微分同相群と族のゲージ理論

Hokuto Konno (The University of Tokyo) March 19th, 2025 MSJ Spring Meeting

Introduction: 4-dimensional special phenomena

- Recall: **Dimension 4 is special!**
- <u>An instance of special phenomena in dim 4:</u>
- There are (many) compact 4-manifolds (e.g. K3 surface) that admit
- infinitely many smooth structures. Two comparisons:
- dim 4 vs. other dim: This infiniteness never happens in dim $\neq 4$. • C^0 vs. C^{∞} : There is a big difference between the topological and smooth categories in dimension 4.

- Upshot: The 4-dim smooth category has specially high "complexity"!
 - Gauge theory

Introduction: Gauge theory

on a 4-manifold X^4 to study the topology of X!

<u>e.g.</u>

- Donaldson (1983) --- Yang-Mills A
- Witten (1994) …Seiberg-Witten e

a numerical invariant to distinguish smooth structures.

Idea: Use the moduli space of solutions to a certain non-linear PDE

SD equation
$$F_A^+ = 0$$

equations
$$\begin{cases} F_A^+ = \sigma(\Phi, \Phi), \\ D_A \Phi = 0 \end{cases}$$

How to use PDE? Typical way: "Count" the the moduli space to get

Introduction: from manifolds to diffeomorphisms

Given a smooth manifold X, the topological group called diffeomorphism group

is a natural object to study (automorphism group of a manifold).

	Classification of manifolds	Diffeomorphism group
dim > 4	Kirby-Siebenmann theory (announced in 1969) based on surgery	Major developments (later) in the last two decades by Galatius, Randal-Williams…
dim = 4	Gauge theory (since Donaldson in 1983)	Gauge theory for families

- $Diff(X) = \{f: X \to X \mid f \text{ is a diffeomorphism}\}$

Introduction: Gauge theory for families

Basic idea of gauge theory for families:

- Given a smooth fiber bundle $E \rightarrow B$ with smooth 4-manifold fiber X, consider gauge-theoretic PDEs along fibers.
- 2. Count the "parameterized moduli space" (i.e. the union of moduli spaces on fibers) over B and get an invariant of E.
- Distinguish smooth fiber bundles E's by this invariant 3.

used to define fiber bundles with fiber X.

recent years.

- Give "lower bounds" on complexity of Diff(X), which is
- <u>History</u>: Ruberman (1998) gave the 1st application of gauge theory for families to topology. After that, sporadic for a while: Ruberman (1998– 2001), Nakamura (2003, 2010). However, it has been actively studied in

Introduction: Special phenomena for Diff(X⁴)

Question 1: Discover new special phenomena in dimension 4 by studying diffeomorphism groups Diff(X) of 4-manifolds X. Question 2: Study comparison Homeo(X^4) vs. Diff(X^4).

Using gauge theory for families, we give several answers to these questions:

Topics: (1) Homological instability (2) Infiniteness of Diff (3) Exotic diffeomorphisms

Plan of the talk

(1) Homological instability

(2) Infiniteness of Diff

- (3) Exotic diffeomorphisms
- (4) Other topics and prospects

BDiff(X): Moduli space of manifolds

For a smooth manifold *X*, the classifying space *B*Diff(*X*) of Diff(*X*) is called the moduli space of manifolds (diffeomorphic to *X*).

Given a ("good") space *B*, $\frac{\operatorname{Map}(B, B\operatorname{Diff}(X))}{(\text{homotopic})} \stackrel{1:1}{\leftrightarrow} \{\text{fiber bundles with fiber } X \text{ over } B\} / \cong .$

An important invariant: $H^*(BDiff(X)) \stackrel{1:1}{\leftrightarrow} \{characteristic classes of X-bundles\}$

Basic problem: Compute H*(BDiff(X)) (or H_{*}(BDiff(X)))

This is very hard: not solved even when *X* are surfaces.

But in (even) dim \neq 4, this is solvable after enough **stabilizations**.

