung etwa 5000 X

Aus dem Miozédn (vor ca. 20 Mill. Jahren)
S. A. Jafar, Tubingen, 1975
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Le dodécaedre en argent
trouvé a Saint-Pierre de Genéve

Lors de lu campagne archéologique de-fouilles entreprise
a 'occasion de la derniere restauration de la cathédrale de
Saint-Pierre 4 Geneéve, un dé romain en forme de dodécaeé-
dre. datant du de siecle apres Jésus-Christ, a été mis au
jour. Les 12 faces pentagonales en argent portent les 12
signes du zodiaque: il est rempl de plomb (poids 297 ¢).
Le «dé» a probablement servi a la prédiction de 'avenir
par le jeu. mais la provenance ct l'utilisation restent
inconnues pour ['instant.

I have this from Dr. Gotze of Springer-Verlag.
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The regular polyhedra have the following properties. There are
natural numbers n, m such that: Each face is a regular n-gon.
From each vertex (corner) m edges leave. Which n, m are pos-
sible? Here is a simple argument. The sum of the angles in a
n-polygon equals

(n—2)-180°.

Therefore

-180° < 360°

m -
n

(the sum of the angles in each corner must be less than 360°

because of convexity). This is equivalent to

1 1 1

n m 2

The solution of this inequality in natural numbers = 3 are (3,3),
(4,3), (3,4), (5,3),(3,5). I show you the following transparency
(in German).
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Polyeder n m b b b fafo
o 1 2

Tetraeder 3 3 4 6 4 Feweor
Hexaeder 4 3 8 12 6 Er i(
Oktaeder 3 4 6 12 8 Le «736
Dodekaeder s 3 | 20 30 12 Kosm o0
Ikosaeder 3 5 12 30 20 l'\/a Aser

The Greek names for the polyhedra are similar in English and I

suppose in Japanese. Platon associates the basic elements of our
existence to the five regular polyhedra. by, by, by are the numbers
of corners (vertices), edges, faces of the polyhedron. The Greek
name comes from the number of faces. In German often e, &k, f

are used (Eeken, Kanten, Flachen). Can we calculate by, by, by

from n and m. We have

bom

bz'n

and we add courageously Euler’s formula

bo—b1+b2'—‘2

and obtain

1
m

2b,
2b,
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Now we have formulas for by, by, b, in terms of n, m . Inter-

changing n, m leads to interchanging by, b, .

Tetrahedron — — — Tetrahedron
Hezahedron(cube) — — — Octahedron
Dodecahedron — — — Icosahedron

We shall see in a moment the close relationship between the left
and the right side.

Let’s first talk about Euler’s formula. Euler was born in Basel
(Switzerland) in 1707, he worked in the Prussian Academy from
1741 to 1766 under Frederick the Great in Berlin who treated him
badly, though Euler was a genius also in “Applied Mathematics”
and helped the King in many technical problems. From 1766
until his death in 1783 he was in the Russian Academy in Sankt
Petersburg under Katherina II who treated him better. Euler’s

picture is on a Swiss bank note
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I show you also Carl Friedrich Gau(1777-1855) on a German
bank note whose work on curvature is closely related to Euler’s
formula. How to prove Euler’s formula?

We show that it is true for an arbitrary convex polyhedron.
The surface of the polyhedron can be mapped onto the plane.
The faces become countries. One country being a big ocean. We
imagine a point at infinity (in the ocean) to make the plane to
a sphere. The idea is explained in the following picture.

Fig. 48 Fig. 49
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(From the famous book by Rademacher and Toeplitz “Von Zahlen
und Figuren”). It shows the diagram of an icosahedron and an
octahedron. Open a dam (remove an edge) to let water in. An
edge disappears and two countries are united. Open again if
there is water only on one side. Each time b; is reduced by 1
and also b,. Then by — b; + b, stays the same until you reach a
connected string of edges (without a cycle) and one country (the
ocean has taken over). Obviously, at the end of this process,
bo —b; =1 and by = 1. Thus by — b; + by = 2 at the end and at
the beginning of the process.

The relation between the icosahedron and the dodecahedron
becomes clear by studying the group of symmetries. A sym-
metry is a rotation around an axis by a certain angle which
carries the polyhedron to itself. Icosahedron and dodecahedron
have six symmetry axis (through a vertex and its opposite for
the icosahedron, through the center of a face and its opposite
for the dodecahedron). We can rotate by k- 72° (k = 1,2, 3,4,
five fold symmetry). Similarly we have 10 axis with threefold
and 15 with twofold symmetry. The number of symmetries is
6-4+10-2+415-1 = 59. The group of symmetries has N.= 60
elements because we have to include the identity. For all regular
polyhedra N = 2b;. From the point of view of the symmetry
group icosahedron and dodecahedron, cube and octahedron can-
not be distinguished. The face centers of one correspond to the
vertices of the other.

