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1 The motivation and a brief overview of our

results

The Riemann’s zeta function and its cousins have two main natures:

1. The geometric nature (the distribution of zeros);

• The Riemann hypothesis.

2. The arithmetic nature (special values);

• The class number formula (for Riemann or Dedekind zeta func-
tions).

• The Birch and Swinnerton-Dyer conjecture (for an L-function of
an elliptic curve).

In the number theory, it has been considered two models of the zeta function.

1. The Hasse-Weil’s congruent zeta function for a smooth projective va-
riety over a finite field.

• The geometric nature ⇒ The Weil conjecture.

• The arithmetic nature ⇒ The Artin-Tate conjecture.

A Point of the theory

The Euler product

m The Grothendieck-Lefschetz trace formula

An alternating product of the characteristic polynomials of the Frobe-
nius on étale cohomologies

2. The p-adic zeta function.

• The geometric nature ⇒ ?.

• The arithmetic nature ⇒ The Iwasawa conjecture.
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A Point of the theory

The p-adic zeta function

m The Euler system

The Iwasawa polynomial

But the model over a finite field seems to be too special a little because

we do not have the Frobenius on a number field!.

So we want to propose an another model following Ruelle and Selberg.
We will invesitigate the Ruelle L-function for a local system of rank one
over a hyperbolic threefold of finite volume. Although there is no apparent
“Frobenius”, we will show it enjoys:

1. an analogue of the Riemann hypothesis.

2. an analogue of the Iwasawa conjecture.

A Point of our theory

The Ruelle L-function

m The Selberg trace formula

The Alexander invariant
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2 The Iwasawa power series of a cyclotomic

Zp-extension

We will fix an odd prime p and will use the following notations.

Notations 2.1. 1. Kn = Q(ζpn), ζpn = exp(2πi
pn )

2. An = Cl(Kn){p}: the p-primary part of the ideal class group of Kn,

3. Γ = Gal(K∞/K1), where K∞ = limn→∞ Kn.

Here are some remarks.

1. The cyclotomic character χcyc yields an isomorphism:

Γ
χcyc' Zp.

2. By the action of Gal(K1/Q)
ω' F×p , An is decomposed as

An = ⊕p−2
i=0 Aωi

n

where

Aωi

n = {α ∈ An | γα = ω(γ)iα for γ ∈ Gal(K1/Q)}.

Definition 2.1. For 0 ≤ i ≤ p− 2, the Iwasawa module Xi is defined to be

Xi = lim
←

Aωi

n .

Here the limit is taken for the norm map.

We set
Λp = Zp[[Γ]],

which is isomorphic to a formal power series ring Zp[[s]] in a non-canonical
way. Then Iwasawa has shown:

Xi is a torsion Λp-module.

Let Lalg,i
p ∈ Λp be a generator of its characteristic ideal CharΛpXi. It will

be referred as the Iwawasa power series.

4



3 The Alexander invariant

Let X be a topological threefold which has a sujective homomorphism:

π1(X)
π→ Z,

and
π1(X)

ρ→ U(m)

a unitary representation. Here are some notations.

Notations 3.1. 1. X∞ is the infinite cyclic covering of X which corre-
sponds to Ker π.

2. Λ = C[Z], which is isomorphic to C[t−1, t] in a non-canonical way.

3. Λ∞ = C[[s]], where s = t− 1.

In the following, we always assume:

Assumption:

dim H·(X∞, C), dim H·(X∞, ρ) < ∞.

Remark 3.1. Under the assumption Milnor has shown:

1.
H i(X∞, C) = H i(X∞, ρ) = 0, i ≥ 3

and
H2(X∞, C) = C.

2. (Milnor duality) For each 0 ≤ i ≤ 2, the dimension of H i(X∞, ρ) is
finite and there is a perfect pairing

H i(X∞, C)×H2−i(X∞, C) → H2(X∞, C) = C

and
H i(X∞, ρ)×H2−i(X∞, ρ) → H2(X∞, C) = C.
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Thus the assumption implies

“H i(X∞, ρ) is a torsion Λ-module.”

