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suitable compactification

moduli spaces transversality invariants with

of “geometric objects” −−−−−−−−−−→ compatibility conditions

(non-linear elliptic PDE) intersection theory algebraic structure

Kuranishi structure associated to geometry

• quantum cohomology, Gromov-Witten invariants (Ruan-Tian, McDuff-

Salamon; Fukaya- —, J. Li-G. Tian, Ruan, Siebert) Li-Tian, Behrend-Fantechi

• Floer (co)homology for Hamiltonian systems (Floer, Hofer-Salamon, —

; Fukaya- —, G. Liu-G. Tian) with pair-of-pants product (Schwarz, ...)

• Floer (co)homology for Lagrangian intersections (Floer, Oh; Fukaya-

Oh-Ohta- —, filtered A∞-algebras, bimodules, etc.)

• SFT (Eliashberg-Givental-Hofer), ...

(suitable compactification = stable map compactification due to Kontsevich)

Note. The first two cases: intersection theory on homology level

The thrid case: intersection theory on chain level
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Symplectic manifolds

(M, ω) symplectic manifold of dimension 2n
(for simplicity, M is assumed to be closed.)

ω dω = 0, ωn 6= 0 everywhere
J almost complex structure compatible with ω, i.e.,

gJ(u, v) = ω(u, Jv) is a Riemannian metric

Locally modeled on symplectic vector space (R2n, ω0) (Darboux).

Basic examples the total space of cotangent space of a man-
ifold, Kähler manifolds, etc.

Fact. Existence, contractiblity of the space of such J’s
c1(M) = c1(TM, J) ∈ H2(M ;Z) is well-defined.
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Basic Concepts
ι : L → M Lagrangian submanifold (today: only embedding)

ι∗ω = 0, dimL =
1

2
dimM.

Examples. • curves on a 2-dimensional symplectic manifold
• the graph of a closed 1-form on a C∞-manifold X
Let Gη be the graph of η ∈ Ω1(X) (a section of T ∗X → X).

Gη ⊂ T ∗X is Lagrangian ⇔ dη = 0
• the graph of a symplectomorphism φ ∈ Symp(M, ω)
Let φ : M → M be a diffeomorphism of M and Γφ its graph. Set
(P,Ω) = (M × M,−pr∗1ω + pr∗2ω).

Γφ ⊂ P is Lagrangian ⇔ φ∗ω = ω.
• the real part of projective algebraic manifold defined over R
e.g., RPn ⊂ CPn (the fixed point set of an anti-symplectic invo-
lution)
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The Hamiltonian vector field Xh associated to h ∈ C∞(M) is

defined by

i(Xh)ω = dh.

Note. LXh
ω = 0. (Cf. LXω = 0 ⇔ i(X)ω a closed 1-form)

{X|LXω = 0}/{Hamiltonian vector fields} ∼= H1(M ;R).

H = {ht} a smooth family of functions, i.e., H : R × M → R,

ht = H(t, ·),

H
Ham v. f.Ã {Xht

} integrateÃ {ϕH
t }

Definition. ϕ ∈ Diff(M) is called a Hamiltonian diffeomorphism

iff ϕ = ϕH
1 for some H = {ht}.
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Arnold’s conjecture for fixed points of Ham diffeo

For ϕ ∈ Ham(M, ω), #Fix(ϕ) ≥ min{#Crit(h)|h ∈ C∞(M)}.
RHS = LS category of M ≥ cup-length (M)

∀p ∈ Fix(ϕ) non-deg. ⇒ #Fix(ϕ) ≥ min{#Crit(h)|h Morse}
Morse theory gives lower bound for RHS. (sum of Betti numbers,

...)

Note. Compare with the case of diffeomorphisms, homeomor-

phisms.