Homological stability in dim $\neq 4$

Stabilization map: For a manifold W^{2n} with $\partial W \neq \emptyset$, set $\text{Diff}_{\partial}(W) := \{f \in \text{Diff}(W) \mid f \text{ is id near } \partial W\}.$ We can define a map $s: \operatorname{Diff}_{\partial}(W) \hookrightarrow \operatorname{Diff}_{\partial}(W \# S^n \times S^n)$ (extend by $\operatorname{id}_{S^n \times S^n}$).

Theorem (Harer (1985) for dim = 2, Galatius and Randal-Williams (2018) for dim > 4): Let W be a simply-connected compact smooth manifold of dimension $2n \neq 4$, and let $k \geq 0$. Then the stabilization maps

are **isomorphic** for all $N \gg k$.

- $s_*: H_k(BDiff_{\partial}(W\#_N S^n \times S^n); \mathbb{Z}) \to H_k(BDiff_{\partial}(W\#_{N+1} S^n \times S^n); \mathbb{Z})$

Homological stability in dim $\neq 4$ Theorem (Harer (1985) for dim = 2, Galatius and Randal-Williams (2018) for dim > 4): Let W be a simply-connected compact smooth manifold of dimension $2n \neq 4$, and let $k \geq 0$. Then the stabilization maps $S_*: H_k(BDiff_{\partial}(W\#_N S^n \times S^n); \mathbb{Z})$

are **isomorphic** for all $N \gg k$.

lim $H_k(BDiff_{\partial}(W\#_NS^n \times S^n))$, which is computed by homotopy theory: $N \rightarrow +\infty$

 $N \rightarrow +\infty$

$$\mathbb{Z}) \to H_k(B\mathrm{Diff}_{\partial}(W\#_{N+1}S^n \times S^n); \mathbb{Z})$$

- Thus $H_k(BDiff_{\partial}(W\#_N S^n \times S^n))$ for $N \gg k$ is identified with the stable homology
- lim $H_k(BDiff_{\partial}(W\#_NS^n \times S^n); \mathbb{Q})$ is generated by MMM classes (Mumford conjecture)
- (Madsen and Weiss in dim = 2, Galatius and Randal-Williams in other even dimensions)

Homological instability in dim = 4

<u>Theorem (K.-Lin (2022)):</u>

- Let X be a simply-connected closed smooth 4-manifold, and let k > 0. Then there exists a sequence $0 < N_1 < N_2 < \cdots \rightarrow +\infty$ such that, for
- each N_i , the stabilization map

is not isomorphic.

the scope of homotopy theory.

Focus on punctured manifolds: $W = \mathring{X} = X \setminus Int(D^4)$ for closed 4-manifolds X.

 $s_*: H_k(BDiff_{\partial}(\mathring{X}\#_{N_i}S^2 \times S^2); \mathbb{Z}) \to H_k(BDiff_{\partial}(\mathring{X}\#_{N_i+1}S^2 \times S^2); \mathbb{Z})$

Thus, unlike dim \neq 4, the homology of the moduli space never stabilizes by $\#S^2 \times S^2$! The theorem suggests that the computation of $H_k(BDiff(X^4))$ appears to be beyond

Homological instability in dim = 4: proof

Tool: Gauge-theoretic characteristic class:

This is a variant of the characteristic class by K. (2018) with the idea of a numerical families Seiberg-Witten invariant by Ruberman (2001).

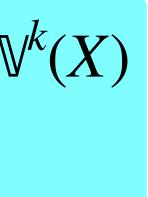
universal bundle $EDiff^+(X) \times_{Diff^+(X)} X \to BDiff^+(X)$ over each k-cell of $BDiff^+(X)$.

under the stabilization map is zero).

Compute $SW^k(X)$ for a concrete family: Key is a gluing theorem for families by Baraglia-K. (2018) (geometric analysis).

