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1 The motivation and a brief overview of our
results
The Riemann’s zeta function and its cousins have two main natures:
1. The geometric nature (the distribution of zeros);
e The Riemann hypothesis.
2. The arithmetic nature (special values);

e The class number formula (for Riemann or Dedekind zeta func-
tions).

e The Birch and Swinnerton-Dyer conjecture (for an L-function of
an elliptic curve).

In the number theory, it has been considered two models of the zeta function.

1. The Hasse-Weil’s congruent zeta function for a smooth projective va-
riety over a finite field.

e The geometric nature = The Weil conjecture.

e The arithmetic nature = The Artin-Tate conjecture.

A Point of the theory
The Euler product
{ The Grothendieck-Lefschetz trace formula

An alternating product of the characteristic polynomials of the Frobe-
nius on étale cohomologies

2. The p-adic zeta function.

e The geometric nature = 7.

e The arithmetic nature = The Iwasawa conjecture.



A Point of the theory

The p-adic zeta function

{ The Euler system

The Iwasawa polynomial

But the model over a finite field seems to be too special a little because

we do not have the Frobenius on a number field!.

So we want to propose an another model following Ruelle and Selberg.
We will invesitigate the Ruelle L-function for a local system of rank one

over a hyperbolic threefold of finite volume. Although there is no apparent
“Frobenius”, we will show it enjoys:

1. an analogue of the Riemann hypothesis.
2. an analogue of the Iwasawa conjecture.

A Point of our theory
The Ruelle L-function
{ The Selberg trace formula

The Alexander invariant



2 The Iwasawa power series of a cyclotomic
Z,-extension

We will fix an odd prime p and will use the following notations.

Notations 2.1. 1. K, = Q((pn), (n = exp(%)
2. A, =ClUK,){p}: the p-primary part of the ideal class group of K,
3. I = Gal(Ky/K;), where Ko, = lim,, o K,,.

Here are some remarks.

1. The cyclotomic character x.y. yields an isomorphism:

2. By the action of Gal(K,/Q) ~ Fy, A, is decomposed as
Ay = &g A
where

A ={a € A, |ya =w(y)afory € Gal(K;/Q)}.
Definition 2.1. For 0 <1 < p — 2, the Iwasawa module X; is defined to be
X; = lim A3
Here the limit is taken for the norm map.

We set
Ay = Z,[[1],

which is isomorphic to a formal power series ring Z,[[s]] in a non-canonical
way. Then Iwasawa has shown:

X, is a torsion A,-module.

Let L’glg’i € A, be a generator of its characteristic ideal Chary, X;. It will
be referred as the Iwawasa power series.



3 The Alexander invariant
Let X be a topological threefold which has a sujective homomorphism:
T (X) l> Z,

and
1 (X) LU (m)

a unitary representation. Here are some notations.

Notations 3.1. 1. X, is the infinite cyclic covering of X which corre-
sponds to Kerm.

2. N = C|Z], which is isomorphic to C[t™', t] in a non-canonical way.
3. Ao = C[[s]], where s =t — 1.

In the following, we always assume:

Assumption:
dim H.(X, C), dimH (X, p) < occ.
Remark 3.1. Under the assumption Milnor has shown:

1.
H'(Xy, C) = H(Xo, p) =0, >3

and
H2(Xoo, C) =C.

2. (Milnor duality) For each 0 < i < 2, the dimension of H(Xw, p) is
finite and there is a perfect pairing

H'(X,, C) x H* (X, C) = H*(X,, C)=C

and

H' (Xo, p) x H*(Xo, p) — H* (X, C) = C.



Thus the assumption implies
“H' (X, p) is a torsion A-module.”

Let 7* be the action of t on H (X, p). We define the twisted Alexander
polynomial A,; to be the characteristic polynomial of 77

A,i(t) = detft — 7 | H(Xwo, p)]-
Remark 3.2. The characteristic ideal of H (X, p) is generated by A, ;:
Chary(H'(Xw, p)) = (Ap).
The Alexander invariant A, is defined to be

Ap70 ) Ap,2

A, = T

o1
Example 3.1. (Milnor) Let S* = S3 be a knot and X its complement. Then
H\(X, Z) = Z,
and we have an infnite cyclic covering
Xoo = X.

Moreover the dimension of H. (X, C) are finite.



4 The Iwasawa main conjecture

The cyclotomic chracter ., induces a ring homorphism:
Ap = Z,[[T]]) =¥ 2y,

by

chc(z a'y'Y) = Z a'chyc(’y)'

For an integer 0 < ¢ < p — 1, Kubota-Leopoldt, Iwasawa and Coleman
have independently constructed an element Eg”“’i (referred as the p-adic (-
function) of A, which satisfies

XeyelL3"") = (1 = p")¢ (=)

for any
reN, r=imodp—1

Remark 4.1. Special values of the Riemann zeta function at non-positive
integers are given by

B,
C(l_n):_ ) TL:].,Q,S,'”,
n

where B,, is the n-th Bernoulli number. In particular they are all rational
numbers.

