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Introduction

The potential theory of Markov chains has been successfully
applied by P. Cartier ([2], E3], [4]) to the harmonic analysis of
trees. In another direction S. Sawyer in [JSJ applied harmonic
analysis in order to study, in a quantitive way, the transience of
random walks on a tree. While Cartier's approach consists of a
systematic development of the boundary theory of nonnegative harmonic
functions on a tree (including Martin's representation and Fatou's
radial convergence), Sawyer relies on the theory of Gelfand pairs and
their spherical functions, applied to the given homogeneous tree
(including horocycles and the Plancherel measure). In the lectures
which are the basis of the present exposition, the author tried to'
work out the various methodical aspects of the theory with the aim
to re-establish the existence of the Martin boundary of a tree and
the limit theorem yielding the transience of any isotropic random
walk on a homogeneous tree. The proofs of both theorems will be

carefully prepared and more or less completely carried out.

We shall briefly report on the organization of the Lecture Notes.
In Section 1 we start by presenting some generalities on trees, and
show the existence of paths of smallest length (Tﬂeorem 1.6) and of
geodesics (Theorem 1.14). Section 2 is devoted to the properties of
harmonic functions and the Green kernel corresponding to a tree. Here
we adopt Cartier's general assumption which in Section 6 will be

interpreted as a transience condition for the underlying random walk.
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The main information on the Green kernel is contained in Theorem
2.10. Among the analogues of classical results Theorem 2.12 is the
well-known Riesz decomposition. In Section 3 the space of geodesics
will be viewed as a boundary of the given tree. We shall discuss the
relationship between the set of infinite chains starting at the
origin and the set of ends of the tree (Proposition 3.4). Theorem
3.10 provides the existence of the natural compactification of the
tree in terms of its boundary. In Section 4 this natural com-
pactification will be .interpreted as a Martin compactification
(Theorem 4.13). The result is preceded by a study of the Martin
kernel (Proposition 4.2) and by the proof of Martin's integral
representation of nonnegative harmonic functions (Theorem 4.9).

As a first conclusion we will present in Section 5 a probabilistic
interpretation of the Martin compactification of a tree. We shall
construct a Markov chain on the set of all infinite paths in the
tree (Propositions 5.5 and 5.6) and prove that this Markov chain
converges for almost all paths towards an element of the Martin
boundary (Theorcm 5.12). It turns out (Theorem 5.14) that the

Martin representing measure is the limiting distribution of the
Markov chain. Section 6 is devoted to the discussion of the
transience property for certain Markov chains on a tree. It appears
(Corollary 6.9) that in the case of a homogeneous tree the canonical
Markov chain is always transient. Theorem 6.13 contains all available
information obtained under the homogeneity condition for the Martin
representing measure. In the subsequent Section 7 a crash report on

Gelfand pairs precedes the main Theorem 7.18 in which the transience
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of more general isotropic random walks on a homogeneous tree is
stated. The proof uses the Plancherel-Godement theorem and the
explicit form of the Plancherel measure on a tree. Finally, in
Section 8, Sawyer's transience result is presented. Its statement
on the rate of escape in the isotropic case goes far beyond the
transience property. In the demonstration of this far-reaching
assertion classical probabilistic arguments are combined with the

techniques available in the theory of Gelfand pairs.

The principal reference of Sections 1 to 5 is Cartier's fundamen-
tal paper [4]. Our presentation is just a reorganization of the
ideas of [4]. Concerning Martin boundaries of random walks on trees
we emphasize the excellent contributions [13], [141 of M.A.
Picardello and W. Woess in which geometrical descriptions of the
Martin boundary of a tree are given. The theory of Laplacians on
trees has been deepened by A. Koranyi and M.A. Picardello in [ﬁ].
Concerning the transience and recurrence properties of random walks
on trees we only mention, for the purpose of orienting the reader,
the expository paper E7] by P. Gerl and the references to his
important work therein. In Sections 6 to 8 we shall refer also to
the papers [1] and [6] by J.-P. Arnaud and J-L. Dunau respectively.
They appear as basic references to the profound studies of G. Letac
([1d], [J1]) within the framework of Gelfand pairs as developed in
the survey articles t9] and [12]. The reader interested in a
detailed exposition of the harmonic analysis of Gelfand pairs is
recommended to consult Dieudonné's book [5]. The recent contribution

[16] of S. Sawyer and T. Steger indicates what can be done if one



Sem. on Probab.
Vol .56 1988
P1-120 ’ Iv

wants to generalise the theory to anisotropic random walks.

I am grateful to my collaborators who have helped preparing
and mending the material of this paper. Mr. R. Weck wrote a
Master's ;hesis on the subject, and Dr. G. Turnwald offered a
remarkable portion of constructive criticism. The difficult task
of typing thg manuscript was skillfully done by Mrs. E. Gugl.
Special thanks I owe to Professor Y. Okabe who most graciously
invited me to Sapporo .and, in connection with my lecturing there,
eﬁcouraged m; to write up these notes. Professor M. Tsuchiya from
the University §f Kanazawa was kind enough to include this set of

notes in the prestigious series of the "Probability Seminar".
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I The Martin compactification of a tree

§ 1 Geodesics in a tree

In this preparatory section we shall review some basic notions

from graph theory with the aim of introducing geodesics in a tree.

1.1 Definition. A graph (S,A) consists of a set S and a set A of two-
element subsets of S. The elements of S are called the vertices of
(S,A), those of A its edges.

Two edges s,t of (S,A) are said to be joined if {s,tl}€A.

1.2 Definition. A graph (S,A) with S#¢ is called a tree if the fol-
lowing conditions are satisfied:
(a) (S,A) is comnnected in the sense that for each two vertices s,s'€S
there exists a sequence {50,31,...,sn} of vertices in S such that
s =s, s_=s' and {s, ,,s.} €A for all i=1,...,n .
o n i-1°71 4
(b) There does not exist any mnontrivial closed path in 3, i.e. a sequenc

{81""’Sn} of n23 pairwise different vertices in S such that

{si,si+1} €A for all i=1,...,n-1 and {sn,s1} €A .

A tree (S,A) is said to be Znfinite if S is an infinite set, and
locally finite if for every s € S there exist only finitely many ver-

tices t €S such that {s,t} €A.

1.3 General assumption for the entire chapter: (S,A) is an infinite,

locally finite tree.

1.4 Definition. A sequence c = [so,...,snj with SgaceesS €S 1is
called a path in (S,A) if {si_1,si} €A for all i=1,...,n, and a

closed path if in addition Sy = oS-

For any path c¢ = [§o,...,sn] in (S,A), a(c) := S, is called the
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starting point, B(c) : = s the end point and 2(c) : =n the length

of c. The vertices SyseeesS are called Zntermediate points.

n-1
Paths in (S,A) of length 1 are named arcs.

1.5 Facts. If c: = [so,...,sn] and c' : = [sé,...,sé] are paths in

(S,A) and if a(c') =B(c), then the product of c and c' is the path

] 1 1
cec' 1 = S yeee,8 s ,s'...,s
[ o’ >"n=-1""n’""P >“m ]

with starting point af(c:c') = s°(=a(c)), end point B(c-c') =s; (=R(c"))

and length 2(c<c') = n+m.

For every edge {s,t} €A there exist two arcs Es,t] and [t,s]

obtained by orientation of {s,t}.

Any path ¢ = [s seeesS ] admits a unique product representation
)

with arcs a, : = | s. s, for i=1,...,n.
i [ i-1? 1] ’ ’

For every path ¢ = [so,...,sn] the opposite path [sn,...,soj

is abbreviated by c

Since (S,A) is connected, there are arbitrarily many
paths with starting point s and end point t. We are going to study

paths of smallest length in (S,A).

1.6 Theorem. Let s,t €S. Then

(i) there exists exactly one path c, = [so,...,snj such that s, =5,
s, =t and sy #sj for all i,j =0,...,n; i#j.
(ii) Given cy and a path ¢ = [to,...,tm] with t =s and t =t then

there is a sequence {m_,...,m} in Z, with o=m<m <...<m_=m
o n o 1 n

such that tm =s; for all i=1,...,n.
i
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(iii) If, moreover, the vertices of ¢ satisfy L #ti+1 for all

i=1,...,m-1, then c=c_ .

Proof. 1. We shall show (ii) along with the statement of existence
in (1).
Let ¢ = [to,...,tm] be an arbitrary path in (S,A) with t, =S and

t =t. Then consider the set C of all paths c' of the form [t se st J
m m m:

with O =mo<m1<...<n% =m. Since C is a finite set, we can choose a

= 1 ¢ = 1 . ' ¢ =
path c_ [tmo’...’t“%lj €C with n:= min{f(c'):c'€C}. Put s; : tmi
for all i=1,...,n. It remains to be shown that 5 #sj for all

i,j=o0,...,n, i#j. Suppose, on the contrary, that there exist i,j with

1

£i<jg . =S.. : = cee38.,8. .. i
0£1<jsn such that s, sJ Then <, [so, s S ,sJ+1, ,sn] is a

i
path in C with 2(c$)<n contradicting the definition of cye

2. The statement of uniqueness in (i) and (iii) will follow as soon
as we have established the following assertion:

(iv) Let ¢ = [to""’tml be a path in (S,A) with ti-1 #ti+1 for all

i=1,...,m-1 and 1let c¢' = [tg,...,t;] be a path with t{ #tj for

i,j=0,...,r, 1 #] such that to =t$ and t = t;. Then c=c'.

Thus, under the assumption (iv), the uniqueness of (i) can be de-
duced as follows: Let cé be another path in (S,A) with pairwise dif-
ferent vertices, which joins s and t. Then cé satisfies in particular
the property of ¢ in (iv). Now apply (iv) to c': =c, with c, of 1.

Then (iv) implies that.cé =c_ -

3. We shall show (iv) by induction on m.

For m =0 the assertion is clear, since to =tm together with the

hypothesis yields r =0, i.e. c=c'.

Let m=1. If r>1, then [té,...,t;,toj is a nontrivial closed path,
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a fact which contradicts the definition of a tree. Consequently

t, = t; we obtain ¢ = c¢'.

= = '
r=1, and by tO to’ 1

Let now m22 and let (iv) be proved for all paths of length <m.
If tm_1 i ti for all i=o0,...,r then by induction we get

[to,...,t 1 = [té,...,t;, tm_1] which implies to-g = t!' = t_,

m-1 2 r m

contradicting the hypothesis. Hence we obtain product representations

= 1ot [}
c C1°C2 and c¢ c1.c2

have 2(c1)<m and c

with tm—l = 8(c1) = B(c{). Furthermore we

1

induction hypothesis it follows that c1=c;. Similarly we find that

¢! satisfy the assumption in (iv). By the

1’

=c! and hence c=c'

c,=c, .

The preceding theorem justifies the following

1.7 Definition: Let s,t€S. The path ¢, = [so,...,sn] with

s. % sy for all i=1,...,n-1, which by the theorem exists

i-1 +1

uniquely, is called the geodesic from s to t; it will be

abbreviated by c(s,t).

1.8 Notation. For all s,t€S the integer
d(s,t) := 2(c(s,t))

is called the distance between s and t.

1.9 Properties. Let s,té€S.
1.9.1 d(s,t) =1 iff {s,t} €A.

1.9.2 d(s,t) 0 iff s = ¢t.

1.9.3 d(s,t) d(t,s).
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- An elementary discussion using Theorem 1.6 yields

1.9.4 that given s,s', s''€S there exists a unique t€S
which belongs to all geodesics c(s,s'), c(s,s'")
and c(s',s''). For this vertex t we have
c(s,s") = c(s,t).c(t,s"),
c(s,s'"'") = c(s,t).c(t,s'"),
c(s',s'""'") = c(s',t).c(t,s"'"),
and c(t,s), c(t,s') and c(t,s'') admit only t as a common
vertex.

The vertex t 1s called the center of s,s',s''.

1.9.5 d(s,s'')=Sd(s,s')+d(s',s'").

[From 1.9.4 we déduce the existence of a t€S such that

d(s,s'")

2(c(s,s'"))
= 2(c(s,t))+2(c(t,s"'"))
£ 2(c(s,t))+22(c(s',t))+2(c(t,s'"))
= 2(c(s,s'"))+2(c(s',s""))
= d(s,s'")+d(s",s"'"). ]
1.10 Résumé. The mapping
(s,t)>d(s,t) = 2(c(s,t))

from SxS into ZZ+ is a metric on S.

Now we want to extend Definition 1.4 and Theorem 1.6 beyond

finiteness.

1.11 Definition. A sequence w = [so,s1,...,sn,...1 with sn€S for
all nzo is called an Znfinite path in S if d(si’si+1) = 1 for all izo.

Clearly a(w) := S, is called the starting point of w.
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An infinite path w = [So’si""’sn""] in S is said to be an

infinite chain if si+si holds for all i,j O with i#j.

1.12 An application of Theorem 1.6 yields for two given infinite chains

w o= [so,...,sn,...l and w' = [sg,...,sé,...] in S the following
three possibilities for the set ML of all common vertices of w and w'.
(1) M = ¢.
(2) MUis a finite interval in w and w' in the sense that there are

p,q,n €ZZ satisfying

1 y 3
s . =8 . for i=o0,...,n
p+i gq+i 4 4

' .
or s . =8 . for i=o0,...,n
p+i q+n-i ’ ’

and

S5 ¢ M for i=0,...,p-1, i>p+n.

(3) MU is an <nfinite interval in w and w' in the sense that there

exist p,q €z, such that

s =g for all n2o
p+n q+n
and

S s,e.4,8

1 1 A
o -1 (and hence Sos e )y ¢ M.

.,sq_1
This last possibility suggests the following

1.13 Definition. Two infinite chains w and w' in S are said to be

equivalent (in symbols w~w') if they admit infinitely many common ver-

tices.

The corresponding equivalence classes are called ends. Its totality

will be abbreviated by B.

1.14 Theorem. Let s,s' €S and let w = [30,51,...] be an infinite
chain in S with a(w) = s. Then there exists exactly one infinite chain

w' in S with a(w') = s' and w' ~w.
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Proof. Let c(s,s') = [to’t1""’tm ] and 1let
p:=max {i:0fism and t; is a vertex of w}.

Then €, =5, for at least one q2o. The paths [so,...,sq] and

r for i=1,...,q-1

L to,...,tp ] join s and sq, and we have S -1 #s

by the definition of an infinite chain as well as ty #ti+1 for

i+1

i =1,...,p~1 by the definition of a geodesic. By Theorem 1.6 we con-

clude that

(s veeens, ]

[}

1,

in particular that p = q and thus sj =tj for all j=0,...,p.

L torreesty

Therefore

v - [
w Ltm’tm_1,...,tp+1, Sy sp+1,...J

is an infinite chain in § with a(w') = s' such that w'~w. The unique-
ness of w' follows from the fact that two equivalent infinite chains

in S having the same starting point are identical by 1.12. _}
We are now ready to extend Definition 1.7 to infinite chains.
1.15 Definition. Let s €S and b €B. The infinite chain w in b with

a(w) = s, which by the theorem exists uniquely, is called the geo-

desic from s to b; it will be denoted by w(s,b).
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§ 2 Green kernel and potentials

Now we are entering the potential theory of a tree. Simple
properties of the Green kernel will yield an analogue of the Riesz

decomposition theorem.

2.1 Notation. As in the preceding section we are given an infinite,

locally finite tree (S,A) which from now on will be abbreviated

just by S.
Let
I' := the set of all paths in S (of finite length) and
I(n) := {c€l : &(c) = n} for all n€Z ;

in particular we have that
I'(1) = the set of all arcs.
Moreover, let
T := {c€l : a(c) = s, B(c) =t} and

r (n) := I‘(n)ral‘S

s,t for all s,t€sS, neZ*:

, t

2.2 General Assumption.

2.2.1 There exists a mapping p : T(1)~> Ri. Putting

n
p(e) := 1 P(ai)
i=1

for any c = [so,...,sn]er(n) with a; := [}i_1,si]er(1) (i=1,...,n)
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p extends to I'(n) for every n2!1 and thus to the whole of T.

In particular one obtains
p(ec) =1 for all c€r(o),
and if the product c.c' is defined for c€l'(n), c'€l(m) with n,m2o0,

then

plec.c') = p(e).p(c").

2.2.2 For all s,t€S

z p(c)<°°

cers’t

holds.