- $SW^k(X) \in H^k(BDiff^+(X^4); \mathbb{Z}/2)$ (Diff⁺: orientation-preserving).
- Idea of definition: Count solutions to families of Seiberg-Witten equations along the
- **<u>Property</u>:** $SW^k(X)$ is an **unstable** characteristic class (i.e. the pull-back of $SW^k(X)$)

- $SW^k(X)$ captures certain complexity (instability) of $H_*(BDiff(X))$



Plan of the talk

(1) Homological instability

(2) Infiniteness of Diff

(3) Exotic diffeomorphisms (4) Other topics and prospects

Fineteness of Diff in dim $\neq 4$

For a manifold X, $\pi_k(\text{Diff}(X))$ and $H_k(B\text{Diff}(X);\mathbb{Z})$ are typically infinite groups. **<u>Question</u>**: Are $\pi_k(\text{Diff}(X))$ and/or $H_k(B\text{Diff}(X);\mathbb{Z})$ finitely generated?

<u>Conjecture:</u>

Let X be a closed smooth manifold X with finite $\pi_1(X)$. If dim $X \neq 4$, $\pi_k(\text{Diff}(X))$ and $H_k(B\text{Diff}(X);\mathbb{Z})$ are finitely generated for all degrees k.

Theorem (Bustamante-Krannich-Kupers (2021)): The above conjecture is true if $\dim X = even > 4$.

Question:

Is there a counterexample to the 4-dimensional analog of Conjecture?

(Diff-analog of infiniteness of smooth structures on 4-manifolds?)

Infinite generation of $\pi_k(\text{Diff}(X^4))$ for k > 0Theorem (Baraglia (2021)): $\pi_1(\text{Diff}(K3))$ is not finitely generated. elliptic surfaces and complete intersections. Theorem (Auckly-Ruberman (2025)): For every k > 0, \exists closed smooth 4-manifold X^4 such that $\pi_k(\text{Diff}(X))$ is not finitely generated.

Anything else? We shall consider: (1) $\pi_0(\text{Diff}(X))$ (mapping class group) (2) $H_k(BDiff(X))$ for all k > 0.

- Later, Lin generalized this result to many 4-manifolds, including all

Finete generation of $\pi_0(\text{Diff}(X))$ in dim $\neq 4$

<u>Theorem (Sullivan (1977)):</u> dim > 4. Then $\pi_0(\text{Diff}(X))$ is finitely generated.

<u>Remark: One cannot drop the simple-connectivity.</u>

finitely generated (Budney-Gabai (2019)/Watanabe (2020)).

Let X be a simply-connected closed smooth manifold of

- e.g. $\pi_0(\text{Diff}(T^n))$ is not finitely generated for n > 4 (Hatcher (1978)).
- Also in dimension 4, it is known $\exists X^4$ with $\pi_1(X) \neq 1$ s.t. $\pi_0(\text{Diff}(X))$ is not

Infinite generation of $\pi_0(Diff(X^4))$

for every simply-connected X if dim $X \neq 4$.

<u>Theorem (K. (2023)/Baraglia (2023)):</u> such that $\pi_0(Diff(X))$ are not finitely generated.

generated.

Summary in dim $\neq 4$: $\pi_0(\text{Diff}(X))$ is finitely generated

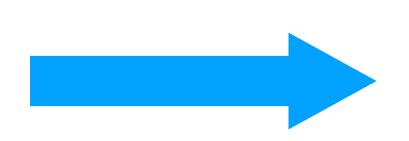
There exist simply-connected closed smooth 4-manifolds X

<u>e.g.</u> For $X = E(n) \# S^2 \times S^2$ with $n \ge 2$, $\pi_0(\text{Diff}(X))$ is not finitely

Infinite generation of $\pi_0(Diff(X^4))$

<u>Theorem (K. (2023)/Baraglia (2023)):</u> such that $\pi_0(Diff(X))$ are not finitely generated.

<u>Remark</u>: Freedman and Quinn's result (with a recent correction by Gabai-Gay-Hartman-Krushkal-Powell), $\pi_0(\text{Homeo}(X))$ is finitely generated for a simply-connected closed topological 4-manifold X.



Infinite generation of mapping class group (under $\pi_1 = 1$) is a special phenomenon of the 4-dim & smooth category.

