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Figure 1: Diamond twin (CG-image created by Kayo Sunada)

1. Introduction

In 2006, I noticed that the hypothetical crystal—described for the first time by crystal-
lographer F. Laves (1932) and designated “Laves’ graph of girth ten” by geometer H.
S. M. Coxeter (1955)—is a unique crystal net sharing a remarkable symmetric property
with the diamond crystal, thus deserving to be called the diamond twin although their
shapes look quite a bit different at first sight. This short note provides an interesting
mutual relationship between them, expressed in terms of “building blocks” and “pe-
riod lattices.” This may give further justification to employ the word “twin.” What
is more, our discussion brings us to the notion of “orthogonally symmetric lattice,” a
generalization of irreducible root lattices, which makes the diamond and its twin very
distinct among all crystal structures.

For the convenience of the reader, we shall first enumerate a few remarkable prop-
erties of Laves’ graph:

1. It is mathematically defined as the standard realization of the maximal abelian
covering graph of the complete graph K, with 4 vertices (see [8], [10], [16] for the
terminology).

2. It has mazimal symmetry in the sense that every automorphism of Laves’ graph
as an abstract graph extends to a congruent transformation of space (note that
any congruent transformation fixing a crystal net induces an automorphism).

3. It has the strongly isotropic property; meaning that for any two vertices x and y
of the crystal net, and for any ordering of the directed edges with the origin x and
any ordering of the directed edges with the origin y, there is a net-preserving con-
gruence taking = to y and each z-edge to the similarly ordered y-edge ([17]). Here
we should not confuse the strongly isotropic property with the edge-transitivity
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or the notion of symmetric graphs (for instance, the lattice Z3 with the standard
network structure is symmetric, but not strongly isotropic).

4. It is a web of congruent decagonal rings (minimal circuits of length 10 in the
graph-theoretical sense). There are 15 decagonal rings passing through each
vertex (Fig. 2).

5. It is characterized by the minimizing property for a certain energy functional.®

6. There exists a Cartesian coordinate system such that each vertex has an integral
coordinate.

7. It has chirality; that is, it is non-superposable on its mirror image.

Figure 2: 15 decagonal rings (CG-image created by Hisashi Naito)

To justify the name “diamond twin” for Laves’ graph, we look at the structure of
the (cubic) diamond, a real crystal with very big microscopic symmetry.2 The diamond
structure is the standard realization of the maximal abelian covering graph of the dipole
graph with two vertices joined by 4 parallel edges, and is a web of congruent hexagonal
rings (called chair conformation). Moreover, it has Properties 2, 3, 5, 6. The number
of hexagonal rings passing through each vertex is 12, which is less than 15 but still a
big number.

What is more, a crystal having Properties 2, 3, 4 must be either diamond or Laves’
graph (or its mirror image because of chirality) ([17]). In this sense, Laves’ graph and
the diamond structure are very kinfolk as mathematical objects (a difference is that
the diamond structure has no chirality).

! Regarding a crystal as a system of harmonic oscillators, we may define “energy per unit cell”. See
[8], [10], [19] for the detail.

2By abuse of language, the term “diamond” is used to express its network structure throughout, not
to stand for the diamond as an actual crystal.



Here is one remark in order. The diamond twin does not belong to the family
of crystal structures of the so-called diamond polytypes (or diamond cousins in plain
language) such as Lonsdaleite (named in honor of Kathleen Lonsdale and also called
Hexagonal diamond, a rare stone of pure carbon discovered at Meteor Crater, Arizona,
in 1967). Incidentally, the network structure of Lonsdaleite—having much less symme-
try than the diamond—is a web of two types of congruent hexagonal rings; one being in
the chair conformation, and another being in the boat conformation. A shape-similarity
between the structures of diamond and Lonsdaleite is brought out when looking at the
graphite-like realizations of those structures (see the lower figures in Fig. 3), therefore
if we stick to the apparent shape, not to symmetry enshrined inward, it might be
appropriate to call Lonsdaleite the twin of diamond, but we do not adopt this view.

Figure 3: Diamond and Lonsdaleit. From https://www.webelements.com

In a nutshell, what we attempt to do in this note is to provide a specific example
that concretizes Kepler’s famous statement “At ubi materia, ibi Geometria” (where
there is matter, there is geometry).3

2. Preparation

We shall very briefly review some materials in graph theory and elementary algebraic
topology to explain the notion of building blocks associated with crystal nets. Although
the objects of our concern is 3-dimensional crystals, we deal here with crystals of general
dimension. See [18], [19] for the details.