2.3 Definition. The mean-value and Laplacian operatore are defined on

the space gT(S,BO of real-valued functions h on S by

Ph: = z p([-,t])n(t)
{tes:d(-,t)=1}

and

Ah :

(P-I)h: =Ph-1Ih
respectively.
Here I denotes the identity operator on F(S,IR) .
2.4 Definition. A function he€ ?Xs,m) is said to be superharmonic if
Ah £ 0,

and harmonic if
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Ah = 0 .

In order to extend the notion of the mean-value operator to more

general functions p we need some

2.5 Preparations about kernels.

A kernel on S will be any mapping U : SXS+3§+.
For two kernels U and V on S the product U-V is defined by

U:V(s,s") := L U(s,s") V(s',s")
s'€S

whenever s,s"€S. Clearly multiplication of kernels on S is associative.

There is the unit kermel I on S defined by

I(s,t) : = Gs,t

for all s,t €S; it takes the part of the neutral element in the mul-

tiplicative semigroup of kernels on S.

2.6 Kernels attached to subsets of T.

For any subset C of T and s,t €S we introduce the set

C :={c€cC:a(c) =s, B(c) = t},

s,t
and we define the kernel UC on S by
Ug(s,e) 2= I ple)
c€C
s,t

for all s,t €S. Since General Assumption 2.2 implies that

UC(s,t) <z p(c) <=

cers,t

for all s,t €S, UC is in fact a finite kernel on S.

Let C,C' and C" be subsets of T. We assume that every path of the

form c'-c" with c¢' €C' and c" €C" belongs to C and conversely that
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every c €C admits a unique product representation of the form

c =c'.c" with c'€C' and c"ec".

[ Let s,u €S. For each t €S we consider the subset

c" ec" }

o = . =c'.po" 3 1 1
Dt := {c€l: c=c'-c with ¢ €Cs,t, £,u

of C and the mapping ¢t :C; txcg u-->Dt defined by
bl b4

¢t(c',c") t:=c'-c

for all «c' ec; ,c'"ec! . By assumption ¢t is bijective for all
b

t t,u

t €S, and for each u¢€Ss,

c u=UDt

$»U  tes

with pairwise disjoint sets Dt (t€S). Then for all (s,u) €SxS,

UC(s,u) = I p(e)
c€C
s,u
= I I p(e)
t€S c€ed
t
= I I T p(c'.c")
L} 1 ”" "
t€S c¢ GCs’t c eCt,u
= I I b p(e")p(e™)
teés c'ec' c'"ec"
s,t t,u
= U, (s,t)U,,(t,u)
tes ¢ €

which implies the assertion. ]

2.7 Distinguished kermnels on S.

2.7.1 Let C:=T(o). Then

o * ==
N™ = UF(O)
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is the unit kermnel on S.
2.7.2 Let C:=T(1). Then

N1

=z
]

= Ur(ny

denotes the kernel

(s,t) ’*N(S,t) =

{'P([s,t]) if d(s,t) =1

0 . otherwise
2.7.3 Let C:= T(2). Then

N := N:-N = UF(Z)

is the kernel

(s,t) »N2(s,t)

L p(c)
cePs,t(Z)

£ p([s,u ]D)'p(Lu,t]) if d(s,t)e{o,2}
{u€s:d(s,u)=d(u,t)=1} '

0 otherwise
@Very path of .length 2 can be uniquely written as the product: of -two anm.}

More generally, putting

n
N := UF(n)

for all n>2, an induction argument shows that

with Ni :=N for all i=1,...,n.

2.7.4 Let C: =T. Then

Up(s,t) = I p(e)

cer’t

for all s,t €S. We define
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to be the Green kermel on S corresponding to p.

Since T= é;iF(n) is a pairwise disjoint union and

P is positive, one obtains
n
G = X N .
nzo

By General Assumption 2.2 and the connectivity of the tree S we
conclude that G is positive and finite. Moreover one has the equali-

ties
G =I+N‘G =1+G-N.

2.7.5 Let C:= K:= {ce€l:a(c) =B(c)}. The kernel

will be of special importance.

Similarly the kernel

for Az ={c= [so,...,sn] : n>o, si#sn for all i=1,...,n-1}.

Since S is connected, the sets As ¢ are nonempty for all s,t €S5S,
?

and hence F is positive.
Now we shall study properties of the kernels G and F.

2.8 Proposition. For all s,t €8S,

G(s,t) = I(s,t) +F(s,t) G(t,t).

Proof: Every path ¢ = [so,...,sn] of length n>0 can be written as

a product ¢ ey with <, € A and ¢y € K; one just puts



Sem. on Probab.
Vol .56 1988
P1-120 2.7

with

k : = min {2:152<n, 52=Sn}'

Then the discussion in 2.6 yields that

€=Up =Ur(5) *Urir (o)
=1 +F.L,

and since

L(s,t) = I p(ec) =86 *G(s,s),

c€K s,t
s,t

we obtain

F'L(s,t) = T F(s,s'")L(s',t)

s'€S
F(s,t) G(t,t)

whenever s,t € S. d

2.9 Proposition. For pairwise different vertices s,s' and t of §

such that t€c(s,s') one has
F(s,s') = F(s,t) F(t,s"').

Proof. For all c €A and c' €A . We set
—_— s,t t,s

$(c,c') s =c-c'.

If we have shown that ¢ is a bijection from As tXAt g1 onto AS s
b 9

the chain of equalities

F(s,s') z p(c™)
c"eA '
s,s

"
™

r plc-c")

]
™

I p(e)p(e")
- 1
ceAS’t c eAt’s,
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= F(s,t).F(t,s")
yields the assertion.

1. Let CGAS c'GAt gt If s'éc then by definition
b

,t?

' = [} 1 = :
¢(c,c') = c.c eAs,s" For s'€c we have c cyCy with clers,s’ and

€T By Theorem 1.6 (ii) every path joining s and s' contains

€2

the vertices of c(s,s'). In particular, <y contains t. Hence ceAS

implies cy = [;1 and t = s' contradicting the hypothesis t % s'.

s',t’

,t

2. Now let c: =Eso""’sn]€As,s" Again by Theorem 1.6 (ii), c3 t.

Consider ¢ =c,-c,, such that B(c1) = a(c

1°¢9 ) = s with k := min{f:0<8<n,

k

sy =t} . Then c=c,-c, with c1€/\5’t by the very choice of B(c1) and

c, €N , Since c¢c €A ,- The product representation is unique. ]
27 t,s S,S

2.10 Theorem. For all s,s'€S and a vertex t of c(s,s"'),

G(s,s') = G(s,t)-G(t,t) '-G(t,s').

Proof. For t=s or t=s' or s=s' the formula is obviously true. Let there-
fore s,s' and t be pairwise different vertices. From Proposition 2.8

we infer the formulae

(a) G(s,s') = F(s,s")-G(s',s"),
(b) G(s,t) = F(s,t) - G(t,t)
and

(c) G(t,s') = F(t,s')"G(s',s") .

Proposition 2.9 provides us with the formula

(d4) F(s,s') = F(s,t)-F(t,s"')
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which yields the assertion. _|

Let U be a kernel on S. U can be viewed as an operator on the space

?(S,IR+) of numerical functions h on S via

Uh:= I U(C-,t)"h(t) .
t€s

Clearly

Ih =h
and
(U-V)h = U(Vh)

for all h € ?(S,ﬁ+) . In particular,

Nh

g p([ -,t Dn(e)
{tes:d(-,t)=1}

[}

Ph.

2.11 Definition. For every v €‘?(S,i§+) the function Gv is called the

potential of v.

2.12 Theorem (Riesz decomposition). For any function g 6<;(S,IR+) the
following statements are equivalent:

(i) g is superharmonic .

(ii) There exist a function VG‘?(S,IR+) and a harmonic function

h € ?(S,R+) such that
g = Gv +h
holds.
The decomposition in (ii) is unique.

Proof. 1. (i) => (ii). From G = I+N.G we conclude that AG = N.G-G=-1I.

Hence the representation g = Gv+h implies -Ag=v if h is harmonic,
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i.e. such that Ah = o. This shows already the uniquenes part of
(ii). To prove the existence we note that v := -Ag is 20 if g is

superharmonic.
Setting h := g-Gv we arrive at
Ah = Ag+A.Gv = Ag+v = o.
From g = v+Ng we obtain by induction that

n i n+1
g = L N v+N g.

for all nzo. Thus

2. (ii) => (i). If g = Gv+h is given with v2o0 and harmonic h then g

is in fact superharmonic, since Ag = A.Gv = =-vso. |
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§ 3 The natural compactification

In classical potential theory one studies the boundary 3ID of the
open unit disc ID in T as the natural compactification of I . To
every point z of 3ID there is attached a radius starting from the
centre 0 of I which is the geodesic between o and z. We
are going to develop a similar idea for a tree by using geodesics
starting from a fixed vertex. The space of all such geodesics will

serve as a boundary of the tree.

Given an infinite, locally finite tree S we want to use the space
Zo of all infinite chains starting at o in order to construct a com-

pactification of S.
For every n2o let
Sn : = {s€S :d(o,s) =n} .
In particular we get
S, = {o}.

3.1 Observation. For every geodesic

c(o,s) : = [so,...,sn]

with s GSn for n2o0 there exists exactly one vertex s' GSn_1 such

that d(s',s) = 1.

E Clearly s €Sy for all k=o0,...,n by Theorem 1.6 and the properties

k

of the metric d. In particular s 4 €8 and d(sn

1 n-1 3) = 1. Now let

-1?

t €S with ¢t # Sh and d(t,s) =1. Again by Theorem 1.6, the path

-1

c: = [so,...,sn,t] equals c(o,t), since Si_4 #si+1' for i=1,...,n-1

and t#sn by assumption. Thus t GSn and the choice of s' is unique.

-1 +1?
We write wn(s) instead of s' and note that in any representation of

c(s,0) as a product of n arcs, [s,ﬂn(s)] is the first one.
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3.2 Definition of a projective system.

Consider the chain

T Ty T3 T-1 Ta Ta+1
S <= S <— S.<— ...<— S8 _<— S <— ...
o 1 2 n-1 n

. -1 . .. .
For every n21 and any choice of s esn the set nt1(s) is finite, since

-1

the tree S is assumed to be locally finite. Consequently all sets Sn

are finite (n2o0). Moreover, all sets Sn are nonempty (n2o0), since

the disjoint union S =é;£8n is an infinite set by hypothesis
and Sn =¢ for some n21 would imply, by definition of LI that
Sn+1 =0.

3.3 Definition of the projective limit

lim S_:
. n
= {w = [so,...,sn,...] i s €S for all n2o,
T (s ) = s for all n2t1} .
n n n-1
Obviously

lim§ =1 .
<. n o

In order to render the theory independent of the starting point o

we relate the space Zo to the space B of ends of S.

3.4 Proposition. The mapping o B-*Zo defined by

(b)) : = w(o,b)
for all b €B 1is a bijection.

Proof. From the definition of the geodesic w(o,b) as an infinite chain
with starting point o we infer that w(o,b) GEO. Let b1,52 €B and
J(b,) =:3"(b2)? i.e. b,3w(o,b,), bydw(o,b,) and w(o,b,) = w(o,b,).

Then b1=b2, since two equivalence classes are either equal or disjoint.
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Thus Ny is injective.
Let now

w = Eso,...,sn,... 1 € Zo

Then there exists a b €B with w €b. From Theorem 1.14 we conclude
w'= w(o,b), which implies that fT(b) = w, and hence that A 1is

surjective. |

3.5 Extension of the bijection <~ from B to S : = SuB.

Let 0 €S remain fixed. We define for every n2o the set
. n |
S(n) : = Us. -
i=o '

Then

S = kJ S(n)

no

such that S(n) is finite #@ for every n2o.

For all n21 we introduce the mappings m(n) : S(n)>S(n-1) by

T _(s) if s €S
m(n)(s) : = SL n n
s if s €S(n-1).

In this way we obtain a projective system

m(1) m(2) T (n-1) T (n)
S(o) <— S(1)<— S(2)<— ... <= S(n-1) <— S(n)<— ...

with projective limit

*
P

z lim S(n)
<

Kso,...,sn,...): S, €S(n) for all n2o,

m(n)(s ) =s for all nz21} .
n n-1

A

. 3* * . .
The mapping - : S+~Z° will be defined by

.

S*x) ;= {j (so,s1,...,sn,sn,sn,...) if x€S, c(oyx)= [so,...,sn]

S 43S ,50+455 4,8
( R >“n’ “n+1

see.) 1f x€B, w(o,x)=[s°“..,s

n

9.
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In the sequel we shall extend the symbol w(o,x) to geodesics from

O0€S to any x€5.

*
3.6 Proposition. The mapping by is bijective, and

ResB:f‘* = 3’

* o .. -
Proof. The fact that ResB 3 =J is clear by definition; the bijectivity
%
of ResB:S follows from Poposition 3.4. It remains to be shown that

also

* *
J IS :S-*ZO\ Zo
* %
is bijective. Let s,t €S such that N) (s) = ET (t). Then c(o,s) =c(o,t)

*
i.e. s =t, and this shows the injectivity of J !S’ Now 1let
T
g = (so,...,sn,... ) € Zo NI, -
Then we obtain for all j21 that

S:_4 €S.._1 if s. €8S,
T(i)(s.) = ] J ' J J
] s, if stS(j—1) .
. *
Since O€L NI , there exists an n€Z,6 with s.€S. for all
o "o + i773
j=0o,...,n and

*
s, for all k>n. Hence o==3 (sn), and the sur-

Sy =
. .o s *
jectivity of by} ! has been proved.~J

S

3.7 Orientation of an arc

3.7.1 for a fixed vertex.

Let s be a fixed vertex of a tree S. We define
Gs(t,t') :=d(t,s) — d(t',s)
for all t, t' €S. Then for t,t' €S satisfying d(t,t') =1 we get
§ (t,e') € {-'1,1} .

[ Clearly Gs(t,t') a—GS(t',t). Without loss of generality we suppose
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that t#s and t'#s. But then
6, (e,e™)] = [a(e,s) - d(e',s)| sd(e,e') =1,
whence Gs(t,t') €{-1,0,1}. Now we assume that Gs(t,t') =0, 1i.e.
d(t,s) = d(t',s). Let
c(s,t) = [so,...,sn ]
for some n21. Since d(t',t) = 1, we have either
r S s sS4 7 = c(s,t') (in the case of t' =5 )

or

['s yeeess ,t" ] = c(s,t') (if t' # s, )

- 0 n -1

this is implied by Theorem 1.6 (iii). But in both cases the fact that

n =d(s,t) # d(s,t') €{n-1,n+1} ,

yields a contradiction. Thus Ss(t,t’) = o cannot be true, and the as-

sertion has been established. ]
Notation. If t,t' €S with d(t,t') =1 and if
Gs(t,t') =1

we will say that the arc [t,t'] points in the direction of (or

towards) s.

Since 6s(t,t') = -Gs(t',t), exactly one of the arcs [t,t'] and

[ t',t ] points towards s.

The set of all arcs in S which point toward s will be called an
orientation on the tree S, more precisely the orientation towards the

centre s.

3.7.2 for a fixed end.

Let b be a fixed end, and let
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w(s,b) = [so,...,sn,... ]

and

w(s',b) = [s;,...,s;,... ]

the geodesic from s and s' respectively to b. Then there exist numbers

p,9 €N with

s o= 8'
p+] q+]

for all j2o such that the vertices so,...,sp,sc'),...,sc'l_1 are pair-
wise different; see Application 1.12. Now we define

! « = -
ch(s,S ) :=p-gq

for all s,s' €S. Then for s,s' €S satisfying d(s,s') = 1 we get

db(s,s') e{-1,11}.

[ Evidently Gb(s,s') = -Gb(s',s). The inequality

|6, (s,s")|= |p-a] Sptq = d(s,s"') =1
implies that db(s,s') €{-1,0,1}. Since Gb(s,s') = p-q = p+q(2),
we have Gb(s,s') = +1, :l

Notation. If s,s' €S with d(s,s') =1 and if
Gb(s,s') =1,
then p=1 and q=o0, whence

[51{...,sn,... ]

[so,...,sn,... ] .

w(s',b)

if w(s,b)
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In this case we will say that the arc [s,s'] points in the direction

of (or towards) b .

Since Gb(s,s') =—6b(s',s), exactly one of the arcs [s,s'] and .

[s',s] points towards b.