Analogous question for Lagrangian intersections

L ⊂ M Lagrangian submanifold, ϕ ∈ Ham(M, ω)

#L ∩ ϕ(L) ≥ min{#Crit(f)|f ∈ C∞(L)}?
L transv. φ(L) ⇒ LHS ≥ min{#Crit(f)|f Morse}?
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There are cases when (a weaker version of) estimate hold: great

circles on the round 2-sphere, the zero section of the cotangent

bundle (Laudenbach-Sikorav, Hofer)

In general, no such estimates. (e.g., small circles on the round

2-sphere) It is not only a bad news. L∩ϕ(L) = ∅ ⇒ Existence of

non-constant pseudo-holomorphic discs with boundary on L ⇒
non-existence of exact Lagrangian submanifold in Cn (Gromov),

non-degeneracy of Hofer’s distance (Chekanov, Oh, originally

due to Hofer, Lalonde-McDuff), etc.
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Set-up for Floer theory of Lagrangian intersections

L0, L1 ⊂ M such that L0 t L2

P(L0, L1) : the space of paths from L0 to L1

Define the closed 1-form α, in a formal sense, on P(L0, L1) by

αL0,L1
(ξ) =

∫ 1

0
ω

(
ξ(t), γ̇(t)

)
dt for ξ ∈ “TγP(L0, L1)

′′

Note that Zero(αL0,L1
) = L0 ∩ L1

Action functional

P̃(L0, L1)
AL0,L1→ R

↓ dAL0,L1
= π∗αL0,L1

P(L0, L1)
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Maslov-Viterbo index

There are infinitely many positive, resp. negative eigenvalues of

the Hessian operator of the action functional at critical points.

Although the usual Morse index does not make sense, we can

consider the relative index along paths joining critical points. If

we take an appropriate covering space of P̃(L0, L1), the absolute

index can be defined:

µL0,L1
: Crit(AL0,L1

) → Z
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J = {Jt} a family of compatible alm cplx str ⇒ (formal) L2-
metric
Formally, gradient flow lines are described as follows.

(Perturbed) Cauchy-Riemann equation

∂u
∂τ + J(u)∂u

∂t = 0
for u : R × [0,1] → M
u(τ, i) ∈ Li, i = 0,1

with suitable asymptotic condition at τ → ±∞.

For solutions, the energy is given by E(u) =
∫
|∂u
∂τ |

2 dτdt.
Condition for bounded flow lines

E(u) < ∞ ⇔ ∃γ ± = lim
τ→±∞

u(τ, t)

9



Floer complex (CF•, δ) CF• is Floer-Novikov completion of the

free module generated by CritA. Grading is given by µ.

δ(x) =
∑

y:µ(y)=µ(x)+1

#M(x, y)y,

where M(x, y) is the moduli space of grad. flow lines from x to

y.

Novikov ring ΛL0,L1
.

Floer-Novikov completion of the group ring of the covering trans-

formation group of P̃(L0, L1) → P(L0, L1).

(CF•, δ) is a “complex” over the Novikov ring.

Orientation issue is non-trivial in the case of Lagrangian inter-

sections.
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Floer-Novikov completion.

R: ring (later consider R containing Q)

Floer complex

CFq := {
+∞∑
i=1

aixi|ai ∈ R, xi ∈ Crit(A) s.t. (∗)}

(∗) A(xi) → +∞ (i → +∞), µ(xi) = q

Novikov ring

Γ: covering transformation group of the Floer-Novikov covering

Λ := {
+∞∑
i=0

aigi|ai ∈ R, gi ∈ Γ, s.t. (∗∗)}

(∗∗) IA(gi) → +∞ (i → +∞),

where IA(gi) = A(gi(x)) −A(x), x ∈ L̃M or P̃ (L0, L1).
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Crucial Problem. (1) δ well defined? (2) δ ◦ δ = 0?

Ham systems Floer: monotone case (c1(M) = λ[ω] for ∃λ > 0),
Hofer-Salamon, —: weakly monotone (semi-positive) case (no
J-holomorphic spheres with negative first Chern # for generic
J)
In these cases, HF•({ϕH

t }, J) ∼= H•+n(M).

Lagrangian intersection Floer: π2(M, L) = 0 ⇒ (1) and (2)
holds. Moreover, HF•(L, ϕ(L)) ∼= H•+c(L) with Z/2Z-coeff. Oh:
monotone Lagrangian submanifolds L0, L1 with min Maslov # ≥
3, monotone Lagrangian submanifold L and ϕH

1 (L) with min
Maslov # ≥ 2 ⇒ (1) and (2) hold.
∃ spectral sequence converging to HF•(L, ϕ(L)). (There are
cases when it degenerates at E2-level.)
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Hamiltonian systems Work with Q-coefficients.