There exist simply-connected closed smooth 4-manifolds X

Infinite generation of $H_k(BDiff(X^4))$

<u>Theorem (K. (2023))</u>: For every $k \ge 1$, there exist simplyconnected closed smooth 4-manifolds X such that $H_k(BDiff(X); \mathbb{Z})$ are **not** finitely generated.

i.e. Families of 4-manifolds can have particularly many characteristic classes.

<u>Remark</u>: Theorem for k = 1 implies that $\pi_0(\text{Diff}(X))$ is infinitely generated.

<u>e.g.</u> For $X = E(n)\#_k S^2 \times S^2$ with $n \ge 2$, $H_k(BDiff(X); \mathbb{Z})$ is not finitely generated.

Infinite generation of $H_k(BDiff(X^4))$: Proof

connected closed smooth 4-manifolds X such that $H_k(BDiff(X); \mathbb{Z})$ are **not** finitely generated.

- Gauge-theoretic characteristic class again: Define infinitely many characteristic classes $SW^k(X, \mathcal{S}) \in H^k(BDiff^+(X); \mathbb{Z}/2),$
 - indexed by S (which related to spin^c structures on X).
- Show the linear independence of $SW^k(X, S)$'s by evaluating infinitely 2. many (concrete) fiber bundles with fiber X.

- **Theorem (K. (2023)):** For every $k \ge 1$, there exist simply-

 $SW^k(X, S)$ captures certain complexity (infiniteness) of $H_*(BDiff(X))$.

Plan of the talk

(1) Homological instability

(2) Infiniteness of Diff

(3) Exotic diffeomorphisms (4) Other topics and prospects

Exotic diffeomorphism

smoothly not. In other words, f is exotic if f gives a non-trivial element of

So there is no exotic diffeomorphism of X.

First examples in 4D…Ruberman (1998): This is the first topological application of gauge theory for families too.

- **<u>Definition</u>**: Given a smooth manifold X, a diffeomorphism $f: X \to X$ is called an exotic diffeomorphism if f is topologically isotopic to the identity but

 - $\operatorname{ker}(\pi_0(\operatorname{Diff}(X)) \to \pi_0(\operatorname{Homeo}(X)))).$

- **<u>Remark</u>**: If dim $X \leq 3$, Diff $(X) \hookrightarrow$ Homeo(X) is a weak homotopy equivalence.

Dehn twists on 4-manifolds

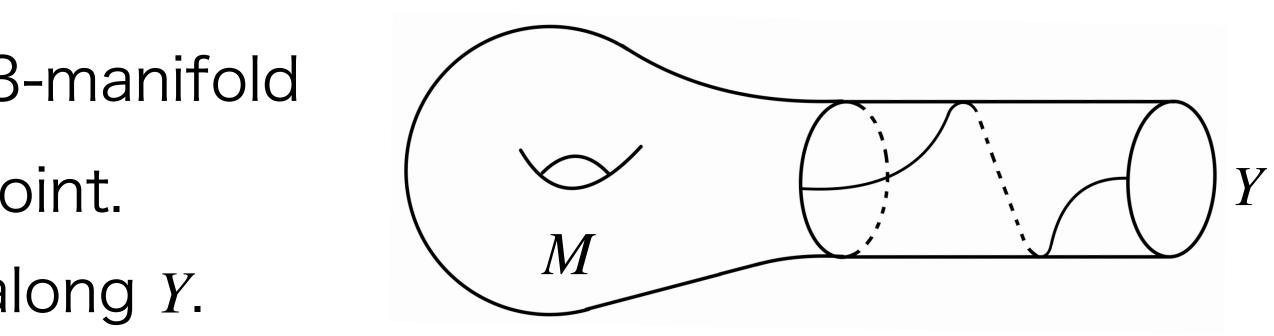
A 4-dimensional analog of **Dehn twists** often turns out to give a natural example of an exotic diffeomorphism. **Dehn twist:**

For a (3-)manifold Y with a loop $\phi: S^1 \to \text{Diff}(Y)$ based at id_Y , we define a diffeomorphism rel boundary called the Dehn twist on $Y \times [0,1]$:

When $Y = \partial M^4$, we call the Dehn twist near the boundary ($\in \text{Diff}_{\partial}(M)$) the boundary Dehn twist.