The set of all arcs in S which point towards b defines the orienta-
tion towards the centre b.
Let é’denote the topology on S generated by the system
{U(s,t) :s,t €S with d(s,t) =11}

of sets

U(s,t) : = {x €S : Sx(s,t) =11}.

3.8 Proposition. For each n2o and every s €Sn let

Vn(s) := {x €5 : w(o,x)d s} .

The system consisting of these sets Vn(s) and their complements

generates the topology 6’on 5.

Proof. (i) Since for any s,t €S with d(s,t) = 1 we have either
do(s,t) =1 or =-1 and since
U(t,s) = {x€8 : 6 (t,s) = 1}
= {x€§ : Gx(s,t) = -1}

S\ {x€§ : Gx(s,t) = 1}

SN U(s,t) ,

the topology E{is generated by the system of sets U(s,t) and U(t,s)

= §~\ U(s,t) where [s,t] runs through the set of arcs with Go(s,t)=1.

(ii) The sets Vn(s) with s esn, nzo, enjoy the following properties:
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(a) VQ(O) =5
(b) Vn(s) = {xes :5X(ﬂn(s),s) =11}
= U(m (s),s)
n
(c) S\Vn(s) = S\U(”-Tn(s),s)
= U(s,m_(s)),
where the latter equality has been established in (i).
(iii) Let conversely s,s'€S be given with 50(3,3') = 1. Then there

exists an n21 satisfying s GSn and s' =ﬂn(s), and

U(s,s') = SNV (s),
n
whence

S\ U(s,s') = Vn(s)..J

In order to obtain useful properties of the topological space (3,&)
we first study the topological space (Z:,O*), where the topology(j*
is induced from the product topology of the space E S(n) (the finite
sets S(n) carrying the discrete topology). By well-izgwn facts from

general topology (ZZ,Cﬁ) is easily seen to be a compact, totally dis-

connected, metrizable space.

.. .. . ® .
3.9 Proposition. The bijection 3" is a homeomorphism between the to-

A A * *
pological spaces (S,®) and (Zo O ).

P * .. . .
Proof. By Proposition 3.6,3 is bijective. It remains to be proved
. * . * - .
that the mappings 3 and ¢:==3 ! are continuous.

-

1. We show that ¢ is continuous. Let n2o , s GSn and c¢ (o,s) =[So,-u,Sn;

Then

5" ()
= % ((xes :w(o,x)3ds})
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= *' =
{(to,...,tn,...) € zo Pt s},

*
The set M: = 3‘(Vn(s)) is open and closed in Zg , since

M= t*xn M'
o
where
n-1
M':= (T S(m))x {slx (I S(m))
m=0 m>n .

is open and closed in I S(n). Thus for n2zo and s €Sn we have that
nzo

o TV (s)) =T (v (s)) = u
n n
is open in Zg and that
o TNV (s)) = KGNV (s)) = 1A\ M
n n o

is open in Zg , since M is also closed in Zg . By Proposition 3.8

* -1 . .
¢==3 is therefore continuous.

2. We show that S is a Hausdorff space.

2a. Let s,s'€S, s#s' and let c(s,s') = [so,...,sn] . Then n21,
' =8

s €U(s1,so) and s €U(so,s1) S\ U(s1,so).

2b. Let b,b'€B, b#b'. Then there exist s1,32€S1 with

Gb(o,s1) = db,(o,sz) = 1

If s, #s then bGV1(s1), b'eV1(s2), and

2’
V,(s )NV, (5,) =0

Let s1

vertices, there exists by 1.13 an s GSn for n>1 such that w(o,b)d s

=s,. Since w(o,b) and w(o,b') admit only finitely many common
and w(o,b')# s. But then b €Vn(s) and b'esx Vn(s).

2c. Let s esn for n2o0 and b € B.

Let b €U(s,nn(s)). Then s € U(ﬂn(s),s) =S\ U(s,ﬂn(s)).

Now let b €U(nn(s),s). Put
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W(nn(s),b) = [30’31’52"“]'

Then s, = ﬂn(s), sy = s. Hence seU(sz,s) and beU(s,sz) = S\U(sz,s).
The assertion follows.
* -
3. We show the continuity of AT By 1. ¢ is continuous, by 2. S is
*

Hausdorff, and we have seen that Zo is compact. Moreover by Propo-

sition 3.6 ¢ is bijective. We conclude that ¢ is a homeomorphism and
* -

so S = ¢ ! is continuous. _|

3.10 Theorem.

(i) (s,0) is a compact, totally disconnected, metrizable space which
contains (S,WZ(S)) as an open dense subspace.

.. . 3~* .
(ii) The mappings S and are homeomorphisms from the closed

*
subspace Band S onto the projective limits Zo and Zo respectively.

From (i) follows that (S,0) is a compactification of (S,WL(S)).

- oA

Proof. We have already shown that (S,0) is a compact, totally discon-

nected, metrizable sbace.

1. We show that S is open in S. Let s€S be fixed. For every t€S with
d(s,t) = 1 we have Gs(t,s) =1, i.e. s€U(t,s). Let s'€S, s'#s and put
c(s,s') := [go,.. .,sn].

Clearly s'$U(s1,s). For an arbitrary b€B with

w(s,b) = [s(;,...,st'1 e oo]

we have b$U(s;,s). Thus

r‘]{U(t,s) : t€S with d(t,s) = 1} = {s}.

-

1} is finite and U(t,s) is open in S (by

Since the set {t€S : d(s,t)
definition of &), {s} is open in S, and hence also S = L.){S} is

- - s€S
open in S. In particular @ induces on S the discrete topology, and
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-~ -~

B = S\ S is closed in S.
2. The following fact will be applied in the course of the proof:

Let bEB and let

w(o,b) = [§O,...,sn,...].

The sequence (Vn(sn))n forms a basis of open neighborhoods of b

20

with
Vn+1(sn+1)c'vn(sn)
for all nzo.
In fact,
S5 ) = (s heinns_yen)
and

~ %
Vn(sn) = {x€S : s, is the n-th component of J (x)}.

This already implies the assertion if one utilizes Proposition 3.9;

one just has to realize that the sequence of sets
£ ) ez b (azo)
B seeesl sens o Pt T s, nzo

*
is a basis of open neighborhoods of (so,...,sn,...) € Eo

3. We are left to showing that S is dense in S. Let b€B and let
w(o,b) = Eso,...,sn,...].

Part 2 of this proof implies that (Vn(sn))n is a basis of open

20

neighborhoods of b. Let n2o be arbitrarily given. Then.s €V (s ), i.e.
n n n
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SnVn(sn) # ¢ for all nzo. Hence BC S and by definition of S = By S,

S = s.

* -
4. From Proposition 3.9 we know that ¥ is a homeomorphism from S

*
onto Zo. Moreover, Propositions 3.4 and 3.6 imply that also Jis a

homeomorphism. This completes the proof of the theorem. __|
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§ 4 The Martin representation of nonnegative

harmonic functions

The aim of this section is to establish the fact that the
space S attached to a given infinite, locally finite tree S
is a Martin compactification Y in the sense of the following

two properties:

(M 1) Y is a compact, metrizable space which contains S as a

dense open subspace.

M2) Y is a -compactification of S for the system ‘€ of

continuous functions

G(s,t)

t T SkLn

on S (s € S) in the sense that each such function extends

to Y and the system of extensions separates the points of Y .

.1 Proposition. Let s€S and c([o,s]) =3 [so,...,sn]. Then

the sets

S. := {x€s : stW(S,X), SjeW(O’X)}

-~

(j=0,...,n) are open and constitute a partition of S;
t€S belongs to Sj iff d(%,t)<d(sk,t) for all k=o0,...,n with k#j.

Tor tesj we have

G(s,t) _ G(S’Sj)
G(o,t) G(o,sj)

®roof. Put a, := [s. ,s.] for all i=1,...,n. Then
—— 1 1-1’71

-

S. = {x€S : The arcs a,,...,a
j 1

50 aj+1,...,an point

in the direction of x}

(j=0,...,n).
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1. {go,...,gn} is a partition of S
Let x € S .
1st- case: x € S . Given s and o there exists, by Properties 1.9.4,
a t € S such that |

c(s,0) = c(s,t) * c(t,o) ,

c(s,x) = c(s,t) - c(t,x) ,

c(o,x) = c(o,t) - c(t,x) ,
and these geodesics have t as theironly common vertex. Thus there
is exactly one j € {o,...,n} such that t = 55 and x € §j .
2nd case: x € B . Then Theorem 1.14 shows that there exists

exactly one vertex Sj of c¢(s,0) which is common to w(o,x) and

w(s,x). This means that x € §j .

2. The sets §j are open in S (j = 0,00.,0) .
Let x € §j . Then the arcs a1,...,aj,a§+1,...,a; point in the

direction of x . Putting

j n
v ([ U, s0a OV UGs s )

i=j+1 i-1

we see that x €U C §j , and thus Sj is open in S by the very

definition of & .

3. Let t € Sc1§j for j € {o,...,n} . By construction of §j we

obtain that

d(sj,t)< d(sk,t) for all k =o0,...,n, k # 3 .

3

Applying Theorem 2.10 we get for s sj and t the equation

-1

G(s,t) = G(s,sj) . G(sj,sj) . G(sj,t) ,
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and for o,sj and t,
-1
G(o,t) = G(o,s.)*G(s.,s. +G(s.,t
(o,t) (,J) (J,J) (J,)
which obviously implies the assertion. _|

4.2 Proposition. For every s€S there exists exactly one continuous,

strictly positive function KS o On S with the property that
b

_ G(S,’)
ResS Ks,o G(o, )"

Proof. We define KS o'by

9’
G(s,sj)
Ks,o(X) = G(o,s.)
J
for all xesj,'j=o,...,n. From Proposition 4.1 we infer that
KS o is in fact well-defined. Then, again by Proposition 4.1,

_ G(s,t)
Ks,o(t) ~ G(o,t)

for all t€S. Moreover K (x)>0 by 2.7.4. Clearly Res. K
5,0 g. 850

. . J -~
is constant for all j=o,...,n by definition and continuous on S

by Proposition 4.1.

The uniqueness of KS o is clear, since continuous functions
9

which agree on the dense subset S of S are necessarily equal. One

just notes that the set of points where two continuous functions

with values in a Hausdorff space are equal is closed. 1
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Proposition 4.2 enables us to make the following

4.3 Definition. The positive function K on SxS defined by

K(s,x) := KS,O(X)

for all (s,x) € ng is called the Martin kernel (w.r.t. o).
4.4 Properties.

4.4.1 X(o,x) =1 for all xeg.

4.4.2 TFor every s€S the function K(s,-) is continuous.

4.4.3 For all s,x€S

G(s,x)

K(s,x) = -G—(-B——x—)-.

4.4.4 TFor all b€B the function K(<,b) is harmonic on S.
Proofs. Properties 4.4.2 and 4.4.3 follow directly from Proposition
4.2,

Next we observe that

K(o,x) = Ky (%) = G(o,x)-G(0,x) " = 1

whenever x€S. From S = S together with Property 4.4.2 we obtain that
K(o,x) =1

for all x€S, which proves Property 4.4.1.
It remains to establish Property 4.4.4. Let b€B, s€S and
c(o,s) = [§o,...,sn1. We have to show that

K(s,b) = z N(s,t) K(t,b)
{tes:d(s,t)=1}

-~

holds. By Proposition 4.1 there exists a j€{o,...,n} with besj,
and by the proof of Proposition 4.2 we get

G(s,sj) G(s,x)
- 6,5 ) T Glo,x)

K(s,b)

for some xesjn S with d(sj,x)zZ. Thus d(x,s)22 by definition of Sj

and
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K(t,b) =

G(t,x)
G(o,x)

for all t€S with d(s,t) =

G(s,x)

hence

K(s,b)

N.G(s,x)

t€S

z

1.

We now apply 2.7.4 in order to get

I N(s,t).G(t,x),

t€s

G(s,x).G(O,X)—1

I N(s,t).G(t,x).G(o,x)

N(s,t).G(t,x).G(o,x)

{tes:d(s,t)=1}

)

N(s,t).R(t,B),

{t€s:d(s,t)=1}

as was to be shown. _|

4.5 Proposition.

there is a c'€I\T (o) such that c.c'€C.

Then for any superharmonic function h€ ?’(S,H&),

U

C
Proof.
C
n
and
C'
n

as well as

and

Ul
n

We also set
T

Since

<h.

n
:= Cn (.U INGDD!

j=o

For every n2o we introduce the sets

Let CcT have the following property:

1

For no c€C

i = Cnu{cer(n): There exists a c'€I~T(o) with c.c'€C}

= UC
n
i = UC"
n
:= {s€s:
1
(s,t) :=
0

if s=t and [SIGC;

There exists a c€C with a{c)

otherwise
if s=t and s€T

otherwise,

.s}t.
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we obtain that

h(s) if s€T

Uéh(s) = I Ué(s,t)‘h(t) ={

t .
€s o otherwise.

Consequently
(1) Uéhsh,

since h was assumed to be nonnegative.

Let n€IN. For all c€l we put
q(e) := p(c)-h(t),

where t:=8(c). Then for every subset & of {[p,s]:d(s,t)=1} (where

t := B(c) is fixed) we obtain the following chain of inequalities:

I q(c-a) = T plc-a)h(B(a))
atx a€f
= p(c) £ p(a)-h(B(a)) (by 2.2)
a€fh
= p(c) ¢ p([t,s])-h(s)
{ses:d(t,s)=1 and [t,s]ef}
(2)
s ple) £ p(ft,s])-h(s)

{ses:d(t,s)=1}
= p(c)-Nh(t)
< p(e)-h(t)

= q(c) (since h is superharmonic).

Now let c€C'
n+

/

1 Cn, i.e. 2 (c) = n+1 and either c€C or céC but

there exists a c' with c-c'€C. In the first case c can be written

as c¢'.a with 2(a) = 1 and c'€C by assumption on C. The definition
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1 3 1 1 1
of Cn yields ¢ €Cn\ Cn. In the second case c€Cn+1\ C and by

n+1’

definition of C' and C' there are c¢c"€C'\NC and a€l (1) such that
n+ n n n

1

¢ = c".,a. The discussion of both cases shows that every path

c€C' N C_ can be represehnted as c'-a with c'€C'\NC_ and a€l(1).
n+1 n n n

For each s€S we put
C(s) := {cec : a(ec) = s}.
Then (2) implies that

(3) T q(c) < T q(e)
cec(s)r\(c;+1\ cn) c€C(s)n (CQ\ cn)

holds for all se€S.

We also have

U;h(s)

[}

£ Ul (s,t)-h(t)
t€s

= I z p(c)-h(t)

1
t€s ce(cn)s,t

= I I q(c)

)
t€s Ce(Cn)s,t

= I q(c)
CGC&O C(s)

valid for all s€S, which together with (3) implies

U' .h(s) = £ q(c)
n+i ceC!, a C(s)
= I q(ec) + z q(c)

cGCnF\C(S) c€(C;+1\ Cn)n C(s)
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(4) s I q(c) + z q(c)
cecnq C(s) ce(C&\ Cn)n C(s)
= I , q(c)
cGCnn C(s)
= U'h(s)
n

whenever n2o. Moreover, for every n2o and s€S we have

U h(s) = & - p(c)-h(t)
n t€sS c€e(C)
n’s,t
(5) < z p(e)-h(t)

1
t€s Ce(cn)s,t

U'h(s),
n

since CH:C; and h2o, and also
<
(6) Unh(s) < Ln+1h(s),

since C C C and hzo.
n n+1

Taking all information available together we obtain

h 2U'h2U'h 2 ¢ 2U'h 2U0' ,h 2 «--
o 1 ~ "n T n+1
(1 (4) (4)
N (5)
Uh UM< oo <UhSU hs - o
(6) (6)

From Cn+ C as n»>» we conclude that

Uh = 1lim U_h.
c pow D
The sequence (U;h(s))n>° is decreasing and bounded, whence

3 |
lim Unh(s)

n->-o
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exists for all s€S. And since U;thnh for all n2o, the final

assertion follows from

h(s) 2 Uéh(s)
D)

w

1im U'h(s)
n

n->«o

w

lim U h(s)
n

n->o

Uch(s)

where s€S. _|
4.6 Proposition. Let h be a superharmonic function € T(s,m4) and
let T be a finite subset of S. Then there exists exactly one function

vE ?(S,]R_F) such that

and

ResT Gv

ResTh.
Proof. We consider the sets

r(T) := {c€l : a(c), B(c)ET},
n(T) := {c=[§o,...,snIGF(T)\F(o): no intermediate vertex

of ¢ belongs to T}

and
[1] := {[s]er(o):ser}

as well as the corresponding kernels GT t= UF(T)’ NT HES UH(T)

and IT 1= UITI. By definition of the kermnels GT and I, we get

T

G(s,t) if (s,t)ETxT
GT(s,t) = {

o otherwise
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I(s,t) if (s,t)€TxT
IT(s,t) =
o otherwise.