Now the Iwasawa main conjecture is

Theorem 4.1. (Mazur-Wiles) For an odd i such that 0 < i < p—1, we have
(ﬁgna,i) — (Eglg,i)7

as an ideal of A,,.



5 An Iwasawa conjecture for a compact hy-
perbolic threefold

Let X be a compact hyperbolic threefold which admits an infinite cyclic
covering X,.. Thus X is a quotient of H? by a cocompact discrete subgroup
I, of PSLy(C).

Definition 5.1. For a complex number z, the Ruelle L-function is defined
to be

Ry(2) = [ [ det[t = p(y)e ],
gl
Here we have used the following conventions:

1. Closed geodesics are identified with the hyperbolic conjugacy classes of
r

g
2. The index v runs through prime closed geodesics.
3. U(v) is the length of ~.

Remark 5.1. The definition is still valid for a noncompact hyperbolic three-
fold of a finite volume.

R,(z) is absolutely convergent for Rez >> 0 and we can show that it is
meromorphically continued on the whole plane.

In the following we assume:

Assumption
HO(XOO> p) = 0.

Remark 5.2. By the Milnor duality, this implies
H*(Xo,p) = 0.

We set

L,(2) = Ap(zJFl)_l
( = det[(z+1) — 7] HI(XOO, o))



h'(p) = dim H' (X, p).

The next result is (a weak version of ) a geometric analogue of the Iwasawa
Main Conjecture.

Theorem 5.1. We have
ord,—oR,(2) = 2h'(p) < 20rd,—oL,(2),

and if the action of ™ on H (X, p) is semisimple, the identity holds. In
particular if T* is semisimple,

as an ideal of A, = C[[7]].
Next we will compare their leading terms.

Theorem 5.2. Supppose .
Hz(X7 p) =0

for each i. Then we have
|Rp(0)| = 5p|£p(0)|2-
Here b, is a certain positive constant which can be computed explicitly.

If H'(X, p) does not vanish, we need an additional structure on X.

Suppose that X is homeomorphic to a mapping torus whose fiber is a
compact Riemannian surface >:

xLs s =13,

and that the surjection

is induced from f.

Remark 5.3. In this case, X, is a product of ¥ and the real axis.



Theorem 5.3. (A limit formula) Suppose that H°(X, p) vanishes and that
the action of T* on HY(X, p) is semisimple. Then

ord,—gR,(2) = 2ord,—oL,(2) = 2h*(p),
and

lim [z O L, (2)[2 = lim |z~ DR, (2)].

z—0 z—0

Remark 5.4. 1. Without semisimplicity of 7%, we only have

2h' (p) = ord,—oR,(2) < 20rd,—oL,(2).

2. There is an example of a compact hyperbolic threefold which is a map-
ping torus. (due to W. Thurston.)
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6 An Iwasawa conjecture for a hyperbolic three-
fold of a finite volume

Let X = I'\H® be a complete hyperbolic threefold of finite volume which has
only one cusp. As before we assume that it admits an infinite cyclic covering
Xoo.

Let p be a unitary character of I'. We will treat our problem according
to its behavior at the cusp.

Let I', be the fundamental group at the cusp and p|r_, the restriction.
Theorem 6.1. Let us put h'(p) = dim H (X, p).

1. Suppose p|r., is trivial. Then

ord,—oR,(2) = —2(2h°(p) — h'(p) + 1).
2. Suppose p|r.. is nontrivial. Then
ord,—oR,(z) = 2h'(p).

Suppose there is a surjective homomorphism from I' to Z and let X, be

the corresponding infinite covering of X. Moreover suppose that all of the

dimensions of H.(X, C) and H.(X., p) are finite. Let g be a generator of
the infinite cyclic group.

Theorem 6.2. 1. Suppose that p|r,, is trivial and that H'(X, p) = 0.
Then
ord,—oR,(z) < 2(1 + ord,—oL,(2)).

2. Suppose p|r.. is nontrivial. Then
ord,—oR,(z) < 2ord,—oL,(2).

Moreover if the action of g on H' (X, p) is semisimple, they are equal.
Theorem 6.3. Suppose that p|r., is nontrivial and that h*(p) vanishes. Then
R,(0) = 7x(p)*,
where Tx (p) is the Reidemeister torsion of X and p. In particular this implies
|R,(0)] = 5p|£p<0)‘27

where 9, is the positive constant in Theorem 4.2.
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7 A philosophy of the proof

The proof of the theorems may be compared to one of the Grothendieck’s
approach to the Weil conjecture.