<u>e.g.</u> Y^3 is said to be a **Seifert fibered** 3-manifold if Y admits an S^1 -action without fixed-point. Then we can consider the Dehn twist along Y.

- $Y \times [0,1] \rightarrow Y \times [0,1]$; $(y,t) \mapsto (\phi(t) \cdot y, t)$.

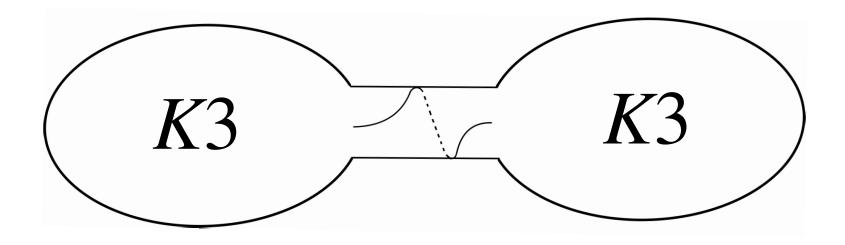


Dehn twists on 4-manifolds

Many approaches to 4-dimensional Dehn twists from families Seiberg-Witten theory appeared since 2020. They often give examples of exotic diffeomorphisms.

- Twists along S^3 : Kronheimer-Mrowka (K3#K3), Lin…
- <u>Twists along Seifert fibered 3-manifolds:</u> Miyazawa…

<u>Further:</u> The study of Dehn twists also gives 4-dimensional special phenomena.



K.-Mallick-Taniguchi, K.-Lin-Mukherjee-Muñoz-Echániz, Kang-Park-Taniguchi,

$Diff(D^n)$ VS. Diff(contractible)

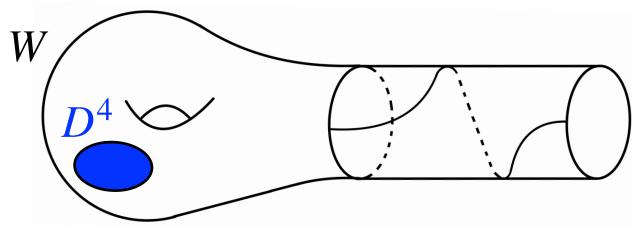
Given an embedding of a disk $D^n \hookrightarrow W^n$ into an *n*-manifold W, it induces a map $i : \text{Diff}_{\partial}(D^n) \hookrightarrow \text{Diff}_{\partial}(W)$ (extend by id).

Namely, Diff_d(contractible) is as simple as Diff_d(D^n). This fails in 4D:

<u>Theorem (Krushkal—Mukherjee—Powell—Warren (2024)/K.—Lin—</u> <u>Mukherjee–Muñoz-Echániz (2024)):</u> There exists a contractible compact smooth 4-manifold W such that $i_*: \pi_0(\text{Diff}_{\partial}(D^4)) \to \pi_0(\text{Diff}_{\partial}(W))$ is not surjective for any $D^4 \hookrightarrow W$.

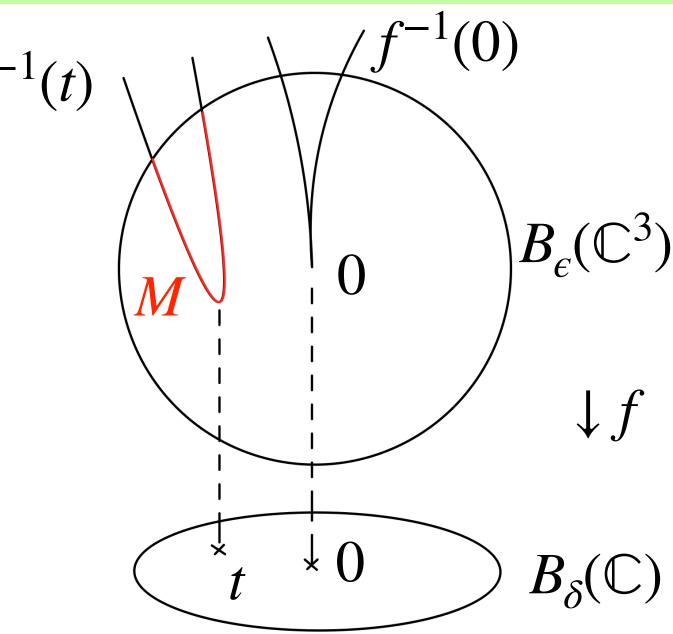
In our work (KLMME), the boundary Dehn twist along some Seifert 3-manifold gives a mapping class not coming from D^4 .