Every path CGF(T)\[T] can be represented as the unique product
c=c'+c" with c'€r(T) and c"€N(T); one just chooses B(c') = a(c™)
as that vertex of c in which ¢ hits T for the last but one time.
Conversely, every path of this form belongs to F(T)\[T]. Now we

infer from 2.6 that

1t = Ureonr) * V)

(1) = G_-N_ + 1T

Putting v := ITh - NTh we obtain a function v von S
satisfying
h(s) - N_h(s) if s€T
T
v(s) =
o otherweise.
Here one notes that NTh<w.
a) We show that v is nonnegative.
I(T) does not contain two different paths of the form ¢ and c-c',
since otherwise there would exist an intermediate point in T. But
then Proposition 4.5 implies NThéh and hence v(s) = h(s) - NTh(s)zo

for all se€T.

b) From I_h = v+NTh and GT = G.,+I_, we conclude that

T T T
GTh = GT-ITh = GT (ITh)
(2) = G (v+NTh)
= G,v+5_-.N_h
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But by (1) we have

(3) GTh = ITh+GT°NTh.

= o, whence GTh(s) = o for all s€S\T

T is finite and ReSC(TXT) GT

and for s€T

"

I G,(s,t)-h(t)

G, h(s)
T t€es T

h GT(s,t)'h(t)
teT

I G(s,t)-h(t)<e
t€eT

We note that the functions on the right sides of the equations (2)
and (3) are also finite (and nonnegative). Subtraction of (3) from

(2) yields

(4) G.v = I_h.

Finally we get for all s€T

Gv(s)

I G(s,t)-v(t)
t€S

L G(s,t)-v(t)
terT

GTv(s)
and therefore

h(s) = ITh(s) = GTv(s) = Gv(s)-

¢) The uniqueness of v follows from the subsequent Lemma. In fact
every function w on S having the properties of v is necessarily of

the form
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w = Ih - Nih. |

4.7 Lemma. The function v is uniquely determined by the two

properties

(a) v(s) = o for s€S T and

(b) Gv(s) h(s) for s€T

provided T is finite (and h arbitrary).

Proof. For s€T we have h(s) = ITh(s) and Gv(s) = GTV(S).

Hence ITh = GTV. Since

(IT'NT).GT = GT - NT.GT = IT,

which follows from I.G_, = G_ and G, = I + N_.G we obtain

T’

for s€T that

v(s) = ITv(s) (1 -NT)-GTV(S)

T

(1,.-N

T T).ITh(s)

= ITh(s)-NTh(s).

Note that, conversely, the function v := ITh - NTh satisfies

properties (a) and (b). _I

4.8 Preparation: Measures on 20.

In 3.3 we introduced the space

I =1

o m S _,

i n
>
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and in Theorem 3.10 we showed that the closed subspace B of S 1is
homeomorphic to Zo.

-

4.8.1 The topology induced from S on B is generated by the system

{B , BAB : ne€zZ

s€s }
n,s n,s +’ n

of sets

B := {b€B:w(o,b)?s}
n,s

and their complements in B, as follows from Proposition 3.8.

4.8.2 The topology of ZO ist generated by the system

{An’s : nezZ,, sGSn}
of sets
n-1
A := (I S x {s} x T g )nZ .
n,s m m o
m=o0 m>n

4.8.3 For nez,, s€s_ and c(o,s) := [s ,...,sn] we obtain

o

An,s = ({so}x{s1}X---X{sn}x I Sm)nzo,
m>n

whence

whenever n,m€Z+. Thus the system

{An,s : nez,, sesn}
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is a basis of the topology of Zo,

for all ne€zZ , SGSn, and every open subset of Zo is a pairwise
disjoint union of basic sets. This last fact implies that any
(Borel) measure on Zo is determined by its values at basic sets.
4.8.4 Let {i be a measure on Zo. Then for every nez+ we

define a measure q, on Sn by

qn(s) 1= i (An s) for sesn.

’

The sequence (qn)n of measures q, on S_ is consistent in the sense

20

that the following property (C) holds:

For n€Z and s€S
+ n

c qn(S) = z qn+1(s') s
{S'GSn+1:d(s,s')=1}
since qn(s) = T (qn+1)(S)

-1
= qn+1 (“n+1(s))
( {s'H .
{s'eSn 1:d(s,s')=1}

= qn+1

+

Moreover it is well-known that any measure on Zo is uniquely
determined by a consistent sequence.
The relationship between measures p on B and sequences

(qn)n2° can be formalized via the equalities



Sem. on Probab.
Vol .56 1988
P1-120 4.15

~
]
=
13
|
~
g
=]
~
~

w(B_

n
—
=
~
~~
>

o]
-

qn(s)

valid for all nez+, s€Sn.

We are now prepafed for the vroof of the integral representation
of nonnegative harmonic functions.
4.9 Theorem. Let o be a fixed vertex of the tree S. For every non-
negative harmonic function h on S there exists exactly one measure

uh HE uz on B such that

h(s) = S K(s,x) u'(dx)
B
for all se€S.
Proof. 1. Uniqueness. Let u be a measure on B and let (qn)n>o be

the corresponding consistent sequence. We .consider the function
s + g(s) := JR(s,x)u(dx)
B

on S. Let n€Z+ and s€S(n). If tGSn and bGBn ¢ then Ww(o,b) and

b

w(s,b) contain t. There exists exactly one vertex s, common to
c(o,t), c(s,t) and c(o,s). But then the definition of the kermel K

implies that

K(s,b) = G(s,§1)'G(o,s1)—1

1

G(s,t)G(o,t)

which means that the function
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b + K(s,b)

is constant on the set Bn . for all s€S(n), and thus

’

g(s) = J K(s,x)u(dx)
B
= I s K(s,x)u(dx)
t€S B
n ,t
1)
= I G(s,t)-G(o,t)-1u(Bn’t)

t€sS
n

1

T G(s,t):q (t):G(o,t)
ces_ n

for all s€S(n), the latter equality resulting from
4.8.4. Applying Proposition 4.6 to the set T := S(n) we obtain

the existence of exactly one function vne ?(S;R+) such that
vn(s) = o for all s¢s(n)

and
Gvn(s)= h(s) for all s€S(mn).

Since every vertex in S(n-1) is joined only with vertices of

S(n), we get for all s€S(n-1),

"

- vn(s) N-Gvn(s) - Gvn(S)

[}

N:Gv (s) - h(s)
. n

b N(s,t)h(t) - h(s)
{tes:d(s,t)=1}

Ah(s),
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and since h is assumed to be harmonic, we conclude that

which implies

Gv (s) = I G(s,t)-v_(t)
n tEes n
= I G(s,t)-v_(t)
tes n
n
or
(2) h(s) = g G(s,t)'vn(t)

t€s
n

for all s€S(n).

Equations (1) and (2) show that the equality g = h holds iff

I G(s,t)ev () = I G(s,t)[q (£)-G(o,t) "]
n n
tesn tGSn

for all s€S(n) (n2o0). Thus we have
(3) qn(t) = Vn(t)'G(o,t)

for all n2o and tESn. Since by Lemma 4.7 v is determined by its values
on Sn’ Preparation 4.8 .4 assures that the representing measure u on B
is unique.

2. Existence. Reconsider the sequence (qn)n>o of functions
t> qn(t) 1= G(o,t)vn(t)

on Sn’ n2o, introduced in part 1. of this proof. It suffices to

show that this sequence (qn)n>o is consistent in the sense that
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1,(8) = : Qpeq (1)
{t'es :d(t,t')=1}
n+1

holds for all cesn, nzo.

For n2o and t€Sn we put

wn
|

{t'esn 1:d(t,t') = 1}

n,t +

and for n2o we define the function q : Sn+ IR+ by

q(t)

L}
™
Qo

for all cesn. Then from Propositon 4.1 we see that

(4)  G(s,t")C(o,t") '=G(s,t)-G(o,t)

whenever tesn, s€S(n) and t'GSn e But then we obtain for all
’

s€S(n) the following chain of equalities:

1

I G(s,t)(q(t)-G(o,t) )
t€es
n
= I G(s,t)( I qn+1(t')G(o,t)-1)
t€e€s t'€es
n n,t
- I oq,,(£)-6(s,t)-Clo,t) "
tésS t'es
n n,t
= I g qn+1(t')-G(s,t')°G(o,t')-1
t€S_ t'e€es
n n,t
-1
= "y . ). 1 =
t§es G(s,t") qn+1(t )*G(o,t") (since @, sn,t S 41

teés
n
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il

h(s) (by (2) of 1. and S(n)C S(n+1), nzo)

by G(s,t).-v_(t) (by (2) of 1.)
n
t€Sn

Thus by Lemma 4.7
a(£)6lo,t)"" = v_(©)
and so
qn(t) = G(o,t)-vn(t) = q(t)

for all tGSn, nzo.

This means that the sequence (qn) is consistent, and by 4.8.4

nzo

there exists a corresponding measure uh on B. Then from (2) and (1)

we conclude
h(s) = I c(s,t)qn(t>c(o,t)" = SR(s,x)ul(dx)
t€Sn B

for all s€s. |

4.10 Remark. The statement of the preceding theorem generalizes as

follows: For every vertex s' of S there exists a function Ks g1 on S
b

satisfying a restriction condition similar tothat in Proposition 4.2, an
for every nonnegative harmonic function h on S there exists a unique
measure u:, on B satisfying an integral representation analogous to
that of Theorem 4.9.

-

4.11 Definition. For every measure u on S the function

s » Ku(s) := k(s,x)u(dx)

i
S

defined on S is called the Martin potential of u.
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Theorem 4.9 together with the subsequent properties of Martin
potentials will finally yield the fact announced at the beginning

of the section that S is a‘e -compactification.

4.12 Properties.

4.12.1 For every finite measure pu on S, Ky i$ a nonnegative
superharmonic function on S.

[Clearly Kuzo. We put

Lo u(dsh)
v(s) := clo,5)
for all s€S, and v := ResBu. Since S = SuU B we have for all s€S that
Ku(s) =

J K(s,x)u(dx) + f K(s,b)v(db)
S B

= K(s,0)u({t}) + S K(s,b)v(db)

tes B
(*) ‘
= I G(s,t)-v(t) + J K(s,b)v(db) <(by Property 4.4.3)
t€S B
= Gv(s) + [ K(s,b)v(db).
B

For the function

/ K(s,b)v(db)
B

s > g(s)
in ?YS,R+) we obtain via Property 4.4.4 that

Ng(s) = z N(s,t)-g(t)
{tes:d(s,t)=1}

=/( T N(s,t)-K(t,b))v(db)
B {t€S:d(s,t)=1}
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/ K(s,b)v(db)
B

g(s)

for all s€S, which implies that g is harmonic. Thus by Theorem 2.12
_|

Ku is superharmonic.

4.12.2 Conversely, if g is a nonnegative superharmonic function on S,
then there exists exactly one measure p on S such that g = Ku.
[Let g€ ?(SJR+) be superharmonic. There exist a function ve?f(ng+)

and a harmonic function hE€ ?(S,R+) such that

g = Gv + h.

-

This is Theorem 2.12. We define a measure pu on S, elementwise on S by
u({s}) := v(s)-G(o,s)

for all s€S, and globally on B by

where h results from Theorem 4.9. Then from (*#) we conclude that

g = Ku.
Concerning. the uniqueness of u we argue as follows:
Assume that g = Ky and define

u({s}).
G(o,s)

v(s) :=
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Then by (%)

g = Gv + f K(.,b)u(db),
B

and the integral represents a harmonic function.

Furthermore,

S K(.,b)u(db)<=,
B

Gv<®, and v<e. Now Theorem 2.12 implies v = v and

h = f K(.,b)u(db).
B

Hence, by Theorem 4.9, p is uniquely determined on B. This also holds
on S since u({s}) = G(o,s)v(s). One just notes that by Theorem 2.12

v and h are uniquely determined by g. :W

4.12.3 Let the superharmonic function get;(S,R+) admit the Riesz
decomposition g = Gv+h. Then g = Ku iff u is of the form
given in Property 4.12.2. If g=Ku, then u(g) = g(o).

[The first statement is clear; the second one follows by an

application of Property 4.4.1 from

g(0) = Ku(o) = f K(o,x)u(dx) = u(s).]
S

4.12.4 Let g be a superharmonic function in ?F(S,H{+) represented

as the Martin potential g = Ky for a unique measure u on S.

Then g is harmonic iff b(S\B) = 0.

[As was shown above,

g = Gv + [ K(.,b)v(db)
B

is the Riesz-decomposition of g. Hence g is harmonic iff v = o,

i.e. u({s}) = v(s)G(o,s) = o for all se€s. _|
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-

4.13 Theorem. S is a Martin compactification of S.

-~

Proof. 1. That S is a compactification of S has been shown in
Theorem 3.10. Thus (M1) of the definion at the beginning of the
section is fulfilled.

2. In order that g satisfies (M2) of the definition of a Martin
compactification it remains to be shown that the set {K(s,:):s€S}

of functions X(s,*) on S separates the points of S. In fact, for a

-~

given x€S the function K(-:,x) on S is the Martin potential of the

measure ¢ _ .
X

Now let x,y€S, x%y. Then €4 + Ey and by Property 4.12.2,

Kax + Ke_ which means that there is an s€S such that

K(s,x) + K(s,y).

4.14 Notation. In view of the preceding theorem S is called
the Martin compactification of S and the closed subspace

B := S\ S of S is called the Martin boundary of S.
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§ 5 Convergence to the Martin boundary

This section is devoted to the probabilistic interpretation of
the preceding discussion. Given the function p defined in § 2 on
the set T(1) of all arcs in a tree S, we will study the convergence
to the Martin boundary of S of the Markov chain with state space §

and transition matrix

(p([s,e])) g Leg

We shall strengthen General Assumption 2.2 by making the

additional

5.1 Hypothesis that the above matrix is stochastic in the sense of

the equality

L p([s,t]) = 1
{tes:d(s,t)=1}

valid for all s€S.

5.2 Construction of the Markov chain
z, z,
Consider the product set S , the product o-algebra Ol with

Z
O:= Tl(s) and for every n€Z ,the n-th projection Yn = 5 T+ s,

Then there exists a probability measure P on the measurable space

Z

(s +} a +) such that the sequence (Y )nez forms a Markov chain
+

o Z, 4 . e
on the probability space (S ,0OL " ,P) with state space S, initial
distribution €, and transition kernel P on S described by the

transition probabilities

p(ls,t]) if d(s,t) = 1
P(s,t) :=

o otherwise

(s,t€S).
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For this construction the fixed vertex o of S is the starting
point of the chain, and P(s,t) is the probability that if the chain
has arrived at time n in vertex s it will pass at time n+1 to the

vertex t which is joined to s.

In order to determine the finite-dimensional distributions

(with respect to IP) of (Yn)neZ we shall construct a stochastic
+

process (Xn) on a probability space (W,F,NI) with state space §

nez;

n€E+' (Xn)n€Z+ will also be a Markov

chain with initial distribution Eo and transition kermel P on S.

which is equivalent to (Yn)

5.3 Notation. Let

W := set of all infinite paths in S.

Z
+
Note that WC S .

For every w = rs ,...,sn,...] € W and n20 we put
pn(w) = [so,...,sn].
Let for sE€S

w® i= {wew

.

p, (w) = [s]}

and let for ¢ € T(n) with n2o
W(e) := {wew : pn(w) = ¢c}.

On W we define the c-algebra‘; generated by the system
W := {W(c) : cel}

(of cylinder sets).

5.4 Some properties.

5.4.1 W® is identical with the set of trajectories (paths) of the

Markov chain (Yn)nGZ+'
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5.4.2 1If S carries the discrete topology and WC 'S the topology
.2z
Crﬁ induced on W by the product topology on S +, then F is the
Borel € —algebra on W.
[Let ¢ = (s 5.v.,s ]er(n) for some nzo. Then
- Lo n

n
W(e) = ( H{Si} x I Ti)n W
i=o i>n

with Ti = S is open. We are left to show that the system W oot

cylinder sets is a (countable) basis of Crw. The sets

I 0.nW with 0.cC S for 1izo
> i i

and Oi = S for almost all izo

form a basis of Crw (by definition of the product topology).
Let O be of the form I Oin W with Oi = S for all i>n. Then
izo
0 = U w(C)
c€C '

with
¢ = = H <m<
c := {c [so,...,sm,...,sn].smeom for osmsn}.