Let τ ∗ be the action of t on H i(X∞, ρ). We define the twisted Alexander
polynomial Aρ,i to be the characteristic polynomial of τ ∗:

Aρ,i(t) = det[t− τ ∗ |H i(X∞, ρ)].

Remark 3.2. The characteristic ideal of H i(X∞, ρ) is generated by Aρ,i:

CharΛ(H i(X∞, ρ)) = (Aρ,i).

The Alexander invariant Aρ is defined to be

Aρ =
Aρ,0 · Aρ,2

Aρ,1

.

Example 3.1. (Milnor) Let S1 κ→ S3 be a knot and X its complement. Then

H1(X, Z) ' Z,

and we have an infnite cyclic covering

X∞
π→ X.

Moreover the dimension of H·(X∞, C) are finite.
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4 The Iwasawa main conjecture

The cyclotomic chracter χcyc induces a ring homorphism:

Λp = Zp[[Γ]]
χcyc→ Zp,

by

χcyc(
∑

aγγ) =
∑

aγχcyc(γ).

For an integer 0 < i < p − 1, Kubota-Leopoldt, Iwasawa and Coleman
have independently constructed an element Lana,i

p (referred as the p-adic ζ-
function) of Λp which satisfies

χr
cyc(Lana,i

p ) = (1− pr)ζ(−r)

for any
r ∈ N, r ≡ i mod p− 1

Remark 4.1. Special values of the Riemann zeta function at non-positive
integers are given by

ζ(1− n) = −Bn

n
, n = 1, 2, 3, · · · ,

where Bn is the n-th Bernoulli number. In particular they are all rational
numbers.

Now the Iwasawa main conjecture is

Theorem 4.1. (Mazur-Wiles) For an odd i such that 0 < i < p−1, we have

(Lana,i
p ) = (Lalg,i

p ),

as an ideal of Λp.
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5 An Iwasawa conjecture for a compact hy-

perbolic threefold

Let X be a compact hyperbolic threefold which admits an infinite cyclic
covering X∞. Thus X is a quotient of H3 by a cocompact discrete subgroup
Γg of PSL2(C).

Definition 5.1. For a complex number z, the Ruelle L-function is defined
to be

Rρ(z) =
∏
γ

det[1− ρ(γ)e−zl(γ)]−1.

Here we have used the following conventions:

1. Closed geodesics are identified with the hyperbolic conjugacy classes of
Γg.

2. The index γ runs through prime closed geodesics.

3. l(γ) is the length of γ.

Remark 5.1. The definition is still valid for a noncompact hyperbolic three-
fold of a finite volume.

Rρ(z) is absolutely convergent for Re z >> 0 and we can show that it is
meromorphically continued on the whole plane.

In the following we assume:

Assumption
H0(X∞, ρ) = 0.

Remark 5.2. By the Milnor duality, this implies

H2(X∞, ρ) = 0.

We set

•
Lρ(z) = Aρ(z + 1)−1

( = det[(z + 1)− τ ∗ |H1(X∞, ρ)] ).
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•
h1(ρ) = dim H1(X, ρ).

The next result is (a weak version of) a geometric analogue of the Iwasawa
Main Conjecture.

Theorem 5.1. We have

ordz=0Rρ(z) = 2h1(ρ) ≤ 2ordz=0Lρ(z),

and if the action of τ ∗ on H1(X∞, ρ) is semisimple, the identity holds. In
particular if τ ∗ is semisimple,

(Rρ(z)) = (Lρ(z)2)

as an ideal of Λ∞ = C[[z]].

Next we will compare their leading terms.

Theorem 5.2. Supppose
H i(X, ρ) = 0

for each i. Then we have

|Rρ(0)| = δρ|Lρ(0)|2.

Here δρ is a certain positive constant which can be computed explicitly.

If H1(X, ρ) does not vanish, we need an additional structure on X.

Suppose that X is homeomorphic to a mapping torus whose fiber is a
compact Riemannian surface Σ:

X
f→ S1, f−1(s) = Σ,

and that the surjection
π1(X)

π→ Z

is induced from f .