Theorem.(Fukaya- —, Liu-Tian) For any closed symplectic man-

ifold, (1) and (2) holds. Moreover, HF•({ϕH
t }, J) ∼= H•+n(M ;Q)⊗

Λω.

Corollary For ϕ ∈ Ham(M, ω) only with non-deg fixed points,

#Fix(ϕ) ≥
∑
p

bp(M).
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Lagrangian case

In general, δ ◦ δ may not be 0. E.g., small circles on the round
sphere.

Obstruction theory (Fukaya-Oh-Ohta- —)
By Kuranishi structure, multi-valued perturbation technique, com-
patible system of orientations (cf. weak spin structure) ⇒ virtual
fundamental chain M(p, q). In contrast to case of Ham systems,
not only bubbling-off of J-hol spheres, but also J-hol discs (real
codimension-one phenomenon), which may cause δ ◦ δ 6= 0

Systematic study of all hol discs ⇒ obstruction classes to define
HF, filtered A∞-algebra associated to L.
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•∀ obstruction vanishes (⇔ ∃ sol. of Maurer-Cartan eq. for

filtered A∞-algebra) ⇒ HF defined by revising δ, Hamiltoinan

invariance (under suitable choice of sol. M-C eq.), ∃ spectral

sequence converging to HF•(L, L).
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Filtered A∞-algebra associated to L ⊂ M

A∞-algebra

C•: graded module. Set C[1]q := Cq+1.

mk : (C[1]•)⊗
k → C[1]• of degree 1 (after shifting degrees)

BC[1] :=
⊕

k(C[1]•)⊗
k
, bar complex

Extend mk to coderivation m̂k on BC[1] and write d̂ =
∑

k m̂k.

(C•, {mk}∞k=1) an A∞-algebra iff d̂ ◦ d̂ = 0.

Note. If mk = 0 for ∀k > 2, DGA (before shifting the degree).

intersection of chains:

transversality fails for e.g. self-intersection.

m1 usual boundary operation (up to sign)

To define m2, take intersection of chains after perturbation ⇒
associativity fails in strict sense, but holds up to homotopy.
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A few formulae

m1 ◦ m1 = 0

m1 ◦ m2 + m2 ◦ (m1 ⊗ id. ± id. ⊗ m1) = 0

m1 ◦m3 +m2 ◦ (m2⊗ id.± id.⊗m2)+m3 ◦ (m1⊗ id.⊗ id.± id.⊗m1⊗
id. ± id. ⊗ id. ⊗ m1) = 0

...

filtered case: 1 ∈ Λ0,nov ⊂ B(C[1] ⊗ Λnov)

m1 ◦ m0 = 0

m1 ◦ m1 + m2 ◦ (m0(1) ⊗ id. ± id. ⊗ m0(1)) = 0

m1 ◦m2 + m2 ◦ (m1 ⊗ id. ± id. ⊗m1) + m3 ◦ (m0(1)⊗ id. ⊗ id. ± id. ⊗
m0(1) ⊗ id. ± id. ⊗ id. ⊗ m0(1)) = 0

....
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C•(L): a suitable countably generated subcomplex of singular

chain module with the grading given by codimension of chain

(We adopt cohomological convention.)

More precisely, we deal with currents represented by singular

chains.

m1(P ) = ±∂P , m2(P1, P2) perturbed intersection of P1 and P2.

mk(P1, . . . , Pk) using parametrized family of perturbations of the

diagonal depending on P1, . . . , Pk.

Obtain A∞-algebra, which is “homotopy equivalent” to degree

shift of de Rham DGA of L.
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filtered A∞-algebras
universal Novikov ring e, T free generators, deg e = 2,degT = 0

Λnov = {
∑

aie
niTλi|ai ∈ Q, ni ∈ Z, λi → +∞}

Λ0,nov = {
∑

aie
niTλi ∈ Λnov|λi ≥ 0}.