A graph is represented by an ordered pair X = (V, E) of the set of vertices V' and
the set of all directed edges E. For a directed edge e, we denote by o(e) the origin, and
by t(e) the terminus. The inversed edge of e is denoted by €. The set of directed edges
with origin z € V is denoted by E,; i.e., E, = {e € E|o(e) = z}.

The net associated with a d-dimensional crystal is not just an infinite graph realized
in R, but a graph with a translational action of a lattice (called “period lattice”)* which

3J. Kepler, De Fundamentis Astrologiae Certioribus (Concerning the More Certain Fundamentals of
Astrology), 1601. In this regard, it is worth recalling that geometry in ancient Greece—especially
the classification of regular polyhedra that is regarded as the culmination of Euclid’s Elements—had
its source in the curiosity to the shapes of crystals, as it is often said.

4 A lattice is a discrete subgroup of the additive group R? of maximal rank. More specifically, L ¢ R?



becomes a finite graph when factored out.® The finite graph obtained by factoring out
is called the quotient graph.

We let X = (V, E) be the abstract graph associated with a d-dimensional crystal
net with a period lattice L, and let Xy = (Vp, Ey) be the quotient graph. We assign
a vector v(e) to each directed edge e in X, as follows. Choose a direct edge ¢’ in X
which corresponds to e. In the crystal net, €' is a directed line segment, so €' yields
a vector v(e) € R? which, as easily checked, does not depend upon the choice of ¢’
Obviously v(e) = —v(e).

Put E, = v(Ey;). The system of vectors {E,},cy, completely determines the
original crystal net and its period lattice. In fact, we obtain the original crystal net by
summing up vectors v(e;) for all paths (eq,...,e,) (e; € Ep) on Xy which start from a
reference vertex.® The period lattice L turns out to be the image V(H,(Xy,Z)) of the
homomorphism v : Hy (Xo, Z) — R? defined by V(Y- g @c€) = D .cp, aev(e), where
H,(Xy,Z) is the 1st homology group of Xy. Thus, the system {E,},cy, deserves to be
called the building block of the crystal.

For later purposes, we make a small remark: In the case that X is the maximal
abelian covering graph of Xy (thus d = rank H;(Xo,Z)), one may take closed paths
C1,...,¢q in Xo such that v([c1]),...,V([cq]) comprise a basis of the period lattice,
where [¢;] is the homology class represented by ¢;.

3. Building blocks of the diamond and its twin

We shall now describe explicitly the building blocks for the diamond and its twin
in the coordinate space R®. To facilitate understanding of the configurations of vec-
tors in the building blocks, we employ the cube ) as an auxiliary figure whose ver-
tices are (1,1,1),(1,-1,1), (—-1,1,1), (-1,-1,1), (1,1,-1), (1,-1,-1), (—1,1,—1),
(—1,—1,-1).

(I) The building block for the diamond twin
Let Xy be the complete graph K, with vertices A, B,C, D (see the lower figure in
Fig.4), and put

EA = {t(ov 17 1)at( 17 -1 O) ( 1)}a
Ep = {t(1’07 1)7t( 17 170) ( 1)}7
Ec = {t(_LOv 1)7t(0 1 _1) ( 1? )}a
Ep = {t(O,—l,l),t(—l,O, ) (1’17 )}7

where vectors in R? are represented by column vectors. The system {E4, Ep, Ec,Ep}
forms the building block for the diamond twin (see the upper diagrams of Fig.4). Note
that each of E4, Eg, E¢, Ep comprises an equilateral triangle in a plane with barycen-
ter o = (0,0,0). More specifically, the planes containing E4, Eg, E¢, Ep are orthogonal
to the vectors a = *(1,—1,1),b = (1,1, -1),¢c = (—-1,—-1, —1),d = {(—1,1,1), re-
spectively, from which we see that the dihedral angle of any two planes is arccos 1/3 =
70.53°.

is a lattice if there exists a basis {aj,...,a4} of R? such that L = {kja; +--- + kgqaq|k; € Z (i =
,d)}. {a1,...,aq} is called a Z-basis of L.
5This fact was pointed out by crystallographers. Mathematically, a crystal net as an abstract graph
is an infinite-fold abelian covering graph of a finite graph.
6 A path means a sequence of edges (e, ..., e,) with t(e;) = o(eir1) (i=1,...,n—1).
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Figure 4: The building block and the quotient graph for the diamond twin

In view of Fig. 4, we have v(e;) =*(—1,—-1,0), v(ez ) ( ,1,1),v(e3) =(1,0,-1)
and v(f;) = (- 1,1,0), (f2) = %0,1,— ) v(fs) = *(—=1,0,—1). As a Z-basis of
H,(Xo,Z), one can take [c1], [cs], [c3] where ¢; = (6’2,f1,€3) 02 = (es, fo,€1), €3 =
(€1, f3,€2). We then have