5.4.3 The family (WS)Ses is a countable partition of W consisting

of open sets.

[From

w® = ({s} x I T,)AW
. i
iz1
. _ s . . L) s
with Ti := S we see that W° 1is open and closed. Since W =W,
s€S
the assertion follows. ]
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s . .
5.4.4 For every s€S, W 1is a compact metrizable subspace of W.
[It is sufficient to show that W is a compact metric space. Define

mappings £(n+1):T(n+1)>T(n) by

g(n+1) ([So""’sn+1]) 1= [so,...,sn]

for all [so,...,sn+11€F(n+1). Then the corresponding projective

limit 1limI(n) (with the discrete topology on T'(n))is a compact
-«

metric space, and the mapping
w > (po(w), p1(w),...,pn(w),...)

s . . . . . . . .
from W into limI(n) is a bijection. Hence it remains to prove that
-~

£ 1 is continuous, which follows from
E({s Ix...x{s }xSx...)
o n

=({[soj}x{[so,s1]}x...x{[so,...,sn]}xSx...)n lim(n).

<
Considering the projections Xn : W~ S given as mappings

w o= Es R
o n - "n

we shall define a probability measure I on (W,3 ) such that

(Xn)nez becomes a Markov chain on (W,¥F ,1) with state space S which
+

has the same finite-dimensional distributions (with respect to 1)

as the chain (Yn)neZ#'

5.5 Proposition. On (W,¥ ) there exists exactly one probability

measure I such that
T(W(c)) = p(c)

for all c€l with a(c)

]
o

Moreover T(W\W?)

[}
o
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Proof. For every n2o we define mappings q, ¢ I'(n) ~IR, by

p(c) if aec) = o
qn(c) 1=
o otherwise

for all cé&l'(n), and En : T(n+1) > T(n) by

€n([so,...,s ’Sn+1]) 1= [s yeeess ]

n o n

for all [so,...,s , S ] € T(n+1). Let c€l'(n) with a(c) = o and

n’ n+1

B(c) = t. Then
{c'€r(n+1) : En(c') = ¢}
= {c'=c’[t,u] : u€éS with d(t,u) = 1} =: C
For c'(-JCC we get

a_,,(c") =p (c-[t,u]) = ple)p([t,ul)

for some u€S with d(t,u) = 1. From Hypothesis 5.1 we infer that
for c€l(n) with a(c) = o the following consistency condition holds:
q, () = p(e)

p(c) T p([t,u])
{ues:d(t,u)=1}

= g ple)-p([t,u])
{u€s:d(t,u)=1}

(c) = T q
c'ec
(o}

(c")

n+1

We note that (C) is trivially fulfilled for any c€l(n) with a(c)%o.

Now consider the projective system

€0 gn
P(0) «® T(1) + «+v « I'(n) <® I(n+1) <

as well as the mapping

w > p(w) := (po(w),p1(w),...,pn(w),...)
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from W into 1im T(n). p is clearly bijective.
P

For the given sequence (qn)n>o which is consistent in the sense

of (C) there exists a unique probability measure I on W such that
-1
M(wW(e)) =1 (On (e¢)) = qn(C)

for all n2o and all c€l'(n). This is the existence statement of the

theorem.

Since T satisfies the conditions

T(W°) = qo([p]) 1  (by General Assumption 2.2)

and
T(w®)

|
Nal
~
1
2]
-
~
]
o

for all s€S with s % o, the support property of I follows readily.

5.6 Proposition. The Markov chains (Xn)ne and (Yn)nez on (W, ¥,

+
and(SatsztDD respectively have the same finite-dimensional

z,

distributions on S.

Proof. It suffices to show that for every r21 the distributions of

the random variables

r

bo
@ X and ® Yn

n
n=1 n=1

on W and s+ respectively (with values in s’) are identical.

For all r21, t1,...,tr€S we have to show that the equality

LY, =t,...,7, =¢]=m (X, =ty ,x = ¢ ]
holds under the hypothesis Xo = 0. Using the additional notation

t, = o we get
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Ex1 =tk =t ] = w([to,...,tr]).

By Proposition 5.5 combined with General Assumption 2.2 we obtain

TW(le senent D) = p(Te,eennt 1) = p(fese D oeeop (e _yne D),

whence

mx, =tk =t ] = 0@(fe .00 D

r
= 1 op(le; e, D

1=1
be

= I P(ti—l’ti)’
1=1

Moreover we have that

r

P [Y1 =t Y ] = crj = i£1 P(t, _y»t;)

which is the defining property of the transition probabilities

of the Markov chain (Yn)ne From these last two equalities the

zZ,

assertion follows. |

5.7 Proposition. Let b€B and w(o,b) := Eso,...,sn,... ].

Then

lim s = b
nreo O

in S.
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Proof. By Part 2. of the proof of Theorem 3.10 the sequence

(Vn(sn))n>o is a neighborhood basis of b. Clearly the sequence

~

(sn)n>o in S converges towards b iff for every n2o there is an m2o

such that s, € Vn(sn) for all k2m. Take m := n. Then for all k2m

k

s yeviss yeueys, ] = clo,s,)
0’ b n, ’ k ’ k b

i.e. c(o,s,) contains s_ and hence s € V (s ) for all k2m = n. _|
k n k n n

5.8 Proposition. Let [to,...,tn,...] be a path in W which contains

any of its vertices only finitely many times.

(i) There exists a bEB such that

lim t b (in S).
n

n-—>-o
(ii) There exists a strictly increasing sequence (k(n))nzo in Z,

with k(o) = o such that

w(to,b) = [so,...,sn,...:]
. _ 6.
with sn ,tk(n) for all nz2o0
Proof. Without loss of generality we assume to = o. By assumption
the set {kGZ+ : t. = s} is finite for all s€S. Hence the set

k
.= . <
Mo {kez, : d(o,tk)sn}
is finite for all n2o. We introduce for all n2o
k(n) := max {k€Z+ : keMn}

as well as

Sn = tk(n).
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Then d(o,sn)ﬁn since k(n)GMn, and d(o,t )>n by definition

k(n)+1

of k(n). Since [to,...,tn,...] is an infinite path in S, we have

d(s ) = 1, hence

ﬂ’tk(n)+1

n<d(o,ty, (v, ) Sdo,s I+dls sty s+t

It follows that d(o,sn)=n, i.e. snGSn (for nz2o).
From the definition of k(n) we see that d(o,tk)>n for all

k>k(n). Moreover c(o,tk) is of the form

for some r>n.

We'will show by induction on k>k(n) that the equality
(*) S L s

holds: For k=k(n)+1 we deduce from d(sn )=1, snGSn and

»E () +1

tk(n)+1¢8n that

ck(n) = [sé,...,s;_1]

i = 1 = -1= "=
and S s,- Since Z(Ck(n)) n, we get r-1=n and S =S,- Now we

assume that (*) has been proved for some k>k(n). Since d(tk+1,tk)=1,
. = 1 Al =
we have that either Crt [So""’sr—1] or ¢y ., = [sé,...,s;,tk+11.

This implies that c has the same vertex with index n as c

k+i k?

since r>n. By induction hypothesis (*) follows for k+1.

We observe that (*) implies that t GVn(sn) for all k>k(n) (n2o0).

k

In particular s €V (s ) and therefore d(s ,s )=1 since
’ n+ n n ‘ n

1 n+1
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sn+1€ Sheq» 5,8 S for all n2o. Hence [go,...,sn,...] is an

infinite chain in S with starting point o, i.e.

.

[so,...,sn,...] € Zo

Theorem 3.10 tells us that & : B - Zo is a bijection, whence

there exists b € B such that
w(o,b) = [so,...,sn,...].

rges to ince (V_(s is a
The sequence (tn)nZo converge wards b, since ( n( n))ngo

basis of neighborhoods of b (by Part 2 of the proof of Theorem 3.10)
and tkevn(sﬁ) for all k>k(n), n20 (as was shown above). The proof of

both statements (i) and (ii) is now complete. _]

The following result is the converse of the preceding proposition

5.9 Proposition. Let w = [Fo,...,tn,...]e W be such that

lim X (w) = b
n

n->w
for some bEB. Then w contains each of it vertices only finitely

many times.

Proof. Suppose there exists a t€S with t,=t for infinitely many izo,

and let b€B be such that lim t =b and w(o,b) = [ ,...,5 ,...]. By

n--o -0 n -
Part 2. of the proof of Theorem 3.10 (V_(s )) , 1is a basis of
n n’ “n2o
neighborhoods of b. If we put n := d(o,t) (which means that tesn),

then tgvV (s ). From lim t_ = b we infer that t
n+1 n

n->o

n+1 k041 Gner)
only for finitely many k2o. Thus the above assumption is wrong, and

the assertion follows. _|
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5.10 Notation. We set

W' := {wE€W : There exists b€B with lim Xn(w) = b},

n-—>o

and for all wewW'

X(w) := lim Xn(w).

n->o

5.11 Technical Properties.

5.11.1 W' is a Borel subset of W.
[By Propostion 5.8, W' is the set of all infinite paths
w o= [50,51,...] with 1lim d(o,sn) = ®», Hence

n-o
W' = (*\ L_J (\ {w = [30,31,...] eV : d(o,sk)>n}

nGZ& mGZ+ k=m

is a Borel set. One just notes that

{w = [30,31,...1 EW : d(o,sk)>n}

k-1
Wn(n TiX(S\S(n))x T T.)
i=1 i>k

[}

with T, = S. |
i
5.11.2 The mapping X : W' - B is a Borel mapping.

[For every closed subset A of B the limit of a convergent sequence

(sn) belongs to A iff lim d (sn,A) = o. Hence for closed A the set
n->wo

x Ty = U N x2F (xes:d(x,a) <t
k21 n20 m2n m n

is Borel. Consequently, X is a Borel mapping. _|

5.12 Theorem. N(W\W') = o.

Or in probabilistic terms: (X_(w)) converges for M- a.a. WE€W
n nez; -

towards an element of the Martin boundary B of S.
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Proof. Let t€S. For all nzo we have

1]

t
—t

1

Won x_ [wew:X_(w) = o, X (w) = t}

LJ W(c),

cGF(n)o’

L}

t

whence

1 ( LJ W(e))

c€F(n)o

=
>
]
(ad
-
L}

, T

= z T(W(c))

cGI‘(n)o’t

= I p(c)

ceI‘(n)o,t

n
= P (o,t),

since P" = UF(n) and 1T is supported by we. Applying General

Assumption 2.2 we obtain

zn(x. =t] = £ P"(o,t) = G(o,t)<m.
n
no nzo
Hence the Borel-Cantelli Lemma implies that H(ﬁt) = o for

D, := lim sup [Xn=t] -N U [Xm=t1.

t nz1 m2n

We introduce the set

D, := {weW:Xn(w) =t for only finitely many nZo}.
Obviously, Bt = W\Dt and from Propositons 5.8 and 5.9 we infer that
W' = rW »Dt. Since S is countable we thus obtain

t€Ss

Towww') = n¢ U (WD) = o.
tes

[in particular, from W'=r\ D

tes °©

follows again that W' is a Borel set. :
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5.13 Generalization. It is clear that Proposition 5.5

and Theorem 5.12 remain valid for any s€S instead of o. In this case

there exists a unique probability measure HS on (W,¥) satisfying
HS(W(C)) = p(e)

for all c€l with a(c) = s, and
Hs(wst) =0

as well as

ns(w\w') = 0.

Since Hypothesis 5.1 is equivalent to the assumption that the

. . . 1 '
constant function h=1 on S is harmonic, the measure y of Theorem 4.8
is available. It turns out to be the limiting distribution of the

Markov chain (Xn)n as the following result shows.

€EZ
+

5.14 Theorem. For all Borel subsets T of B

m[xert] =u(D

~

Proof. We start by introducing the measure H X(II) on B. Recalling
Preparation 4.7 and (3) of the proof of Theorem 4.8 it becomes clear

that the measure u1 on B is uniquely determined by its values

() ' ) = Glo,t)ev_(t)

on the sets B for n20o, t€S . Here the functions v_ on S_ are
n,t n n n

given by the relationship

(2) I G(s,t)-vn(t) =1
t€sS
n
valid for all s€S(n), n2o. We want to show that py satisfies the
equation (1) with u1 replaced by u. For all n2o, tGSn we define the

Borel sets
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. = = (-
Q ¢ [x € Bn’t] {vew : x(w e Bn,t}
and
o := {wen ta(w)=t and X, (w)#t for all iz1}.
n,t n,t 1
Let
vn(t) 1= Ht(Qn,t)'

We will show that v satisfies equality (2) for n2o. Let n2o and
t € Sn as well as s € S(n) be given. We consider an infinite path
WGQH,t with a(w)=s. By Proposition 5.9 w contains each of its
vertices only finitely many times. Hence by Proposition 5.8,

w contains t. Thus w = c.w' with ¢ € rs,t and w' € ¢n,t’ and

consequently

(3 e . n W - U co

and the above is a countable union of pairwise disjoint sets.
Since Wt is a Borel set by Property 5.4.3, every Borel set ¢ewtnf¥
belongs to F . By definition of % and by Property 5.4.2 we get for

every Borel subset ¢ of Wgaand every path c € Ps ¢ that
9

(4) HS(C-Q) = p(c) Ht(Q).

In fact it suffices to prove the validity of (4) only for
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cylinder sets ¢ := W(c') with c' € Ft < for some x € S. But this

is easy to see:

[}

1 (c-W(c')) n (W(c-c"))
s s
= plcec'")

= p(e)-p(c")

= p(c) Ht(W(c')).

Next we get

s
n _(Q ’t) = 1 (Qn,t” W)
= 1 (U o ) (by (3))
c€l ’
s,t
= T I (c-® )
s n,t
cGFs,t
= e? p(e) Ht(én,t) (by (4))
¢ s,t
= I p(e) v (t)
c€l n
s,t

(5)

G(s,t).-v_ (t),
n

the latter equality following from the definition. of G.

For fixed nzo the family {B t e Sn} is a partition of B,

n,t

hence the family {Qn t € Sn} is a partition of W'.

, L

Thus for each s € S(n), n2o

—
]

Ty (W)

Hs(w') (by Theorem 5.12)

(U a
s tes_ n,t

I I (% )
tes S Mot
n

(6) pX G(s,t)-vn(t),

t€s
n



Sem. on Probab.
Vol .56 1988
P1-120 5.16

which shows that vn(t) satisfies equality (2).

Putting s := o in (5), we obtain that for all n2o, t € Sn

=
~
=
3
[}

Lt I (x e B_ t]

I (Q )

n,t

(7

G (o,t).vn(t)

holds. Comparison of (7) and (6) with (1) and (2) respectively

yields u = u1, and the proof is complete. |
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§ 6 Green and Martin kermel in the homogeneous case

As in the preceding section (S,A) denotes an infinite, locally
finite tree. Under Genmeral Assumption 2.2 together with iypothesis

5.1 we constructed a canonical Markov chain (xn)nez~ on a probability
+

space (w,ﬁ?,ns) with initial distribution € and transition kernel

P = (P(s,t)) on the state space (s,j&(s)). It turns out that

s,t€S

General Assumption 2.2.2 can be interpreted as the transience of the

Markov chain (Xn) In this section we shall drop this hypothesis

n€Z -
and replace it by a homogeneity condition to be satisfied by the tree
(S,A) and the transition kermel P of the given chain. We then show
that under the homogeneity condition the Markov chain (Xn)neZ is

+
necessarily transient.

Before entering the discussion of the homogeneous case we shall

give a

6.1 Probabilistic interpretation of the kernels G and F.

6.1.1 Clearly

G(s,t) z p(c)

cers’t

z P%(s,t)
nzo

for all s,t€S, and
G(s,t) < =

for all s,t€S is equivalent to General Assumption 2.2.2. Let
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9 := {c=tso,...,sg]:n€m, si%sn for all o<i<n}
= h) ¢ (n)
n €N
with
d(n) := & A T(n)

for all nélN. Looking at the kernel F given by

F(s,t) := b p(c)

Ce@s,t

tor all s,t€S one easily sees that
F(s,t) = HS([Xn=t fiir some n€N]).