Consider free module over Λ0,nov generated by energy zero el-
ements, its bar complex and take its completion.
Fix {βi = (λi, ni)} such that λi → +∞.
mk,βi

: (C[1]•)⊗
k → C[1]•, m̂k,βi

its extension as coderivation.
(When β = 0, mk,0 = mk. The contribution from β = 0 is “quan-
tum effect” by holomorphic discs. Our filtered A∞-algebra is
considered as “quantum deformation” of (classical) A∞-algebra.)
d̂ =

∑
k,βi

m̂k,βi
⊗ eniTλi degree 1

Here m0,β 6= 0 only when β = (λ, n) with λ > 0.

(C• ⊗ Λ0,nov, {mk,β}) filtered A∞-algebra iff d̂ ◦ d̂ = 0.
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Using b ∈ (C[1] ⊗ Λ0,nov)
0 with strictly positive energy, i.e.,

b =
∑

bie
niTλi, λi > 0, sdeg bi + 2ni = 0 for ∀i, we can de-

form the operations
mb

k,β(P1, . . . , Pk) =
∑

mk+`(b, . . . , b, P1, b, . . . , b, Pi, b, . . . , b, Pk, b, . . . , b),
where ` the number of inserted b’s in arbitrary positions.

• {mb
k,β} is also filtered A∞-structure.

Write eb :=
∑

b ⊗ · · · ⊗ b.
b sol. of Maurer-Cartan equation iff d̂(eb) = 0.

Note. This is equivalent to that mb
0,β = 0 for ∀β. Such a b is

called bounding (co)chain.
It implies that mb

1 ◦ mb
1 = 0, where mb

1 =
∑

mb
1,β. Thus (C[1]• ⊗

Λ0,nov, mb
1) is a cochain complex.
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Filtered A∞-algebra associated to L

β ∈ π2(M, L) By abuse of notation, we write β = (
∫
β ω, µL(β)),

where µL is the Maslov index.
Mk+1(β; J): moduli space of bordered stable maps of genus 0

with k + 1-marked points on boundary
Take the fiber product by the evaluation maps ev1, . . . , evk:
Mk+1(β : P1, . . . , Pk; J) = Mk+1(β; J) ×L×···×L (P1 × · · · × Pk)
Orientation issue, multi-valued perturbation, suitable countable
generated complex ...

Basic idea: Use ev0 : Mk+1(β : P1, . . . , Pk; J) → L to define mk.β.

The equation d̂◦ d̂ = 0 follows from the study of stable compact-
ification of moduli spaces of bordered stable maps of genus 0.
(C(L; Λ0,nov)

•, {mk,β}) filtered A∞-algebra associated to L. (“ho-
motopy type” is well-defined)
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φ ∈ Symp(M, ω) induces a filtered A∞-morphism φ̂∗, which is a

morphism of coalgebra BC(L,Λ0,nov))[1] → BC(φ(L),Λ0,nov))[1]

s.t.

d̂ ◦ φ̂∗ = φ̂∗ ◦ d̂.

The filtered A∞-algebra depends on choice of J, perturbation,

C•(L), etc. Introduce the notion of homotopy between filtered

A∞-morphisms, then homotopy equivalence. The homotopy

type of the filtered A∞-algebra is uniquely determined by L ⊂ M .

If ∃b ∈ C(L; Λ0,nov)
0 sol. of Maurer-Cartan equation, i.e., L is

unobstructed, mb
1 ◦mb

1 = 0 ⇒ Floer complex for (L, L) of Bott-

Morse type
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For φ ∈ Symp(M, ω), define φ∗(b) by

φ̂∗(eb) = eφ∗(b). Then b: bounding cochain ⇒ φ∗(b): bounding

cochain

We can also deform mk,β using cycles in M (infinitesimal defor-

mation or bulk/boundary deformation). If the Maurer-Cartan

equation has solutions in the filtered A∞-algebra after infinites-

imal (or bulk/boundary) deformation, L is called unobstructed

after infinitesimal deformation.