V([el]) =50,1,1) + “(=1,1,0) + “(=1,0,1) = 2 - (—1,1,1),
V([ea]) = (1,0, —1) + 70,1, —-1) + (1,1,0) = 2-%(1,1, —1),
V([cg]):t(— —1,0) +4(=1,0, 1) + %0, —1,—-1) = 2 - *(—~1,—1, —1),

which comprise a Z-basis of the period lattice of the diamond twin.
We let Lpr be the lattice with Z-basis *(—1,1,1), *(1,1,—1), {(—=1,—1, —1) (hence
2Lp7 is the period lattice of the diamond twin). It is checked that

Lpr = {(21, 29, 23) € Z3| 21 + 29, X9 + T3, T3+ 1 are even}.

Indeed, if we write (x1,29,23) = ki(—1,1,1) + ko(1,1, —1) + k3(—1,—1,—1), then
T1 —|—.T2 = 2(k’2 — ]{?3) To + X3 = —2k3, T3+ X1 = 2(—]{31 — kg), and ]{31 = %(l’l +£L’2) — T,
/{32 (Il—f—l'g) — T3, k‘g —%(Iz—f—l'g).

The lattice Lp7 is what is called the body-centered cubic lattice in crystallography
(look at the cube in Fig. 5 depicted by the bold lines).

! ‘d

Figure 5: Body-centered cubic lattice



(II) The building block for the diamond
Let X, be the graph with two vertices A, B joined by 4 parallel edges ey, e, €3, €4
(see the lower figure in Fig.6), and put

EA = {t<_17 17 1)7 t(17 _17 1)7t(_17 _17 _1)7 t(lu 17 _1>}7
Eg = {t(l, 1, 1),t(—1, -1, 1),t(—1, 1,—1), t(l, -1,-1)} =—
The system {E 4, Eg} forms the building block for the diamond (see the upper diagrams

of Fig.6). Note that each of E4 and Ep comprises a regular tetrahedron with barycenter
o.

Figure 6: The building block and the quotient graph for the diamond

As shown in Fig. 6, we put v(e;) = (—=1,1,1), v(es) = (1,—-1,1), v(e3) =
(—1,—1,-1), v(eq) = ¥(1,1,—1). As a Z-basis of H (X, Z), one can take [¢1], [ca],
[c3] where ¢; = (e1,€2), 2 = (ea,€3), ¢35 = (e3,€4). We then have

V([a]) =H(—=1,1,1) +1(=1,1,—-1) =2 - ¥(~1,1,0),
V([ea)) =51, —1,1) +5(1,1,1)) = 2- (1,0, 1),
V([es]) =1(—1,—-1,-1) +(~1,-1,1) = 2-%(—1,—-1,0),

which comprise a Z-basis of the period lattice of the diamond.

We let Lp be the lattice with Z-basis *(—1,1,0), (1,0, 1), *(=1,—1,0) (hence 2Lp
is the period lattice of diamond). By the same method as described in (I), it is checked
that

Lp = {(x1, 72, 73) € Z*| 1 + x5 + 73 is even}.

This is what is called the face-centered cubic lattice in crystallography (look at the cube
in Fig. 7 depicted by the bold lines).

So far, no relationship can be found between the diamond and its twin. A mutual
relation between them, though not a big deal, is observed only after considering the
union Epr = EAUEgUE-UEp for the diamond twin and the union Ep = E4UEg for
the diamond (Fig.8). Perhaps both systems of vectors may be familiar to the reader.
For instance, Ep7 is nothing but the irreducible root system As (see the next section).

The system Ep7 for the diamond twin generates the lattice Lp since Epr C Lp and
contains a basis of Lp. (Remember that 2Lp is the period lattice for the diamond, not
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Figure 7: Face-centered cubic lattice

for the diamond twin!). On the other hand, the system Ep for the diamond generates
the lattice Lpy since Ep C Lpr and contains a basis of Lpy. Hence, passing from the
building blocks to the period lattices, the role exchange between the diamond and its
twin takes place.

Epr Ep
Figure 8: Epr and Ep

Furthermore, if we denote by L* the dual (reciprocal) lattice of a lattice L C R in

general,” we have

1 1
Lpr™ ==L Lp* ==L
DT 2 D> D 9 DT

since the dual of the Z-basis {*(—1,1,1),%(1,1,-1),%(—1,—1,—1)} of Lpr is {*(—1/2,
1/2,0), %(0,1/2, —1/2),%(—1/2,0, —1/2)}. Here we should note that {*(—1,1,0),
®0,1,-1),%(—=1,0,—1)} is a Z-basis of Lp.