In fact, for all n€N, s,t€S we have

L p(c) = z HS(W(c))
CG@(H)S’t c€®(n)s’t
e U wen
s c€@(n)s,t
= Hé([xv 4 t for o<v<n, X, o= t]),

and for all s,t€S we deduce from this that

F(s,t) = L p(c)
CGQS’t
= I ) p(c)
n>o ceé(n)s’t
= Z ns([xv + t, o<v<n, Xn = t])

n>o

t])

-
HS(U [x, + t, o<v<n, X
n>o

ns([xn = t for some n€N]).
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6.2 Definition. A state s€S is said to be transient if
F(s,s) 1,

and recurrent if
F(s,s) = 1.

Since F(s,t)>o0 for all s,t€S there is a dichotomy in the sense

that either all states of the Markov chain (Xn)nGZ are transient or
+

all states are recurrent. In these two disjoint cases we call the

Markov chain (xn)nez transient or recurrent respectively.
+

From the general theory of Markov chains we know that a state s€S

is transient iff G(s,s)<x.
In the following we drop General Assumption 2.2.2.

6.3 Proposition (Dichotomy). For the Green kernel G of the Markov

chain (Xn)nez we have either G(s,t)<w for all s,t€S or G(s,t)==
+

for all s,te€sS.

Proof. Let s,s', t€S and COGPS A By definition we have
b
G(s,t) = I p(c)
cGFS’t
and
G(s',t) = I p(c).
cers.’t

Since the mapping c¢ c ¢ from Fs' into Fs ¢ is injective and

’ ’

p(co.c) = p(co)-p(c)

for all cers, we get

st
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G(s,t)

]
™

o
—~

0
N

[\
[ae]
el
—~
(¢]
0
~

Cersgt

= p(co) z p(c)
Cersﬂt

= p(co).G(th)

for all ¢ €T, , and similarly
o "s'ys )

’
G(s,t) = p(c1).G(s,t')
for all c, €T, whenever t'€S.
177t
Now let s,t€S be such that G(s,t)<w. Then

G(s,t') s p<co)".c(s,c')

for all c €T ,» Whence
o "s,s

< pkco)_1p(C1)—1G(S,t)
for all c1€F€;t,‘thus
for all s',t'€s.
Let conversely s,t€S be such that G(s,t)==. Then
G(s,t') 2 p(co).G(s,t')

for all c €T , whence
o "sys

[\%

plcy)-pley).G(s,t)



Sem. on Probab.

Vol .56
P1-120

1988

for all c GPt thus

1 ,t?

= o

for all s',t'€s. __ |

6.4 Proposition. If on S there exists a superharmonic function gzo

which is not harmonic, then G(s,t)<~ for all s,t€S.

Proof. Let g2o be a superharmonic function such that Ag<o.
Putting

v 1= -Ag=g-Pg
we obtain that

v =g - Pg > o.
But then

Gv = I G(.,t)v(t)sg

t€s

implies that G(s,t)<= for all s,t€S. __I

In place of General Assumption 2.2.2 we now make the following

6.5 Homogeneity Assumption. Let q€WN, qz1.

6.5.1 (S,A) is a homogeneous tree of degree q, i.e. for all sé€S
card{t€S:d(s,t) = 1}) = q+1.

6.5.2 P(s,t) const for all s,t€S such that d(s,t) = 1, i.e.

(q+1)"l for all s,t€S with d(s,t) = 1
P(s,t)

o otherwise
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6.6 Consequences.

6.6.1 For every nGZ+ the values Pn(s,t) of the transition kernels

p" depend only on d(s,t). The same holds for the kernmels G and F.
6.6.2 If G is finite, then

G(s,s) a for all se€sS

const

[}

and

B for all s,t€S with d(s,t) = 1.

F(s,t)

const

Applying Propositions 2.8 and 2.9 we obtain for all s,t€S with

d(s,t) = n and c(s,t) = [80’51""’Sn-1’sn] that

G(s,t) I(s,t)+F(s,t).G(t,t)

[}

= oaF(s,t)

= aF(s,s1).F(s1,52)-...'F(sn_ t)

1’
(D) = ag”.

We now assume that qz2.

6.7 Theorem. The Green kernel G is uniquely determined by the

equality (D) of 6.6.2 and finite.
Proof. Suppose we have a finite kernel G' given by
G'(s,t) := a'.p'"

for all s,t€S such that d(s,t)=n€Z+, where a',S'SR:. Then for arbitrar

s,t€S we get

G'.P(s,t) I G'(s,u)P(u,t)

u€s

1

T G'(s,u)(q+1)”
{u€s:d(u,t)=1}
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(i) If s=t, then G'(s,u) = a'.B' for all u€S with d(s,u) = 1 and

hence G'.P(s,t) = a'.B'.

(ii) 1If, however, d(s,t) = n>0 then by Observation 3.1 there exists
exactly one vertex u with d(u,t) = 1 and d(u,s) = n-1. For all
remaining vertices v*u with d(v,t) = 1 we have d(v,s) = n+1.

Consequently

1

G'.P(s,t) = (q+1) (a'.g'® ' 4 q.qr.p' Pty

Thus to G' = I+G'.P there correspond the equations
(1') a' = 1+a'.B"'

(ii'") a'.g'n = (q~1-1)—1(cz'.8'n-1 + q.a'.e'n+1) or equivalently

(q+1).8" = 1 + q.8'2.

Clearly, o' = q(q-1)—1 and B' = q-1 are the unique solutions of the

equations (i) and (ii). It follows that for all nez+

G' I + (I+G'.P).P

I + P + G'.P2

L[}

2 ) n n+1

w
[ acii=]
g

Since this inequality holds for all n€z  we obtain

and the finiteness of G follows from that of G'. But the finiteness
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of G yields by 6.62 that G is uniquely determined by (D), thus

G' = G. |

6.8 Corollary. For all s,t€S

G(s,t) = q 9058 gy

Proof. Let s,t€S such that d(s,t) = n62+.
For n=o0 we have

G(s,s) I(s,s) + G.P(s,s)

-1

it

1+ q(q-1)—1q (by (i) of the proof of 6.7)

1

1+ (q-1)"

q(qg-1)""

it

For n»>o we get

G(s,t) I(s,t) + G.P(s,t)

a+1) "aa-1 """ + P q-1 7T

(by (ii) of the proof of 6.7)

1— -
' M(q-n7"1.

In both cases the desired formula has been established. __|

6.9 Corollary. The given Markov chain (Xn)neza is transient.

The proof is immediate by Corollary 6.8. __|

In order to.compute the Martin kernel of a transient Markov chain
on a homogeneous tree (S,A) of degree q22 we need the notion of a

horocycle.
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From 3.7 we know that to each fixed end b€B and all s,s'€S there

exists a z€Z such that
d(s,t) - d(s',t) = 2z

for all vertices t common to w(s,b) and w(s',b). In fact, we just put
z := Gb(s,s').

6.10 Definition and properties of horocycles

6.10.1 For any b€B the relationship Gb(s;s') = o between vertices
s,s'€S is an equivalence. The corresponding classes are called the

horocycles associated with b.
6.10.2 Fix the point 0€S. Then the nonempty ones among the sets

Hn,b := {s€S : Gb(s,o) = n}

(n€Z) are horocycles associated with bEB.

[Let H be an equivalence class with respect to the above equivalence

relation. For s€H and n := Sb(s,o) we obtain seHn But if s'€H is

»b’
arbitrary, then by

[ = 1 =
Gb(s ,0) = Gb(s ,8) + éb(s,o) n

s'€H . In both cases He Hn

n,b ,b°

Let, conversely, Hn b $ ¢ for some n€Z, and s,teﬁn Then
’

b’

6b(s,t) Gb(s,o) + sb(o,t)

6b(s,o) - db(t,o)
= o 9

i.e. s and t are equivalent in the above sense. |
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6.10.3 Horocycles form a partition of S which is

translation of the index n, and

éb(s,s

for all s€H
m

")

b’

m-n

s'€H
n

]

b with m,n€z.

6.11 Application to the Martin kernel

Let (Hn,b

)

nGZ+

6.10

unique within a

be the family of normalized horocycles (with

0€H b) associated with an end b€B. In Proposition”4.1 we established

’

a partition-{So,...,Sn} of the space S := SuB. It was shown

that for

bEB there exists a j€N with 0£js<n such that bGSj. From this fact follows

that

K(s,b)

[}

G(s,sj).G(o,sj)

q

q

q

q

q

1-d (s,

d(o,sj
Gb(o,s
-éb(s’

-n

I.e. the mapping s -

associated with b, and

K(s,b)

for all s€H
n

»b’

q

-n

n€zZ.

1

sj) d(o,sj)-1

9
)-d(s,sj)
)

o)

K(s,b) is constant on the horocycles Hn

» b
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6.12 Theorem. For any function h2o on S the following statements are

equivalent

(1) h is harmonic.

(ii) % P(s,t)h(t) = h(s) for all s€s .

t€s
(1ii) I h(t) = h(s)(q+1) for all s€S .
{t€sS:d(s,t)=1}
—6b(s,o) h

(iv) h(s) = [fq i (db) for all se€s.
B , ‘

The proof of the nontrivial equivalence (i) <==> (iv) makes the
statement of Theorem 4.9 precise under the Homogeneity Assumption 6.5,

with the help of 6.11.

6.13 Theorem. Let (S,A) be a homogeneous tree of degree g2 and let

(Xn)n62+

kernel (P(s,t))

be a Markov chain with initial distribution €, and transition

s,tes given by

(q+1)"1 if d(s,t)=1
P(s,t)

o otherwise.
Then
(i) (Xn(w))nez+converges for N-a.a. w€W towards X(w)€EB.

(ii) X(I) equals the measure u1 on B which is uniquely determined by
the equality

-8, (s,0)
J q b u1(db) =1
B

valid for all sE€S.

The proof is immediate from Theorems 4.9, 5.12 and 5.14 with the help

of 6.11. |
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§ 7 Transience of isotropic random walks

Let G be a unimodular locally compact group and K a compact subgroup
of G. By w, we denote a fixed (left invariant) Haar measure of G. The
pair (G,K) is said to be a Gelfand pair if the algebra L1(G//K) of
K-biinvariant wG~integrab1e functions on G is commutative. The harmonic
analysis of Gelfand pairs can be applied to probabilistic studies on
trees. We shall illustrate this method by showing that a homogeneous
tree (S,A) of degree q21 can be viewed as a Gelfand pair and that
isotropic random walks on (S,A) of degree q22 are transient. The main
portion of this section will be devoted to an expository presentation
of the theory of Gelfand pairs applied to a homogeneous tree. The

detailed discussion of the transience result will be essential also

for the following section.
Let (S,A) be a homogeneous tree of degree qz1.

7.1 Definition. A bijective mapping g : S - S is said to be an

automorphism of (S,A) if
{g(s), g(t)iea

for all {s,tle€A.

Clearly, any automorphism g of (S,A) is an isometry in the sense that
d(s,t) = d(g(s), g(t))

for all s,t€S.
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By Aut(S,A) we denote the set of all automorphisms of (S,A).

A subset S' of S is called g-invariant for some g€Aut(S,A) if g(sS')=S'.

7.2 Definition. Any sequence (sn) of vertices snes with

ne€z

d(s _,s )=1 for all n€Z and Sn+sm for n¥m (m€Z) is called a doubly

n’ n+1

infinite chain.
7.3 Theorem (J. Tits). Let g€ Aut(S,A) and let
d := min{d(s,g(s)):s€S}.
Then exactly one of the subsequent situations occurs:
(1) There is a g-invariant se€S.

(2) There exist s,t€S with d(s,t)=1 such that

g(s) t and

g(t)

i}
2]

(3) There exists a g-invariant doubly infinite chain (sn)nez
+

such that

g(sn) = sn+k

for all n€Z, kE€EN.

If (3) is satisfied, then (Sn)ne is uniquely determined, k=d,

z

and the vertices of (Sn)n are the only vertices s€S with

€Z
d(s,g(s))=d.

7.4 Remark. G := Aut(S,A) is a non-Abelian group with composition of
mappings as operation and the identity mapping as neutral element 1.

Clearly, to arbitrary vertices s,t€S there exists always a g € G
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such that g(s)=t.

7.5 Topology in G. If one introduces in G the topology'fﬁp of point-
wise convergeﬁce, G becomes a unimodular locally compact group. More-
over, G is metrizable and separable with a metric dG given as the
mapping

(g,n) » dg(g,h) = I d(g(t),h(e))(ge1) 240028

t€s

from GxG into R4.

7.6 Cosets of G. For the fixed vertex 0€S we introduce the stabilizer

K := {g€G:g(o)=0}
of o as a compact open subgroup of G.

7.6.1 G operates transitively and continuously on S under the operation

(g,s) = g(s) from GxS into S. I.e. S is a homogeneous space.
7.6.2 S = G/K

In fact, there is a bijective and homeomorphic mapping ¢ from S onto
G/K.
[By 7.6.1 the orbit of o equals the whole of S. For t€S there

exists a g € G such that t = g(o) and
{h€G : h(o)=t} = gK.

Iif, conversely; f€G. Then
fK = {h€G : h(o)=£f(0)}.

One defines ¢ : S > G/K by ¢(t) := gK where g€G and g(o)=t.]
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7.7 Double cosets of G. G operates on SXS under the operation

(g,ti,tz) - (g(ti), g(tz)) from GxSxS into SxS. We note that this

operation is not transitive.

7.7.1 Given (s,s'), (t,t')ESxS there exists a g € G such that

(g(s), g(s')) = (t,t') iff d(t,t') = d(s,s"').
7.7.2 For every (s,s')ESXS the set

x(s,s') := {(t,t')€SxS: There exists a g€G:(g(s),g(s')) = (t,t")}
is called the orbit of (s,s') under G. The relation

(s,8") ~v (t,t') : <==> x(s,s') = x(t,t')

is an equivalence relation on SxS. The set of all orbits under G will

be abbreviated by X.

From 7.6.1 follows that the orbit X, = x(t,t) is independent of

tE€S.

7.7.3 There is a one-to-one correspondence between the orbits x(s,t)

under G and the values d(s,t) of d, i.e.

X =Z
+

7.7.4 zZ, = G/ /K.

In fact, there is a bijective and homeomorphic mapping 94 fromz+
onto G//K.

Db n€z there exist t€S with d(o,t)=n and g€G such that g(o)=t
(the latter by 7.6.1). Then

H := {h€G : d(o,h(o)) = d(o,g(0)) = n} = KgK.

In fact, for h€H one chooses g'€Gn K such that g'(t') = t with
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' -

t' = h(o). Then h 1gg-1g'h€KgK. I1f, however, f,h€K then

8

d(o,fgh(o)) d(o,fg(o)) = d(o,£(t)) = d(f(o), £(t))

d(o,t) =nmn

which implies fgh€H.
If, conversely, f€G then
KfK = {heG:d(o,h(0)) = d(o,f(0))}.

One defines o, ¢ z, » G//X by ¢1(n) := KgK where g€G with

d(o,g(0)) = n.]

7.8 Invariant measures. On G/K there exists a G-invariant positive

]

measure o' which is unique up to a multiplicative factor. ¢' turns

. =1 .
out to be the quotient measure wG/wK on G/K. But then o:= ¢ (c') is a
positive measure on S. Since S and G/K are discrete spaces, 0 can

be chosen as the counting measure on S.

Let ¢2 denote the mapping S > Z, defined by ¢2(t):= d(o,t) for

all t€S. Then t := ¢,(0) is a positive measure onZZ satisfying
2 +

t({n})

4, (o) ({n})

o({t€s:d(o,t) = n})

[}

o(Sn)

+1
(g+1)q"

for all n€N and

t({o}) = 1.
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7.9 The vector space L1QZ+,T) of complex sequences a := (an)

satisfying the condition

|+ £ (@+ad" a_[<o
nz=1

log

carries a norm defined for f=(f[n])n>o € L1OZ+,W) by

1£i] := €001 + © (q+1)q™ '£[]|
nz1

and a convolution defined for f=(f[n])nzo and g=(g[p])nzo in

1
L (Z+,T) by

frgld(s,t)] := SE[d(s,u)]gld(u,t)]o(du)
S

 £d(s,u)]gld(u,t)].
u€s

It is easily checked that L1QZ+,T) becomes a Banach algebra with
unit element e := (eo[nl)nzo defined by

eo[nJ 1= 60,n
for all nzo. Since S is a symmetric space in the sense of

x(s,t) = x(t,s)

for all s,te€Ss, L1(G//K)§L1GZ+,T) is commutative, hence (G,K) is a

Gelfand pair.