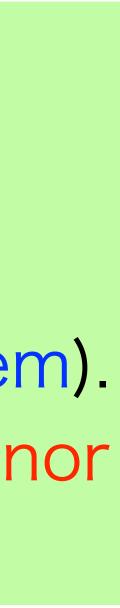
- <u>Theorem (Galatius—Randal-Williams (2023)/Krannich—Kupers (2024)):</u> Let W be a contractible compact smooth manifold of dim = $n \ge 5$. Then, for any $D^n \hookrightarrow W$, the map $i : \text{Diff}_{\partial}(D^n) \hookrightarrow \text{Diff}_{\partial}(W)$ is a weak homotopy equivalence.



Milnor fibration

- **Milnor fibration and Milnor fiber:** Let $f: \mathbb{C}^3 \to \mathbb{C}$ be a polynomial with isolated singularity at $0 \in \mathbb{C}^3$ with f(0) = 0.
- $f: f^{-1}(B_{\delta}(\mathbb{C}) \setminus \{0\}) \cap B_{\epsilon}(\mathbb{C}^3) \to B_{\delta}(\mathbb{C}) \setminus \{0\} \quad (1 \gg \epsilon \gg \delta > 0)$ is a fiber bundle with trivialized boundary family (Milnor's fibration theorem). This fibration is called the Milnor fibration and its fiber M is called the Milnor fiber of the singularity.
- Monodromy: The most basic invariant of the Milnor fibration is the monodromy $\mu \in \pi_0(\text{Diff}_{\partial}(M))$. The action of μ on $H_2(M; \mathbb{Z})$ is classically studied, but not much studied as an element of $\pi_0(\text{Diff}_{\partial}(M))$. \mathbf{U}





Monodromy of a Milnor fibration

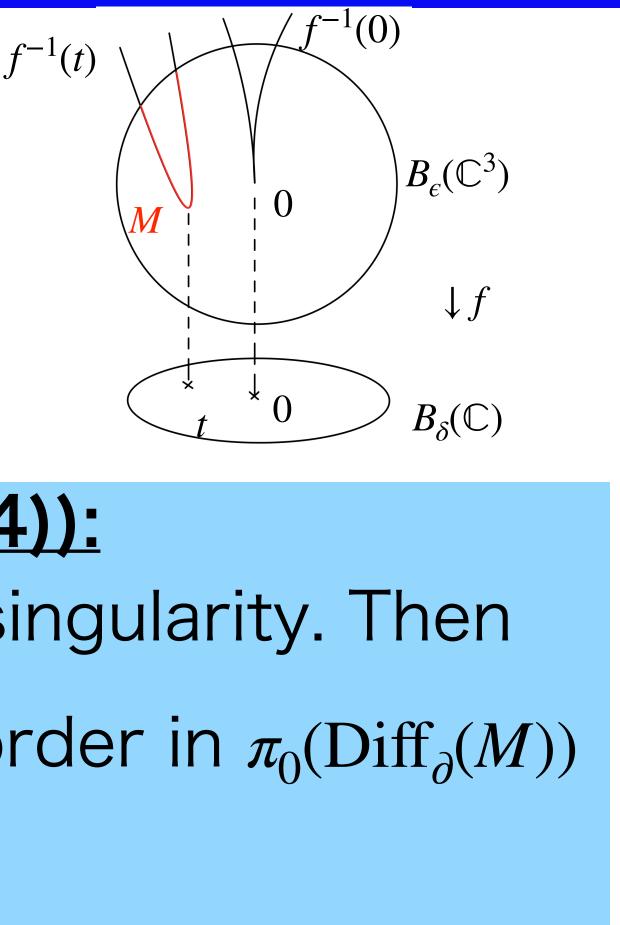
Suppose *f* is weighted homogeneous, i.e.