Let X be a proper smooth variety of dimension d over a finite field I,
and 91 the set of its closed points. The Hasse-Weil congruent zeta function
of X is defined to be

CX(t) _ H (1 . tdeg(P))’l

Pem

Here deg(P) is the extension degree of the residue filed kp of P over F,. Its
logarithmic derivative is given as

1 d

d = .
%logcx(t) = gX—(t)EgX(t) = ; | X (Fgn)|t" ™,

where | X (F;n)| is the number of F,» points of X.

Theorem 7.1. (The Grothendieck-Lefschetz Trace Formula)
Let ¢ be the action of q-th power Frobenius map on the cohomology group.

Then
2d

X ()l =Y (1) T(¢" | Hy (X, Qo)

=0

where X is the base extension of X to the algebraic closed field Fq.
By a simple computation,

d oy
a1og{]:[det —¢t | H (X, Q)Y Zt" 12 YTre[(¢" | HE (X, Q).

=0

Thus we have

z+1

- Hdet(l — ot | Hiy (X, Qi)

We have changed this argument as
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(x(t) = The Ruelle L-function

°
Frobenius = the heat operator
°
[T det(n — ot ] i, (X, Q)0
= the polynomial part of H det(1 — e_m)(_l)i+1
= The Alexander invariant i
.

The Grothendieck-Lefschetz Trace Formula = The Selberg Trace Formula.

Thus our theorem may be summerized by the following diagram:

The Selberggrace formula

The Ruelle L-function The Alexander invariant,

which is quite similar to the solution of the Weil conjecture:

The G-L Trace formula
=

The H-W congruent zeta-function A rational function.
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8 An out line of the proof of the theorems

For simplicity we will assume the nontriviality of p|r__.

Notation
1. Qﬁ( (p) : a vector bundle of j-forms on X twisted by p,
2. L*(X, @ (p)) : the space of its square integrable sections,
3. A : the positive Hodge Laplacian on L*(X, Q% (p)).
Here are some remarks.
1. The Hodge star operator induces an isomorphism of Hilbert spaces:
LAX, () = LA(X, 957()), =0, 1, M)
which commutes with A.

2. Since p|r,, is nontrivial we know that the spectrum of A consists of
only eigenvalues.

Selberg trace formula

Tee™ | LA(X, D (p)] = (1) + H;(t) + Uy (1),

where Z;(t), H;(t) and U;(t) are the identity, the hyperbolic and the unipo-
tent term, respectively.

Notation
1.

So(t) = Tracele ™| L*(X, Q%(p))]

61(t) = Tracele ™| L3(X, Q% (p))] — do(t)
2.

Ho(t) = Ho(t), Hi(t) = Hy(t) — Ho(t),
Io(t) = Zo(t), L(t)=Ti(t) — (1),

~—



In particular

do(t) = Ho(t) + Io(t) + Uo(t), 01(t) = Hi(t) + Li(t) + Us(2).

We define the derivative of the Laplace transform of a function f on R
to be

L(f)(=) = 22 / et f(t)dt,
0
if the RHS is defined.

1. Step 1. We will compute:

di,lz log R,(z) = L'(Hy)(z) — L'(¢"Hy)(z — 1) — L'(e"Hy)(z + 1).

2. Step 2. We will show:
L'(I)(2) = L'(e'ly)(z — 1) — L'(e"'Ip) (2 + 1) = 0

and
L'(U))(z) = L'(e'Up) (2 — 1) — L'(e'Up) (2 + 1)

is a polynomial.
3. Step 3. We will show
L/(51>(Z) — L’(etéo)(z — 1) — L’(etéo)(z + 1)

is a meromorphic function on the whole plane with only simple poles
whose residues are all integers. Moreover the Selberg trace formula,
Step 1 and Step 2 imply

Reszzo{diz log R,(2)} = ord,—o[L'(61)(2)—L'(¢"80) (z—1)— L' (") (z+1)].

Thus R,(z) is meromorphically continued on the whole plane.
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4. Step 4. Using the Hodge theory, we obtain
Res,—o[L'(61)(2) — L'(e"80)(z — 1) — L'(e'6o) (2 + 1)] = 2h*(p),

which implies
ord,—oR,(z) = 2h'(p).

In the course of the proof, we will also obtain

Theorem 8.1. (The Riemann hypothesis) The zeros and poles of R,(z) is,
except for finitely many of them, are located on

{s€ C|Res=—-1,0, 1}.

Remark 8.1. If p|r_ is trivial, there are another poles or zeros which derive
from the scattering term. They are corresponding to the trivial zeros of the
Riemann’s zeta function.
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