If H•(M ;Q) → H•(L;Q) is surjective, L is unobstructed after

infinitesimal deformation.
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Filtered A∞-bimodule associated to (L0, L1).
(L0, L1): Lagrangian submanifolds with clean intersection
Construct the filtered A∞-bimodule. (For simiplicity, assume
transversal intersection.) Let P

(0)
i and P

(1)
j be chains in L0 and

L1, respectively. Put marked points z
(0)
i and z

(1)
j on R × {0,1}

and consider Floer grad. flow lines u such that u(z(0)
i ) ∈ P

(0)
i

and u(z(1)
j ) ∈ P

(1)
j . (After taking stable compactification, multi-

valued perturbation in the sense of Kuranishi structure,) count
such objects to define

BC(L1,Λ0,nov)
•⊗CF •(L1, L0)⊗BC(L0,Λ0,nov)

• nk1,k0→ CF •(L1, L0).

Use d̂’s on BC(Li,Λ0,nov)
•, i = 1,0, and nk1,k0

⇒ d̂ on BC(L1,Λ0,nov)
• ⊗ CF •(L1, L0) ⊗ BC(L0,Λ0,nov)

•, which
satisfies d̂ ◦ d̂ = 0 filtered A∞-bimodule structure.
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Extend the coefficient ring from Λ0,nov to Λnov. ϕi ∈ Ham(M, ω)

induces a filtered A∞-bimodule morphism (ϕ1, ϕ0)∗, which is ho-

motopy equivalence of filtered A∞-bimodules.

If ∃bi boundings cochains for Li, i = 0,1, deform δ to

δb1,b0(·) = d̂(eb1 ⊗ · ⊗ eb0) ⇒ Floer complex CF•(L1, L0), δ
b1,b0).

Denote by HF•((L1, b1), (L0, b0). After extending the coefficient

ring to Λnov, (ϕ1, ϕ0)∗ induces

HF•((L1, b1), (L0, b0)
∼= HF•((ϕ1(L1), ϕ1∗(b1)), (ϕ0(L0), ϕ0∗(b0))
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Spectral sequence.

∃ spectral sequence E
•,•
r with E

•,•
1 = CF•(L, L) converging to

HF•((L, b)(L, b)), s.t. E
•,•
2

∼= H•(L;Q) ⊗ Λ0,nov.
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Some examples of applications.

Theorem. L: Lagrangian submanifold such that H•(M ;Q) →
H•(L;Q) is surjective. For ϕ ∈ Ham(M, ω) such that L and ϕ(L)

are transversal, #(L ∩ ϕ(L)) ≥
∑

bp(L).

Theorem. L: spin Lagrangian submanifold in (R2n, ωcan) such

that H2(L;Q) = 0. Then the Maslov class µL ∈ H1(L;Z) is

non-zero.

partial affirmative answer to Arnold-Givenal’s conjecture, ...
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An application to Audin’s conjecture.

Audin’s conjecture Let L be an embedded Lagrangian torus
in the symplectic vector space. Then its minimal Maslov number
is 2.

There are some results due to Polterovich, Viterbo, Oh concern-
ing minimal Maslov number. Also recent works by Fukaya, and
Cieliebak-Mohnke. Based on our theory, we give a partial result,
which is independently obtained by Lev Buhovsky.

Theorem. Let L be a monotone Lagrangian torus. Then its
minimal Maslov number is 2.

Here monotonicity for L means that µL : π2(M, L) → R and
ω : π2(M, L) → R are positively proportional.
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suitable compactification

moduli spaces transversality invariants with

of “geometric objects” −−−−−−−−−−→ compatibility conditions

(non-linear elliptic PDE) intersection theory algebraic structure

Kuranishi structure associated to geometry

• quantum cohomology, Gromov-Witten invariants (Ruan-Tian, McDuff-

Salamon; Fukaya- —, J. Li-G. Tian, Ruan, Siebert)

• Floer (co)homology for Hamiltonian systems (Floer, Hofer-Salamon,

—; Fukaya- —, G. Liu-G. Tian) with pair-of-pants product (Schwarz, ...)

• Floer (co)homology for Lagrangian intersections (Floer, Oh; Fukaya-

Oh-Ohta- —, filtered A∞-algebras, bimodules, etc.)

• SFT (Eliashberg-Givental-Hofer), ...