Let us consider the icosahedron. Take a point on it which
is not special (not a vertex, not the center of an edge, not the
center of a face). Apply all symmetries to it. Then we get 60
points. This is the orbit of the given point. For example, take a
face (triangle) of the icosahedron and a point on the boundary,
but not a vertex and not the center of an edge. Then the orbit

has 60 points, two on each edge.
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Now study a football. It usually has 12 black pentagons
with 60 vertices. This is such an orbit. The usual football corre-
sponds to the case when the edge of the triangle is divided into
three equal parts. Inside a face we obtain a regular hexagon.
We can cut off the corners of the icosahedron by a planar cut
through the 5 points of the orbit near the corner. Then we ob-
tain the truncated icosahedron with 12 regular pentagons and
20 regular hexagons. Therefore by = 12 + 20 = 32. We have
by = 30+60 = 90 and by = 60. Euler’s equation 60 —90+ 32 = 2
checks.

Next we come to the application of the truncated icosahe-

dron in chemistry.
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Abb. 1. Perspektivische Darstellung des fufiball-
formigen Cqo Molekiils. Die Kohlenstoffatome
befinden sich an den Ecken eines Polyeders, das
Fiinf- und Sechsecke als begrenzende Flichen hat
(sog. gekapptes Ikosaeder). Im Unterschied zum
idealen Polyeder mit gleichen Kantenlingen sind
im realen C4o Molekiil die Abstinde benachbar-
ter Kohlenstoffatome nicht alle identisch. Ein-
schliefilich seiner Elektronenwolke hat das Mole-

kiil etwa 1 nm Durchmesser.

Dr. Wolfgang Kritschmer, Max-Planck-Insutur fiir
Kernphysik, Heidelberg _
Kc“5+;ucb }_C$chrh4g0§

Dth}?c{ R.Hu{{mah) Jucson,

Arizona
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There is the carbon molecule Csy with 60 atoms sitting in the
vertices of the truncated icosahedron. As explained before this
is an orbit of the icosahedral group. The Frankfurter Allge-
meine Zeitung of October 10, 1996, has an article “Forscher
im Fussballfieber” and reports that the Nobel Prize for chem-
istry was given to Harold W. Croto (Great Britain), Robert F.
Curl, Jr. and Richard E. Smalley (USA) for the discovery of Cgg.
Congratulations! Maybe, Wolfgang Kratschmer of the Max-
Planck-Institut fiir Kernphysik in Heidelberg, who produced Cgg
in macroscopic quantities, could also have been a candidate. I
understand that a Japanése scientist is also involved. But, in
any case, Euclid and Archimedes also deserve part of this prize.

A polyhedron is called an archimedean polyhedron if all its
faces are regular n-gons (but “n” may vary, for example n = 5,6
for the truncated icosahedron), if all edges have equal length,
and if every corner can be moved by a symmetry to any other
corner. There are 13 interesting archimedean polyhedra. Kepler
listed and investigated them in his “Harmonices mundi” in 1619.
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Number 4 is the truncated icosahedron (football):

“... et congruunt duodecim Pentagoni cum vig-
inti Hexagonis in unum Triacontakedyhedron, quod
appello Truncum Icosihedron. Formam habes signatam

numero 4.”

The chemists are interested in polyhedra such that three
edges leave every vertex and that we have pentagons and hexagons
only. They try to find carbon molecules whose atoms sit in the
vertices. We learn in classical chemistry that carbon has valence
4. Now using such a polyhedron, each atom is connected with 3
others by edges. Therefore, to one edge should be given multi-
plicity 2. Such a Kekulé structure can be given to the football:
The 30 edges between 2 hexagons get multiplicity 2. In chem-
istry polyhedra with the above properties are called Fullerenes
after the famous architect Buckminster Fuller (1895-1983).

It follows from Euler’s formula that for a Fullerene the num-
ber of pentagons is always equal to 12. To show this we first
prove same general formulas valid for any convex polyhedron.
Let bo(7) be the number of vertices from which r edges leave and
ba(7) the number of faces with 7 edges in their boundary (r > 3).
Then

> bo(r) = by sz(r) = by
> rbo(r) =2by , Y rho(r) = 2by.