 $f(\lambda^{w_1}z_1, \lambda^{w_2}z_2, \lambda^{w_3}z_3) = \lambda^d f(z_1, z_2, z_3)$ for $\lambda \in \mathbb{C}^* (\exists d, w_1, w_2, w_3 > 0)$

e.g. Brieskorn singularity, ADE singularity

<u>Theorem (K.—Lin—Mukherjee—Muñoz-Echániz (2024)):</u> Suppose $f: \mathbb{C}^3 \to \mathbb{C}$ is a weighted homogeneous isolated singularity. Then the monodromy μ of the Milnor fibration for f has finite order in $\pi_0(\text{Diff}_{\partial}(M))$ if and only if f is an ADE singularity.

"If part" is due to Brieskorn (1971). The theorem follows from that Dehn twist turns out to be an infinite order (and exotic!)



- $(monodromy)^d = boundary$ Dehn twist for weighted homogeneous f, and the

Monodromy of a Milnor fibration

<u>Theorem (K.—Lin—Mukherjee—Muñoz-Echániz (2024)):</u>

Suppose $f: \mathbb{C}^3 \to \mathbb{C}$ is a weighted homogeneous isolated singularity. Then

- if and only if f is an ADE singularity.

Namely, μ has infinite order in $\pi_0(\text{Diff}_{\partial}(M))$, except for the ADEs.

Remark: Under the weighted homogeneous assumption, the monodromy μ is finite order for the topological category and for the higher-dimensional Milnor fibers under a mild assumption ("the link is a homology sphere").

> A natural diffeomorphism (monodromy of a Milnor fibration) also gives a special phenomenon of the 4-dim & smooth category!

the monodromy μ of the Milnor fibration for f has finite order in $\pi_0(\text{Diff}_{\partial}(M))$

Exotic diffeomorphism of closed 4-manifolds

Question: Does a Dehn twist give an exotic diffeomorphism of a closed 4manifold?

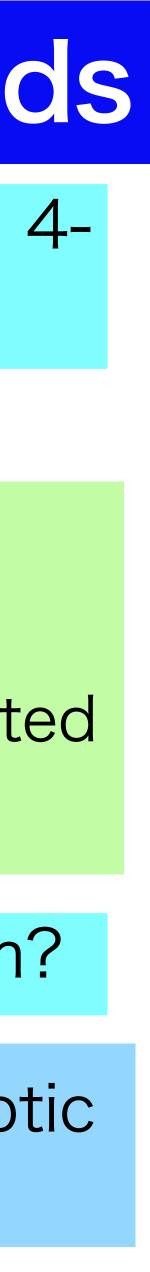
Answer (so far): Yes, but not of an "interesting" closed 4-manifold.

Interesting/important closed 4-manifolds: Typically, Kähler/complex surfaces, symplectic 4-manifolds. sum decomposition ("building block" of 4D topology).

surfaces/complete intersections) can admit exotic diffeomorphisms.

Proof: A constraint on smooth families of 4-manifolds from families SW theory (Baraglia-K, 2022) and the families index theorem.

- After blowing-down, such a 4-manifold is **irreducible**, i.e. # non-trivial connected
- Question: Can an irreducible 4-manifold admit an exotic diffeomorphism?
- **Theorem (Baraglia-K. (2024)):** Yes, many minimal complex surfaces (elliptic



Plan of the talk

(1) Homological instability

(2) Infiniteness of Diff

(3) Exotic diffeomorphisms

(4) Other topics and prospects

Constraints on smooth families of 4-manifolds

Big source for application ... Constraints on smooth families of 4-manifolds from families Seiberg-Witten theory (Kato-K.-Nakamura (2019), Baraglia-K. (2019), Baraglia

(2019), K.-Taniguchi (2020)).