4. Orthogonally symmetric lattices

What is more peculiar than the facts obtained by the simple observations above is
that Lp and Lpr are orthogonally symmetric lattices, the notion that distinguishes the
diamond and its twin from all other crystal structures (with one exception).

Before embarking on this topic, we need some preparation.

We denote by S,(a) the sphere in R? of radius r, centered at a € RY. Given a
general lattice L in R?, we put a(L) := minyocy ||y||, and

K(L) = {x € L|[[x[| = a(L)},
G(L) :={g€0(d)|g(L) = L}

Since ||x —y|| > a(L) for x,y € L with x # y, we observe that {Su(r)/2(a) }ack(r) is a
family of non-overlapping spheres touching the common sphere S, (z)/2(0). Therefore

TL* = {x € R (x,y) € Z for every y € L}.



|K(L)| is less than or equal to the maximum possible kissing number k(d). It is known
that k(3) = 12,® and hence |K(L)| < 12 for a 3-dimensional lattice L. For example,

a(Z’) =1, K(Z°)={£'(1,0,0),£'(0,1,0), £'(0,0,1)}, |K(Z%)| =6,
(Lpr) = V3, K(Lpr)=Ep, |K(Lpy)| =8
(Lp) = V2, K(Lp)=Epr |K(Lp)|=12.

«
a

What we should notice is that G(Z3) = G(Lpy) = G(Lp). Indeed, these groups coin-
cide with the symmetry group Iso(@) of the cube @ introduced in the previous section,
which acts transitively on the set of vertices not only of @), but also of cuboctahedron
and of the octahedron depicted in Fig. 9.7 Actually, Iso(Q) is identified with the full
octahedral group Oy, which acts irreducibly on R3.

Figure 9:

Now, keeping in mind the three examples of lattices Z3, Lpy, Lp, we make the
following definition.

Definition 1. A lattice L in R? is said to be orthogonally symmetric if
(i) K(L) generates L,
(ii) G(L) acts transitively on K (L), and
(iii) the G(L)-action on R? is irreducible.

Notice that G(L) = {g € O(d)| g(K(L)) = K(L)} because of Condition (i), and
that G(L) contains the central reflection o : (z,y,2) — (—x, —y, —2).

As observed above, the three lattices Z3, Lpr, and Lp are orthogonally symmetric.

Typical examples of orthogonally symmetric lattices of general dimension are irre-
ducible root lattices whose properties actually motivate the definition above. For the
convenience of the reader, let us recall the definition of root lattices.

For an even lattice L, i.e., |x||* € 2Z for allx € L, welet R(L) = {x € L|||x||* = 2}.
An element x € R(L) is called a root. Clearly a(L) = /2 and R(L) = K(L).

Definition 2. An even lattice L is called a root lattice if the root system R(L) generates
L. A root lattice L is said to be irreducible if L is not a direct sum of two non-trivial
lattices.

8 This fact was conjectured correctly by Newton in a famous controversy between him and David
Gregory (1694), and was proved by Schiitte and van der Waerden in 1953.

9The cuboctahedron (also called the heptaparallelohedron or dymaxion) is one of thirteen
Archimedean solids.



Representatives of irreducible root lattices are Ay and Dy (A3 = Ds3) in the usual
notations for root systems.!® Here Ay is the lattice in the orthogonal complement
(1,...,1)* in R4 defined by
——

d+1
Ag = {($1,...,l’d+1) S Zd+1’$1 + gy = 0}_

The root system R(A4) consists of vectors such that all but two coordinates equal to
0, one coordinate equal to 1, and one equal to —1. As for Dy, it is defined as

Dd:{(xh---,wd) GZd|IE1+-~-+md even}.

The root system R(Dy,) consists of all integer vectors in R? of length /2.
Note that the root lattice Az (= Ds) coincides with Lp.!!

The following is the statement referred to in the previous section.

Proposition 1. The three lattices Z®, Lpr and Lp (up to similarity) are the only
examples of orthogonally symmetric lattices of 3-dimension.

Let L be an orthogonally symmetric lattice. It suffices to show that K (L) is one of
K(Z3), K(Lpr). K(Lp) (up to similarity).

The idea of proof is as follows.

(1) Recall the classification of finite subgroups of O(3) containing the central
reflection (z,vy, z) — (—z, —y, —z). Possible cases are:

54 X ZQ
G(L) = A4 X ZQ
Ag, X ZQ

(2) Use the crystallographic restriction, from which it follows that the last case
is excluded because G(L) contains no element of order 5. It is also concluded that
|K(L)| =6,8,or 12.

(3) Determine the configuration of vectors in K (L) in each case. This will be done
by brute-force, rather than a systematic method.
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