Then the following equations are consequences of Euler’s formula

Il

12 4+ (1 — 6)bo(r) + (21 — 6)ba(7)

" 124 5 - 6)bulr) + T2 — )belr)

Il

0
0
The first equation is equivalent to |

12+2b1—6b0+4b1—6b220

and this is Euler’s formula. The same proof works for the second

equation (interchange 0 and 2). The second equation gives for a
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Fullerene by(5) = 12. The first equation implies

by = 20+ 2by(6)
by = 12+ by(6).

For by(6) = 0 we have the regular dodecahedron, for b,(6) = 20
the football. One can show that the number b,(6) of hexagons
can have any value > 2. In the chemical literature (I forgot
the precise reference) there are computer calculations to find the
combinatorial types of all Fullerenes with given b3. The number
of types for by = 60 equals 1760. But there is only one type with
disjoint pentagons, namely the football. There are 21822 types
for by = 78. But there are only 5 types with disjoint pentagons.

The second equation (*) implies for any convex polyhedron

3b5(3) + 2b5(4) + ba(5) = 12.

Equality holds if and only if by(r) = 0 for » # 3 and by(r) = 0
for » 2 7. This is satisfied for the cube, the tetrahedron, the
dodecahedron and all Fullerenes.

Kepler mentions that in a corner one regular pentagon and
two regular heptagons (7-gons) are impossible because the sum
of the angle’s is greater than 360°.

5 - 180°

108° 4 2- > 360°.

“Nam unus Pentagonus cum duobus Heptagonicis

jam superat 4 rectos.”

We introduce for each corner the deficit § as 360° minus the sum
of all angles coming together in this corner. It is positive. A

result of Descartes is equivalent to
(%%) 3 6; = 720°(sum over all corners)

Leibniz (the great contemporary of Seki Takakasu) copied Descartes’
result in a Paris library. Descartes’ manuscript is lost, but the

copy of Leibniz exists.
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The transparency is in Latin and German (k = by, f =
bo, fr = ba(r)). We see that Descartes’ result is equivalent to
Euler’s formula. The formula (**) is a discrete version of the
famous formula of Gauf} that the integral [ «xdF over the curva-
ture of a convex surface equals 47 (= 720°). There should be a

new French bank note with Descartes. Proposal:

How to construct Fullerenes? There are many methods. I
do not have a complete survey. Recently, in connection with
my work on Hilbert modular surfaces, [ studied an article by
Bertram Kostant “The Graph of the Truncated Icosahedron and
the Last Letter of Galois” (Notices of the American Mathe-
matical Society, September 1995). I talked about this in the
Kyoto colloquium. Kostant mentions P. W. Fowler and D. E.
Manolopoulos, An Atlas of Fullerenes, Oxford, 1995. I did not
see this book yet. I shall explain here a construction given by M.
Goldberg in 1936. It is possible to triangulate an icosahedron in
20(a”+ ab+'b?) triangles as explained by the following diagrams:
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)V] Goeo(/@erg 1936
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This gives the combinatorial structure of a convex polyhe-

dron which has only triangles:
bo(r) =0 for r # 3, by = 20(a® + ab + b?).
We have by(5) = 12 and by(r) = 0 for 7 # 5,6 and

b = 10(a®+ ab+b%) +2
by = 30(a®+ ab+ b%)
by = 20(a®+ ab+b%)
According to D. L. D. Caspar and A. Klug 1962 (Nobel Prize)
some virusses have protective ball like structures (capsides) con-
sisting of capsomeres sitting in the corners of such a polyhedron.
We can pass to the dual polyhedra. The centers of the

faces correspond to the vertices (corners) of the dual polyhedron.
Then by and b, are interchanged. We obtain Fullerenes with

bo = 20(a®+ ab+b?)

by = 30(a®+ ab+ b?)

b, = 10(a®+ ab+ b*) + 2
b2(6) = 10(a®+ ab+b* —1)

For a = b = 1 we get the football. For a = b we have b, = 60a2.

Here are pictures of Cgg,e.
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Fullerenes
by Robert F. Curl and Richard E. Smalley,
Scientific American,
October, 1991.
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The dual football (a = b = 1, by = 32) was drawn by

Leonardo da Vinci.

] ‘
b’ DVODECEDRON ELEVA t’il

F‘ TVS VACVVS [ ~

—'«algu.h/‘!av a‘g vy

Leonardo da Vinci
in Luca Pacioli
De Divina Proportione
Milano , Bibliotheca Ambrosiana
1509
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It has icosahedral symmetry and is the protective cover of
the Picorna virus with 32 capsomere. The centers of the 60
triangles give the vertices of the football. I refer to H. S. M.
Coxeter “Virus macromolecules and geodesic domes” 1971.

[This lecture is a very shortened and much modified version
of lectures in the ETH Zurich and the Siemens Foundation in

Munich. |
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