<u>e.q.</u> Baraglia's result is a family version of Donaldson's diagonalization

A typical application ... Detect a non-smoothable topological family of 4manifolds, i.e. a fiber bundle with structure group Homeo(X^4) that does not reduce to Diff(X^4).

This idea can also be used to detect non-smoothable group actions on 4-manifolds via the Borel construction (Nakamura (2003, 2010), Baraglia (2019)).

 $\nexists BDiff(X)$ $B \rightarrow BHomeo(X)$

Secondary invariant

- to study the space of "vanishing reasons".

This type includes:

- Configurations of surfaces in 4-manifolds (K. (2016, 2022)) Ι. Exotic embeddings of surfaces/3-manifolds into 4-manifolds (Baraglia (2020),
- 2. lida-K.-Mukherjee-Taniguchi (2022), K.-Mukherjee-Taniguchi (2022), Auckly-Ruberman $(2025)\cdots)$
- Space of positive scalar curvature metrics of 4-manifolds (Ruberman (2001), 3. K. (2019), Auckly-Ruberman (2025))
- $Symp(X^4, \omega)$ vs. $Diff(X^4)$ (Kronheimer (1997), Smirnov (2020, 2022), Lin (2022)) 4.

Another type of application ... given a certain vanishing theorem for solutions to the Seiberg-Witten equations, and we could get a secondary families invariant

Kontsevich characteristic classes

Another important recent advance in the study of $Diff(X^4)$ was initiated by: Theorem (Watanabe (2018)): Diff(S^4) is not homotopy equivalent to O(5).

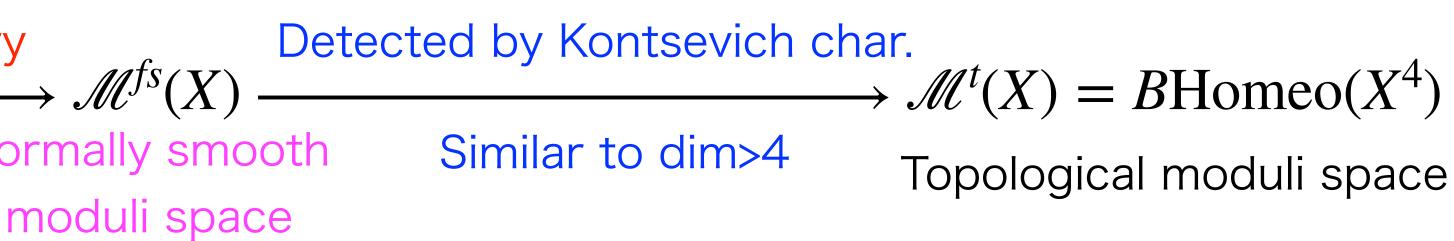
Watanabe's proof uses Kontsevich characteristic classes based on configuration space integral (totally different method from gauge theory).

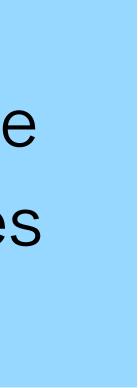
<u>Theorem (Lin-Xie (2023)):</u>

Kontsevich characteristic classes are well-defined on the classifying space $\mathcal{M}^{fs}(X)$ of "formally smooth" families of 4-manifolds (i.e. topological families) equipped with linear structures on vertical tangent microbundles).

$$BDiff(X^{4}) = \mathscr{M}^{s}(X) \xrightarrow{} Detected by gauge theory} \mathscr{M}$$

Smooth moduli space Special to dim=4 Formal





Problems and Prospects

- Ring structure of $H^*(BDiff(X^4))$? ٦.
- Instability and/or infiniteness of $H_*(BDiff(X^4); \mathbb{Q})$? (cf. Advances in dim $\neq 4$) 2.
- 3. Relation between exotic/complex/symplectic structures on 4-manifolds and their diffeomorphism groups? (cf. Exotic diffeo. of irreducible 4-manifolds)
- Is the algebraic (as opposed to topological) structure of $Diff(X^4)$ special? 4.

Thank you for your attention!