Remark 5.3. In this case, X∞ is a product of Σ and the real axis.
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Theorem 5.3. (A limit formula) Suppose that H0(Σ, ρ) vanishes and that
the action of τ ∗ on H1(X, ρ) is semisimple. Then

ordz=0Rρ(z) = 2ordz=0Lρ(z) = 2h1(ρ),

and
lim
z→0

|z−h1(ρ)Lρ(z)|2 = lim
z→0

|z−2h1(ρ)Rρ(z)|.

Remark 5.4. 1. Without semisimplicity of τ ∗, we only have

2h1(ρ) = ordz=0Rρ(z) ≤ 2ordz=0Lρ(z).

2. There is an example of a compact hyperbolic threefold which is a map-
ping torus. (due to W. Thurston.)
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6 An Iwasawa conjecture for a hyperbolic three-

fold of a finite volume

Let X = Γ\H3 be a complete hyperbolic threefold of finite volume which has
only one cusp. As before we assume that it admits an infinite cyclic covering
X∞.

Let ρ be a unitary character of Γ. We will treat our problem according
to its behavior at the cusp.

Let Γ∞ be the fundamental group at the cusp and ρ|Γ∞ the restriction.

Theorem 6.1. Let us put hi(ρ) = dim H i(X, ρ).

1. Suppose ρ|Γ∞ is trivial. Then

ordz=0Rρ(z) = −2(2h0(ρ)− h1(ρ) + 1).

2. Suppose ρ|Γ∞ is nontrivial. Then

ordz=0Rρ(z) = 2h1(ρ).

Suppose there is a surjective homomorphism from Γ to Z and let X∞ be
the corresponding infinite covering of X. Moreover suppose that all of the
dimensions of H·(X∞, C) and H·(X∞, ρ) are finite. Let g be a generator of
the infinite cyclic group.

Theorem 6.2. 1. Suppose that ρ|Γ∞ is trivial and that H0(X, ρ) = 0.
Then

ordz=0Rρ(z) ≤ 2(1 + ordz=0Lρ(z)).

2. Suppose ρ|Γ∞ is nontrivial. Then

ordz=0Rρ(z) ≤ 2ordz=0Lρ(z).

Moreover if the action of g on H1(X∞, ρ) is semisimple, they are equal.

Theorem 6.3. Suppose that ρ|Γ∞ is nontrivial and that h1(ρ) vanishes. Then

Rρ(0) = τX(ρ)2,

where τX(ρ) is the Reidemeister torsion of X and ρ. In particular this implies

|Rρ(0)| = δρ|Lρ(0)|2,
where δρ is the positive constant in Theorem 4.2.

11



7 A philosophy of the proof

The proof of the theorems may be compared to one of the Grothendieck’s
approach to the Weil conjecture.

Let X be a proper smooth variety of dimension d over a finite field Fq

and M the set of its closed points. The Hasse-Weil congruent zeta function
of X is defined to be

ζX(t) =
∏

P∈M
(1− tdeg(P ))−1.

Here deg(P ) is the extension degree of the residue filed kP of P over Fq. Its
logarithmic derivative is given as

d

dt
log ζX(t) =

1

ζX(t)

d

dt
ζX(t) =

∞∑
n=1

|X(Fqn)|tn−1,

where |X(Fqn)| is the number of Fqn points of X.

Theorem 7.1. (The Grothendieck-Lefschetz Trace Formula)
Let φ be the action of q-th power Frobenius map on the cohomology group.
Then

|X(Fqn)| =
2d∑
i=0

(−1)iTr[(φn |H i
et(X, Ql)],

where X is the base extension of X to the algebraic closed field Fq.

By a simple computation,

d

dt
log{

∏
i

det(1−φt |H i
et(X, Ql))

(−1)i+1} =
∞∑

n=0

tn−1

2d∑
i=0

(−1)iTr[(φn |H i
et(X, Ql)].

Thus we have

ζX(t) =
∏

i

det(1− φt |H i
et(X, Ql))

(−1)i+1

.