From now on we shall adopt the terminology that (S,A) is

considered as a Gelfand pair.

7.10 Spherical functions. Any non identically vanishing homomorphism

x from L1OZ+,T) into ¢ is called a character of L1QZ+,T). Characters
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of L1CZ+,T) are continuous linear functionals of norm 1, and there
is a bijection x ~ x_i(o) from the set M of all characters of L1GZ+,T)
onto the maximal ideal space Max Li(Z+,T) of L1QZ+,T). Moreover, to
every X€M there exists exactly one s = (S[p])ngoeLm(Z+,T) such that x

has the form

x(£) = I £lnls[n]lt{al)
nzo
r 1
for all £ := (de])nzoeL Z, 1)
7.10.1 s = (s[n])ngoeLwGZ+,T) is said to be a spherical function on

(G,K) (or (S,A)) if the mapping Xg defined by

Xg (£) := £[n]s[]t({n})
o

Z
n2
r 1 . 1
for all £ := (an])n;oeL QZ+,T) is a character of L CZ+,T).
By S(G,K) we denote the totality of all spherical functions on

(G,K).

7.10.2 ]is]lm i = sup|s[n1] = s[o] = 1 for all s€S(G,K).
7.10.3 s€s(c,K) iff seL’ (@ ,t) and

T (f*g) [n]s [n]t({n})

no

= (z f[a]s]tn})) C £ gla]s[n]c{n})

nzo no
for all f,g€L102+,T).

7.11 Gelfand transform. Here we discuss the relationship between the

sets S(G,K) and M = {xS:SGS(G,K)}E Max L1QZ+,T).
For any feL1(Z+,r) we define the Gelfand transform £ of £ by

E(xs) 1= xs(f)
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The mapping f - ; from L1CZ+,T) onto L1(Z+,T) = {f : f€L1(Z+,T)}

is said to be the Gelfand transformation. The weak topology induced
by L1QZ+,T) is called the Gelfand topology. Since L1QZ+,T)'

= LwGZ+,T), the mapping s - Xg from S(G,K) onto M is an isometry,
i.e. M¥S(G,K). Thus the Gelfand transform on M yields the Fourier
transform on S(G,K) in the sense that for a given f€L1(z+,T)

E(s) = I f[n]s[n]t({n})
nzo

whenever s€S(G,K).
7.11.1 S(G,K) 1s a compact metrizable space.

Eo)

7.11.2 (sn)ngo €S(G,K) converges towards sGS(G,K} iff (f(sn))n

converges towards f(s) for every f€L1(Z+,T).

7.11.3 Given f,g€L1QZ+,T) we have

P -
fxg(s) = £(s)g(s)

for all s€S(G,K).

7.12 Spectral properties of the Gelfand transform. We introduce a

. 1
sequence (en)nzo in L QZ+,T) by

en[k] p= 8 t({ap) !

for all kGZ+. Clearly, e, is the unit of the Banach algebra L1CZ+,T),
[{e ]| = 1 and

e *e, = q(q+1)_1e + (q+1)_1e

n 1 n+1 n-1

for all nez+. It follows that the functions en can be expressed as
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polynomials in e Moreover, the set {P(e1):P€¢[x1} is a dense

1
subalgebra of L1QZ+,T).
7.12.1 For every f€L1CZ+,T) an element z of ¢ is called a spectral

value for £ if f - 2z e, has no inverse in L1(Z+,T).

The set Sp(f) of spectral values for f is a nonempty compact

subset of {ze€¢:|z|s|| £]]}.

7.12.2 The Gelfand transform of e, is a homeomorphism from M onto
Sp(e1), thus the mapping s ~ €1(s) is a homeomorphism from S(G,K)
onto Sp(e1). Since Sp(e1)C {z€¢:|z|<1}, we are motivated to describe

the set & (5(G,K)) within {z€¢:|z|<1} in more detail.

7.13 Arnaud-Dunau polynomials. They are defined for qz1 as

polynomials Qn(z,q) in z given by
0, (zla) = 1

Q,(z]q) =z
nQ_(z[q)

-1 ‘ _
a(q+1) Q_, (zl)+a+D o, (z]a) (az2).

Clearly, every s€S(G,K) admits a representation
{ s [n]
s [o]

So we search for all z€{ such that z = 3[11 = Xs(e1) defines a

Qn(stl]]q) for all n21 and

1.

"

homomorphism Xg of L1QZ+,T) and consequently a spherical function s

on (G,K).

7.13.1 For any q21 we define

1

7 -
1= 2 +1
Pq q (q+1)

1



Sem. on Probab.
Vol .56 1988
P1-120 7.10

as well as

Theorem. The following statements are equivalent:
(i) sup {IQn(zlq){:n€Z+}§1.
(ii) z€E
q
7.13.2 The mapping s + z := Xs(el) is a homeomorphism from S(G,K)
onto E
q

From this follows that the Fourier transform f of f€L1(Z+,T)‘can

be considered as a function on Eq such that

E(z) = f[n]Qn(zfq)T({n})

nzo

for all zGEq. Clearly, for f,g€L1(Z+,T)

PN -
fxg(z) = £(z)8(z)

whenever zeEq.

7.14 Plancherel measure. A spherical function s€S(G,K) is said to

be positive definite if for all mz1, tyse--,t €S and c1,...,cm€¢

m

c.c. s [d(t.,t.)]zo0.
isj=1 1] [ i J J

The set Z(G,K) of positive definite spherical functions on (G,K) is

a compact subspace of S(G,K).

7.14.1 Theorem: For qz2 the following statements are equivalent:

(i) n - Qn(ziq) belongs to Z(G,K).

(ii) ze [-1,1].
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7.14.2 Theorem (Plancherel, Godement). On Z(G,K)= [71,1] there

exists a unique measure T 2 o such that for all f,g€L1(Z+,T)nL2(Z+,T)

we have
t tlalglnlt(a}) = s £(s)g(s)m(ds).
nzo Z(G,K)

The measure 7 is called the Plancherel measure of (G,K).

7.14.3 Theorem. For q22 the Plancherel measure 7 satisfies the
orthogonality relation

o (zla)e (zla)m(dz) = t(tab) 6

J
-1,1]
valid for all n,m2o0, and it is explicitly given by
1
m(dz) = (q+1) (2m) (o 222 (1-2%) 7" (z)dz.
q E_pq’pq]

-

7.14.4 The Fourier transformation f > f can be extended to an
isometry from L2(Z+,T) onto LZ(Z(G,K),N), and for every f€L1GZ+,T)

we have the inversion formula

f[n] = _ 7 _ E(Z)Qn(zlq)'n'(dz)
|_-oq,oq_[

whenever n€Z+.,

For the remaining part of the section we assume that (S,A) is a
homogeneous tree of degree qz2 and (G,K) the Gelfand pair corre-

sponding to (S,A) as described in 7.6.2.

7.15 Let p€L1(Z+,T) such that p[n];o for all nezu and
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Ilpll = = plnJtUn}) = 1.
nzo

The matrix P := (p[d(s,t:[)S tes is symmetric, since the metric don §
bl

is symmetric, and bistochastic, since for all s€S

£ pld(s,t)]
t€S n

I p[nj card ({t€S:d(s,t) = n})
)

v

I pDﬂT({n}) = 1,

n2o

Definition. The Markov chain (Xn)ne on the probability space

Z
-+

Z Z
(s +,Cl +;W) with Ol := WQ(S), having transition matrix P and an
initial distribution u on the state space (S,0L) is called an

isotropic random walk associated with p.

7.16 Remark. We note thatin § 6 we treated the special case of
p€L1GZ+,T) with
pla] := &, (q+D)7'

for all n2o. The corresponding random walk was shown to be

transient.

7.17 For an isotropic random walk (xn)n associated with p

€Z+

€L1(Z#,T) the matrices P" = (p(n)Ei(s,t)l)S of n-step transition
3

t€s

probabilities

p(n) [d(s,t):[ = pk...*p [d(s,t)] (n22)
N——

n-times
can be described in terms of Fourier transforms: For nz2 and all

s,t€S
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p M dGs,0)] = 1 (B(z2)Tq

(z|q)n(dz).
t)
L_pq’pq]

d(s,

This representation follows directly from 7.14.4 together with

7.11.3.

7.18 Theorem. Let (S,A) be a homogeneous tree of degree q22 with
corresponding Gelfand pair (G,K) and p€L1(Z+,T) with ||p|] = 1,

pr]zo for all n2zo and p[p]<1.

Then any isotropic random walk (Xn)n associated with p 1is

€Z+

transient.

Proof. We recall that a state s€S is transient 1iff

* * -
I p n[d(s,s)] = LI »p nEpJ<w.
nz1 nz1

Let s be any state in S. From 7.17 we infer that for all nz1

p*n[d(s,s)] p*n

o]

1

N CIED RN CEIEPLICED

['Dq,o.qj

= 5 () "n(d2).
1

-0 40 ]
eqsq]
Thus it remains to be shown that

) T p o] = I 5 (B rdz)<=.
nz1 nz1[f° 0 ]
q9’"q

But now



Sem. on Probab.
Vol .56 1988
P1-120 7.14

51 := sup{|p(z)| : z € [—p .0 1}
00,1 @'’

= supl] I pln]o (zla)c(iad)]: z € [-o s0 T}
nzo

supt n;op[n]'r({n})lQn(ﬂq)I: z € [qu,pq]}

A

IA

 plnjt({n})s1

nzl

by Theorem 7.13.1. Next we show that
lo_ (z]q) <1

o .
for all nz!1 and all z € [qu,qucz Eq which implies that |[|p]|<1.

o
In fact, let zerq such that Qn(zoiq)=1 for some nzo. Then the

maximum principle applied to the analytic function z - Qn(ziq)

yields Qn(z]q)=1 for all zeEq and hence n=o.
Therefore the series I (ﬁ(z))n converges on [qu,pq] absolutely

nz1

and uniformly towards the function F defined by
F(z) := $(2) (1-5(2)) "

for all z€ [{-p ,p |. Thus
L‘oq qu

z Foo(z)) " rz) = ;' F(z)n(dz)<w,

ng‘[-pq,oq] ' [-0q:9q

and (*) has been shown. __I
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§ 8 Sawyer's transience theorem

Let (S,A) be a homogeneous tree of degree q22, and let (G,K)
denote the corresponding Gelfand pair. We have shown the
identifications G/K = S, and G//K = E+. The Haar measure of G

induces a measure T on Z, which is given by

{ t({nl})
t({o})

The subsequent result includes Theorem 7.18.

(q+1)qn—1 for all n=z1 and

1.

[}

8.1 Theorem (S. Sawyer). Let p€L1(Z+,w) such that p[n]Zo for all

n€z , llpi] = 1, and p[o]<1, and let (Xn)n denote the isotropic

€Z,

random walk corresponding to p with initial distribution € (where

o € S).

Then for every s€S we have

d(s,Xn) .
lim ——— =8 [P] ,
n->w
where
2 - - -
g := £ [n-2q (-1 '(1-q™Jt({a})p[n].
nzo
Since Bf>o, we have in particular that (Xn)nez is transient.
+

Our first aim is to establish a formula which enables us to

calculate horocycles for ends b€B.

8.2 Lemma. Let u be a given edge. Then there exists a unique integer

m[u] such that
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d (Sm[u] ,u)<d (sn,u)

for all n$m{u], n€Z
Proof. We make the assumption that there exist m,n€Z, m+n such that
d(sm,u) = d(sn,u).

Then c(sm,sn).c(sn,u) is a path coanecting s with u. By Theorem

1.6 we obtain

d(sm,u) = l(c(sm,sn).c(sn,u))
= d(sm,sn) + d(sn,u)
= d(sm,sn) + d(sm,u)
and therefore d(s_,s ) = o which is a contradiction to s_%s .
m’ n m' o

Now we consider the set
I := {m€Z : d(sm,u)Sd(s,u)}.

From the preceding discussion we conclude that I is finite, i.e.

there exists

z := min d(s_,u),
m€I "

and again by the above there exists only one m€Z satisfying

d(Sm,u) = Z.

Putting m[u] := m we obtain the assertion.
8.3 Lemma. For any tl’tZGS we have

Gb(tZ’t1) = d(tZ’Smr_tZ]) + m[tzl

- d(t1,sm[t1]) - mLt1].
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Proof. We consider three cases:

1. Let m[tljzo and m [tz_]zo.

Then the arcs w(t1,b) and w(tz,b) intersect s, and
d(ti,s) = d(ti’sm[:ti]) + m[ti]

for i=1,2. Thus

§ (tz,t1) = d(t

b s) - d(t1,s)

29

d(tz’sm[t21)+ m[tzl - d(t1,sm[t1]) - m[t1j.

e 1< <
2. Let m ;_t1]_o and m[tzl_o.
Then the arcs w(t1,b) and w(tz,b) intersect S where
m:= min{mLtJ, m[tz_]}.
Without loss of generality let m=m|__t1:]'. Then
_-6b(t2’t1) = d(tZ’SmEt11) - d(t1’rsm[’t1])

- d(tz,sml:tz:]) +mle,] - nle ] - d(t1,Sm[t1]).

3. Let mf_tJéo and m[t2]§o (or analoguously m[_t,]éo and m[tz:lgo).

In this case the arcs w(t1,b) and w(tz,b) intersect s and

m[tzl’

= d(tZ’Sm[tz]) - d(t1,sm[t11) - m[tJ +mle, ] |

In order to provethe theorem we need to establish an appropriate

decompositionof the random variable

1
Tn = -r-l-d(S,Xn)
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for nz1. Such a decomposition will be provided by the following

8.4 Proposition. Let (xn)nGR be the isotropic random walk given in
+

the theorem, and let s€S.

Then there exist a sequence (Yn) of independent idenﬁically

nez+

distributed integer-valued random variables and a sequence (Zn)neR
Z, z, i

of even-integer-valued random variables on (S , Ol ,IP) satisfying

the following conditions

n-1
(i) d(Xn,s) = d(o,s) + E (Yk+ZK)ZE-a.s.
k=0
(i1) E[min(Y ,0)]>-=
(iii) E(Y,) = 8
(iv) o§Zn§2d(Xn,Xn+1)
_ _ - —(d+k)
v)  wlz_ = 2kldx_,w) = d]s2q
for all k€N, where
W o= {sm : msol}l (with so=s)
and
d(t,W) := min d(t,sm)

mso

for all te€s.

Proof. We are given an end bE€B, and we define for every nGZ+ a

random variable

Yn t= éb(xn+1’xn)'
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(1) It will be shown that the random variables Yn’ nGZ+, satisfy

the conditions (ii) and (iii) of the proposition.

Since (Xn)n is a homogeneous Markov chain, we obtain for

&,

every nGZ;+ that

pld(x_,x ) = k] = t({kHp[k]

n+1

whenever kaN.

(1.1) We have to compute

m[xn = 2ldx X ) = k]
for all k€N and %2€Z. Under the assumption that d(Xn’Xn+1) = k the
random variable Xn+1 attains one of the t({k}) = qk_I(q+1) vertices

at a distance k from Xn. The choice of one of these vertices can be
considered as the end point of a path of length k whose m-th vertex
has distance m from Xn(o§m§k) (See Theorem 1.6). Since the vertices
have to be pairwise different, we have q+1 possibilities for the

first step and q possibilities for each of the remaining k-1 steps.
In the first step we get

Gb(z,Xn)e{—1,1}

and
® [6,(z,%x) = 1] = q(q+1)!
b’n qq ’
but
Ip [6 (z,X ) = -1] = (q+1)—1
i b "’ n
Esince Gb(z,Xn) = 1 for q of the q+1 neighboring vertices z of Xn].

This means that the probability of growth of 6b(z,xn) equals

q(q+n) T,
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Moreover, the probability of growth of éb(z,xn) in any of the
remaining steps equals (q—1)q—1

"o, . . T
[since only q choices remain open |.

Here growth means increase and its opposite decrease by 1

(See 3.7.2).