(suitable compactification = stable map compactification due to Kontsevich)

Note. The first two cases: intersection theory on homology level

The thrid case: intersection theory on chain level
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Appendix

Stable maps and compactification of moduli spaces
stable maps (Kontsevich)
Σ pre-stable curve (at worst nodes) with possibly marked points
on non-sing part, p : Σ̃ =

⋃
Σ̃i → Σ normalization

f : Σ → M stable map iff f is continuous, f ◦p is J-hol on each Σ̃i

and #Aut(f) = #{φ| automorphism of Σ s.t. f ◦ φ = f} < ∞.

Fundamental Theorem The moduli space Mg,k(α, J) of stable
maps is a compact Hausdorff space. Here g = genus of Σ, k =
#marked points, α ∈ H2(M ;Z).

We have analogous notions and results for grad. flow lines
in Floer theory and for bordered J-holomorphic map with La-
grangian condition.
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In general, transversality fails, especially at infinity of (uncom-

pactified) moduli spaces. (e.g., bubbling-off of multiple cover of

J-hol sphere with negative c1(M)- number) In order to overcome

this trouble, use Kuranishi structure machinery.
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Kuranishi structure

A Kuranishi structure on a compact metrizable space X is a

compatible system of local models.

(U, E,Γ, s, ψ): Kuranishi neighborhood of x ∈ X

U open subset of Rm, Γ finite group, E = U × Rk → U Γ-equiv.

vector bundle, s Γ-invariant single-valued section of E → U ,

ψ : s−1(0) → X homeo onto its image s.t. x ∈ Imψ.

coordinate change from (U, E,Γ, s, ψ) to (U ′, E′,Γ′, s′, ψ′)
Γ → Γ′ injective homomorphism

E ⊂ E′ (Γ,Γ′)-equivariant embedding

↓ ↓ (TU ′|U)/TU ∼= (E′|U)/E
U ⊂ U ′ (Γ,Γ′)-equivariant embedding

s is the restriction of s′. rankE−dimU = rankE′−dimU ′ Require

certain compatiblity condition for coordinate changes
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Taking compatible system of multi-valued perturbation of s,

obtain virtual fundamental chain [X]vir over Q from X with

oriented Kuranishi structure. (X with Kuranishi structure “with-

out boundary” ⇒ virtual fundamental cycle. )
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Stable maps and compactification of moduli spaces

stable maps (Kontsevich)

Σ pre-stable curve (at worst nodes) with possibly marked points

on non-sing part, p : Σ̃ =
⋃

Σ̃i → Σ normalization

f : Σ → M stable map iff f is continuous, f ◦p is J-hol on each Σ̃i

and #Aut(f) = #{φ| automorphism of Σ s.t. f ◦ φ = f} < ∞.

Fundamental Theorem The moduli space Mg,k(α, J) of stable

maps is a compact Hausdorff space. Here g = genus of Σ, k =

#marked points, α ∈ H2(M ;Z).

We have analogous notions and results for grad. flow lines

in Floer theory and for bordered J-holomorphic map with La-

grangian condition.
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In general, transversality fails at infinity of (uncompactified)
moduli spaces. (e.g., bubbling-off of multiple cover of J-hol
sphere with negative c1(M)- number) In order to overcome this
trouble, use Kuranishi structure machinery.

Before compactification:
∂Ju = 0 (non-linear elliptic PDE) ⇒ Fredholm set-up (approxi-
mation by finite dimensional models) ⇒ Kuranishi neighborhood

stable map compactification (#Aut finite):
gluing theorem with index computation, etc ⇒ Kuranishi neigh-
borhood

Obtain a compatible system of Kuranishi neighborhood, i.e., Ku-
ranishi structure.
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Σ without boundary ⇒ bubbling-off of hol sphere, degeneration

are real codimension-two or more ⇒ Mg,k(α, J) carries virtual

fundamental cycle

⇒ G-W invariants with Kontsevich-Manin’s axiom (except mo-

tivic axiom), quantum cohomology and its associativity.

Floer complex for Hamiltonian systems ⇒ [M(p, q)]vir enjoy ex-

pected properties (essentially, lack of compactness in codimension-

one:broken grad. flow lines) ⇒ HF•(H, J), invariance under Ham

deformations, etc

For computation, pick ht ≡ h C2-small Morse function. S1-

symmetry in Kuranishi structure ⇒ HF•(H, J) ∼= H•+n(M ;Q) ⊗
Λω(Similar argument works for {φt} with small flux.)
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