We have changed this argument as
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•
ζX(t) ⇒ The Ruelle L-function

•
Frobenius ⇒ the heat operator

•
∏

i

det(1− φt |H i
et(X, Ql))

(−1)i+1

⇒ the polynomial part of
∏

i

det(1− e−t∆)(−1)i+1

+ The Alexander invariant

•

The Grothendieck-Lefschetz Trace Formula ⇒ The Selberg Trace Formula.

Thus our theorem may be summerized by the following diagram:

The Ruelle L-function
The Selberg Trace formula⇔ The Alexander invariant,

which is quite similar to the solution of the Weil conjecture:

The H-W congruent zeta-function
The G-L Trace formula⇔ A rational function.
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8 An out line of the proof of the theorems

For simplicity we will assume the nontriviality of ρ|Γ∞ .

Notation

1. Ωj
X(ρ) : a vector bundle of j-forms on X twisted by ρ,

2. L2(X, Ωj
X(ρ)) : the space of its square integrable sections,

3. ∆ : the positive Hodge Laplacian on L2(X, Ωj
X(ρ)).

Here are some remarks.

1. The Hodge star operator induces an isomorphism of Hilbert spaces:

L2(X, Ωj
X(ρ)) ' L2(X, Ω3−j

X (ρ)), j = 0, 1, (1)

which commutes with ∆.

2. Since ρ|Γ∞ is nontrivial we know that the spectrum of ∆ consists of
only eigenvalues.

Selberg trace formula

Tr[e−t∆ |L2(X, Ωj
X(ρ))] = Ij(t) +Hj(t) + Uj(t),

where Ij(t), Hj(t) and Uj(t) are the identity, the hyperbolic and the unipo-
tent term, respectively.

Notation

1.

δ0(t) = Trace[e−t∆ |L2(X, Ω0
X(ρ))]

δ1(t) = Trace[e−t∆ |L2(X, Ω1
X(ρ))]− δ0(t).

2.
H0(t) = H0(t), H1(t) = H1(t)−H0(t),

I0(t) = I0(t), I1(t) = I1(t)− I0(t),

U0(t) = U0(t), U1(t) = U1(t)− U0(t).
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In particular

δ0(t) = H0(t) + I0(t) + U0(t), δ1(t) = H1(t) + I1(t) + U1(t).

We define the derivative of the Laplace transform of a function f on R
to be

L′(f)(z) = 2z

∫ ∞

0

e−tz2

f(t)dt,

if the RHS is defined.

1. Step 1. We will compute:

d

dz
log Rρ(z) = L′(H1)(z)− L′(etH0)(z − 1)− L′(etH0)(z + 1).

2. Step 2. We will show:

L′(I1)(z)− L′(etI0)(z − 1)− L′(etI0)(z + 1) = 0

and
L′(U1)(z)− L′(etU0)(z − 1)− L′(etU0)(z + 1)

is a polynomial.

3. Step 3. We will show

L′(δ1)(z)− L′(etδ0)(z − 1)− L′(etδ0)(z + 1)

is a meromorphic function on the whole plane with only simple poles
whose residues are all integers. Moreover the Selberg trace formula,
Step 1 and Step 2 imply

Resz=0{ d

dz
log Rρ(z)} = ordz=0[L

′(δ1)(z)−L′(etδ0)(z−1)−L′(etδ0)(z+1)].

Thus Rρ(z) is meromorphically continued on the whole plane.
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4. Step 4. Using the Hodge theory, we obtain

Resz=0[L
′(δ1)(z)− L′(etδ0)(z − 1)− L′(etδ0)(z + 1)] = 2h1(ρ),

which implies
ordz=0Rρ(z) = 2h1(ρ).

In the course of the proof, we will also obtain

Theorem 8.1. (The Riemann hypothesis) The zeros and poles of Rρ(z) is,
except for finitely many of them, are located on

{s ∈ C |Re s = −1, 0, 1}.

Remark 8.1. If ρ|Γ∞ is trivial, there are another poles or zeros which derive
from the scattering term. They are corresponding to the trivial zeros of the
Riemann’s zeta function.
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