Finally we have that if 6b(z,Xn) increases in the m-th step, then
there is also increase in the (m+1)st step (12mgk-1)

N

[§ince otherwise we would have a contradiction to the distinction of

the vertices].
Thus

) B B -1
Ip[yn = k[d(x_,x_ ) =k] =q(+1)" ",

+1
i.e. we have growth in all k steps. For 12msSk-1

1 1-m 1

Ply = k-2m[dX ,X ) =kl = (@) 'q¢ "(q-1)a"

|For Yn = k-2m there is decrease in the first m steps and increase

in the remaining k-m steps.]

Finally

L R -1 1-k
Ly = -2kjd(X_,Xx_ ) = k] = (a+1) g,

i.e. we have growth in none of the k steps.

Note that under the assumption d(Xn,X ) = k one has

n+1

Y [sk IP-a.s..
n
(1.2) We wish to determine

E(Ynld(Xn,Xn ) = k)

+1
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for all

E(Y_|d(xX_,X
n n

k€EN. Applying the formulae of (1.1) we conclude that

n+1)=k)

k
z (k-2m)]P[:Yn=k—2m|d(Xn,Xn+1)=k:|
m=o0
k-1
q 1 ,1.m-1,q-1 1 1.k-1
k + I - =y (k-2m) - k—ro(=
a7t D@ A (k2w -~ k)
k-1
q A dym=tegzty 1 dyk=Ts
Hem s I S @
k-1
1 1,m-1 q-1 1 1.k-1
-2 =z +—)- 2k —
-z m q+1(q) ( g q+1(q)
k -1 q-
k-2 Im 11(1—)m Tt
m=1 9 d
_ 1 1 k=1r _ q-=1
26 (@ - =
1 1.k~ 1 q-1 % 1,.m-1
k - 2k[—(=)"] - 2 — 1~ =
[q+1(q) B q+1 q =1 m ()
1 ,1,k-
k Zk[qT(E) 1
1.k 1 1 k=1
1-k (= (1= (=
ot e @ - ﬁ
a*rl g 1-1 (1-12
S T T Gt
+ -1
q+1 q+1 (q-I)qk
1 1 1 ]
k - 2[—(1 — - )]
q+1 q-1 (q-1)qk 1
e
k - 2q [——]
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(1.3) P[Y_=old(x_sx_, )=k]
k -
) ?kﬂP [Yn=m la (xn’xnﬂ )=k]
m={=-1
k-1
1 1.m-1,q-1 1 ,1.k-1
= I — (= ) + (= by 1.2
Tt eI res (by 1.2)
m=lyd
gﬂiq_1
1 q-1 rk'z m 2 1,m 1 1.k-1
= —CEF—=)L I (=) - T  (=)] + (=
e TG 1+ @
K+ 1
= ! (_1_)[ 2 ]
q+1°q
k
1 1.2
S q+1(€)

(1.4) Now we determine the distribution of Yn for nez . Since Yn

is discrete-valued, it suffices to determine EY ({m}) for every
n

mE€Z. From the formula in Lemma 8.4. we conclude

that

P[Y =m|d(X ,X .,) =o0] =&
n n -

n+1 om

and hence that

IP[Yn=m] Z-IP[d(Xn,X ) = k] : IP[Yn = mld(xn’an) = k]

k2o n+1

T ({k}) pkje(k,m)

k2o

[by the formula preceding (1.1)],
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where c(k,m) by (1.1) depends only on k and m, and not on n. Thus
the distribution of Yn does not depend on n, i.e. the sequence

(Yn)nez+ is identically distributed. Moreover (Yn)nez+ is an

independent sequence.
(1.5) We shall show (ii) of the theorem.

Clearly, min (Yk,o) = =Y. = - max (-Y, ,0). The assertion is

k

equivalent to the integrability of Y

k’
k— for all k2o, and the latter
follows from the following chain of inequalities:

E[max (-Yk,o)]

1
[ae}
=~
=
=3
n
I
~
12

I kI T({z})p[z]m[yn=—k|d(xn,x )=2]

k2o 220 n+i
(by 1.3)
k
< I R,.c(l)2 with a constant c
220 !

(by 1.3 and lYnlél whenever d(Xn,X )£2)

n+1

= ¢ T l(.__t__)g'

Lzo0 v q

e I (ar) (=t
220 vV q

= Cq <

(/g-1)2
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(1.6) Now we turn to the proof of (iii) of the theorem.

E(Y )  mldx ,x ,)=k]E[Y_[d(X_,X_,,)=k]

k2o /

-

Tot(ik}) plk] [k—iq(1-q—k) (q2—1)"]
k2o

(by the formula preceding (1.1) and (1.2) respectively)

So far we established the properties of the sequence (Yn)nGZ
+

(2) It will be shown that the sequence (Zn) properly defined

nGZ+

satisfies conditions (i), (iv) and (v).
We define Zn so that (i) holds, i.e. for each n2o

Zn 1= d(Xn+1,s) - d(Xn,s) - Yn

Indeed, with this definition we get

T (Y, +2.)
k=0 k "k
= Yo-d(xo,s)+d(x1,s) -Y,
+ Y1 -d(xl,s)+d(X2,s) —Y1
+ Y2 -d(xz,s)+d(x3,s) -Y2
* Yn—1 -d(Xn-1,s)+d(Xn,s) -Yn~1

d(Xn,s)-d(Xo,s)

d(Xn,s)-d(o,s) IP-a.s..
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(2.1) The following statements are equivalent:

Z
(a) n+o
(B) The geodesic c(X ,X ) from X to X and the infinite chain
n’ n+i n n+1
(s__)_ . have at least one edge in common.
-n’n2o

) and (s__)

have no common edge.
n+1 n‘'nzo &

First suppose that c(Xn,X

Then

n(x 1 =nlx,,1

and hence

2, = dX ,1,8)-d(X ,8)-8 (X . ,X )
= d(Xn+1,s)—d(Xn,S)
-d(X_ ,,s_ - y-m[X__ .1
n+1’°n anﬂl n+1
+d(Xn,Sm[XnI)+mLXn]
(by Lemma 8§.3)
= d(xn+1’Sm[Xn1)+d(sm[Xn1’so)

o snix 1774 Carx 10%)

d (Xn+1 s Sm[Xn-J)'l-d (Xn, Sm[Xn—l)

which contradicts the hypothesis.

Conversely we suppose that (B) holds. Without loss of generality

we assume that
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m(x .1 smx].

or
Let Lﬁm""’sm+g] denote the edge common to c(Xn,X ) and

n+1

(s ) <> Where ms-1, k1.

[The totality of these edges is a finite interval in the sense of
1.12.]
Then

S S - = g

mLX&l

- =S
m[xn+1j m’ m+k
and

d(Xn+1,s) - d(Xn,S)

= d(X_ s ) + [m[xn+1]{—d(xn,sm+k)-im[xn]i.

Moreover,

Yn - 5b(xn+1’xn)
= d(Xn+1,sm)—d(Xn,sm)
= d(Xn+1,sm)—d(Xn,sm+k)-k,
hence
Zn - d(Xn+1’sm)+| m[Xn+1ll—d(Xn,sm+k)
Simx 1= (X L os V(X s )k

= |m[x_, 1l-Imx_T|+k .
1st case: m+k=o
Then Zn = -m+m+k+k=2k$o.

2nd case: m+k>o. Putting m* := -m we get
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Zn = -m-m~k+k = -2m = 2m*>o0.

Thus we obtain (i).

(2.2) Property (iv) results directly from the second part of the

proof of (2.1), since Zn is always positive and even (integer) and

0sZ $2k<2d(X_,X_..).
n n

n+1
More precisely we obtain that the value of Zn equals twice the

number of common edges of C(Xn’xn+1) and (Sn}n§o°

(2.3) Property (v) follows from the subsequent inequalities valid
for any k>o (by applying (2.1)):

3 _ . . _ 0o 1 d 2 k < "(d"'k)
IP[Ln = zk|d(xn,w) =d] = (ETT) (ETT) < 2q .
The proposition has been proved. __I
In order to complete the proof of Theorem 8.1 we need another

8.5 Proposition. Under the hypotheses of Theorem 8.1 we have

Z <o IP-a.s..
n

=]
v ™
o

Proof. 1. First we show that for any t€S

_d(s,t)

I p(n)[d(o,t)]§Cq 2 ’

nz1
where C denotes a positive constant.
In fact we note that

z p(n) [d(o,t)]<=
nz1

which follows in analogy to the previous transience theorem 7.18,
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where we applied the formula 7.17 for the n-step transition

probabilities. By this very formula we also get that

p(n)[d(o,t)] p*n[d(o,t)]

pq .

=/ p(z) Qd(o’t)(zlq)O(dz)
-0
" i

- ip(quOS@) Qd(o’t)(pqcose|q)

3 .3, gq+1,., 2 2 -1
pq sin”0 —7;(1 pq cos ©®) do

[by the substitution z = pq cosej.

But in calculating the explicit form of the Plancherel measure 7

(Theorem 7.14.3) we see that

_d(o,t)
t -1 2 inO - in@
Qi (o,t) (pqeos®ia) = ala*!) 'q (e e )
and hence that
_d(o,t) .
(n) _ 2 - n
p ' [d(o,t)] = q J $(p cos0)
o

g_(e1n0+e-1n0)p 3sin3®(1—o 2cosze)d@.
q q
Altogether this implies
©> I p(n)[d(o,t)] = q
nz1
with
T
n

.= 3 ngq_
C : I fp(pqcos@) 57

(e1n®+e-lne)p 3sin3®(1-p 2cosz@)de,
nzl1 o ! 1
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_d(o,t) _d(s,t)

8 q 2 £ Cgq 2

with
_ d(o,s)
C := % q 2

2. (Estimate for E(Zn)).

E(Z )
n

Xn
E(E "(Z))

E(E( Z 2k! X))
(BT 2K1ry g1 1%0))

[by Property (iv) of Proposition 8.5]

E( ¥ 2kE(1 I 4DD)
K1 [zn-sz n
I 2kE(E(1 X))
o1 (EC [zn=2k]| n

X

d(x ,W) n
I 2KE(E 1-
k212 E( n (E " ( LG=2k])))

d(x_,W)
L 2kE(E

.
K21 ( LG=2k]))

. hal
[since Ox(d(Xn,W))C CR(XR)J

[ﬁy Property

A

]

A

E( 2 2kP{Z_=2k|d(X_,W)])
k21 n n

-d(X_,w) _
2 E(C L 2k q Tk
k21

(v) of Proposition 8.5]

-d(X_,W) _
2 E(2q n Ik q &
k=1

“d(X ,W)
n

C1 E(q ),
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where C1 denotes a constant independent of n.

3. (Estimate for E( I Zn)).

nzo
—d(Xn,w))
E(I Z ) s¢C I E(q
n 1
nzo n2o0

b T q—d(t’w)p(n)[d(o,t)]
nzo te€S

[
a

= C]q—d(oyw) + C1 5. q"d(t,W)( T P(H)E(O,t)])

tes nz1 :
< Clp—d(o,W)
_d(s,t)
+02 5 q-d(t,w)q 2
t€es
[by Part 1. of the proof]
< C +cC Igq 2 q—d(t,W)

dzo {tes:d(s,t)=d}

with an additional constant C2>o.

Since s€S has been held fixed, we have
d(s,t) =d and d(t,W) = m

iff Sm[t] = Sm-d

[By definition of d(t,W) and W, d(t,W)<d(s,t) for all te€s.])

Then
d
: q d(t,w) I q meog 1 )
{t€s:d(s,t)=d} m=0 {t€s:d(s,tH=d and d(t,W)=m}
d -m_m-1 '
= rq ¢ (g+1),

m=0
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since |{t€S:d(s,t)=d and d(t,W)=m}|

-d-1
= qm (q+1)

-1
qm (q+1)

A

[dzo, q>1]

d 1
2 (1+=)
m=o ¢

A

2(d+1).

So we continue the above chain of inequalities and get

B(Iz) sc, +20, I (@)(—?
nzo dzo vq
= ¢, 26, —
1 2 (1- _l_)z
/g
<

4. Since E( I Z )<=, we conclude trivially that
nzo

I Z < o IP-a.s. l
n —
nzo

Proof of Theorem 8.1. For every nz!l we have

1 1 100
Hd(xn’s) = nd(o,s) o i Y, +

This decomposition follows from Proposition 8.4.

We shall show that

(1) ln-Z-I‘Y + B P-a.s.
oo k

and

(2) 1 n;1Z > 0 IP-a.s.
n.,__k
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For (1) we will discuss two cases separately.

If o<B<» then by (ii) of Proposition 8.4 Y is integrable for all

k
5 8. . .
k2o and E(Yk) B. But (Yk)kzo is a sequence of independent and

identically distributed real-valued random variables. Thus (Yk)k>o

satisfies the hypotheses of the strong law of large numbers, whence

1 n-1
I b Yk > E(Y1) =B IP-a.s.
k=0
If B = +» then Y, is quasi-integrable by (i) and (ii) of Proposition

k
8.4 and clearly

1

Yk > @ IP-a.s.
o

n

e

1
"ok
by the converse of the strong law of large numbers.
Concerning (2) we just apply Property (iv) of Proposition 8.4 in

order to get that ano for all n2o, and Proposition 8.5 in order

to obtain that

Z < @ IP-a.s.

Consequently - L Z_ > o0 IP-a.s.



Sem. on Probab.

Vol.56 1988
P1-120

A
—_
—

(2]

[5]

(s

]

(8]

o
f —

Selected References

Arnaud, J.-P.: Fonctions sphériques et fonctions définies
positives sur l'arbre homogéne.

C.R. Acad.Sc. 290, Série A (1980), 99-101

Cartier, P.: Géométrie et analyse sur les arbres.
Séminaire Bourbaki, 24e année, exposé ng 407
(Février 1972), 123-140

Cartier, P.: Fonctions harmoniques sur un arbre.
Istituto Nazionale di Alta Matematica,
Symposia Mathematica IX (1972), 203-270

Cartier, P.: Harmonic analysis on trees.
Proc.Symp. in Pure Math. AMS Vol. XXVI (1973),
419-424

Dieudonné, J.: Grundziige der modernen Analysis Band 5/6.

Vieweg-Verlag, Braunschweig-Wiesbaden 1979

Dunau, J.-L.: Etude d'une classe de marches aléatoires sur
' " 1'arbre homogéne.
Publications du Laboratoire de Statistique de
1'Université de Paul Sabatier, no 04-1976,

Toulouse

Gerl, P.: Wachstum und Irrfahrten bei Gruppen und Graphen.
Publ. IRMA Strasbourg (1984), 1-38

Koranyi, A., Picardello, M.A.: Boundary behaviour of eigen-
functions of the Laplace operator on trees.
Ann.Sc.Norm.Sup. Pisa 13 (1986), 389-319

Letac, G.: Problémes classiques de probabilité sur un couple
de Gelfand.
In: Analytic Methods in Probability Theory
(edited by D. Dugué, E. Lukacs, V.K. Rohatgi),
PP. 93-120. Proceedings, Obefwolfach, Germany
(1980), Lecture Notes in Math.Vol. 861,
Springer 1981



Sem. on Probab.

Vol .56 1988
P1-120

[]O] Letac, G.: Dual random walks and special functions on
homogeneous trees.
In: Marches Aléatoires et Processus Stochastiques
Sur les Groupes de Lie, pp. 96-142
Journées S.M.F. Nancy (1981), Equipe Associée
d'Analyse Globale no 839
Institut Elie Cartan 1983

[11] Letac, G.: Les fonctions sphériques d'un couple de Gelfand
symétrique et les chalnes de Markov.
Adv.Appl.Prob. 14 (1982), 272-294

[12] Letac, G., Arnaud, J.-P., Dunau, J-L.: Arbres homogénes et
couples de Gelfand.
Publications du Laboratoire de Statistique et

, Probabilités de 1'Université Paul Sabatier,

Toulouse, no 02 (1983)

[13] Picardello, M.A., Woess, W.: Martin boundaries of random walks:
ends of trees and groups.
Trans.Amer.Math.Soc. 302 (1987), 185-205

E141 Picardello, M.A., Woess, W.: Random walks, harmonic functions,
and ends of graphs.
Arbeitsbericht 3/1986, Institut fiir Mathematik
und Angewandte Geometrie, Montanuniversitit
Leoben, A-8700 Leoben, Austria, 18 pages

[15] Sawyer, S.: Isotropic random walks in a tree.
Z.Wahrscheinlichkeitstheorie verw.Gebiete 42
(1978), 279-292

[16] Sawyer, S., Steger, T.: The rate of escape for an anisotropic

random walk in a tree.
Prob.Th.Rel.Fields 76 (1987), 207-230



