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Quantum field theory:
Study of Wightman fields

— Operator-valued distributions on spacetime
with covariance with respect to spacetime sym-
metry group

AQFT (Algebraic Quantum Field Theory) is
an operator algebraic approach to quantum
field theory using a family of operator algebras
and it has a history of more than 40 years.

Full/chiral/boundary conformal field theories
are studied in a unified framework in AQFT
and we obtain classification results up to iso-
morphism for all of these for ¢ < 1.

Our operator algebras (of bounded linear oper-
ators on a Hilbert space) are simple von Neu-
mann algebras and they are called factors. The
Jones theory of subfactors plays an important
role here.



Full CFT in AQFT:

We consider rectangles O with edges parallel
tot = £z in (1 4+ 1)-dim Minkowski space as
in the following picture.

Suppose we have operator-valued distributions
¢$. Take test functions ¢ with supports in O.
We get many (unbounded) operators as (P, ).
Fix O and consider the operator algebra A(O)
of bounded linear operators generated by these
operators. In this way, we get a family {A(O)}
of operator algebras parameterized by space-
time regions O (rectangles).



Boundary CFT:

We consider half-space {(z,t) | x > 0} and only
rectangles O contained in this half-space.

tn
O

In this way, we have a similar family of operator
algebras {A(O)}.

The choice of the spacetime symmetry is not
unique, and we can use the Poincaré symmetry,
for example, but in CFT, we use conformal
symmetry, (diffeomorphism covariance).

Full CFT restricts to two chiral theories on the
light cones {x = +t}. In this way, we have a
chiral CFT on the compactified Sl
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In chiral CFT, our “spacetime” is Sl and a
“spacetime region” is an interval I.

I— A(I) C B(H)
von Neumann algebra
(factor)

We have a family {A(I)} of operator algebras
on a Hilbert space H. These operator algebras
are called factors, and {A(I)} is called a net of
factors. In the usual situation, all the algebras
A(I) are mutually isomorphic for all nets A.

(L ICJ= AU) C A(J)
(2) [locality] INJ =2 = [A(]), A(J)] =0
(3)[covariance] ug A(Iu} = A(gI) for g € Diff(S1)

(4) vacuum vector 2 € H and positive energy



Comparison with a vertex operator algebra:

A vertex operator algebra (VOA) is an alge-
braic axiomatization of Wightman fields on st

Both of one VOA and one net of factors should
describe a chiral conformal field theory. So
VOA's (with unitarity) and nets of factors should
be in a bijective correspondence, at least under
some “nice” conditions, but no general theo-
rems have been known. (We have some can-
didates for the “nice” conditions.)

However, if we have one construction on one
side, we can usually “translate” it to the other
side, though it can be highly non-trivial from a
technical viewpoint. Fundamental methods of
constructions in the two approaches are listed:

VOA net of factors
Kac-Moody/Virasoro algebras — A. Wassermann...
integral lattices — Dong-Xu
orbifold — Xu
coset — Xu
— Q-system (K-Longo)
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Important tool to study nets of factors is a
representation theory. All A(I)'s act on the
initial Hilbert space H from the beginning, but
we also consider their representations on an-
other Hilbert space, that is, a family {x;} of
representations =y : A(I) — B(K), where K is
another Hilbert space, common for all I. A
representation of a net of factors corresponds
to a module over a VOA.

Each representation {x;} is in a bijective corre-
spondence to a certain endomorphism A\ of an
infinite dimensional operator algebra, and we
can restrict A to a single factor A(I) for an ar-
bitrarily fixed interval I. Then A(A(1)) C A(I)
IS a subfactor and we have its Jones index. Its
square root is the dimension of the represen-
tation (Longo).

We can also compose endomorphisms and this
composition gives a notion of tensor products
(Doplicher-Haag-Roberts + Fredenhagen-Rehren-
Schroer). We then get a braided tensor cate-

gory.
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In representation theory of VOA (and also of a
quantum group), it happens that we have only
finitely many irreducible representations. Such
finiteness is often called rationality.

K-Longo-Miiger (CMP 2001) gave an opera-
tor algebraic characterization of such rational-
ity for a net {A(I)} of factors and it is called

complete rationality.
I

I3 Iy

Iy

We split the circle into Iy, 1,13,14 as above.
Then complete rationality is given by the finite-
ness of the Jones index for a subfactor

A(I1) vV A(I3) C (A(I2) V A(14))'

where /' means the commutant. Then we au-
tomatically get a modular tensor category.
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For an inclusion of nets of factors, A(I) C
B(I), we have an induction procedure analo-
gous to the group representation. This proce-
dure is called the a-induction and depends a
choice of braiding, so we write ot and a—.

[Longo-Rehren, Xu] + Ocneanu
— BoOckenhauer-Evans-K (CMP 1999)

oF
P
Rep. A(I) Z?}’)'
T
(8%

The intersection of the images of at induction
and o~ induction gives the true representation
category of {B(I)}. The others are called soli-
ton sectors.
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A modular tensor category produces a unitary
representation = of SL(2,7Z) through its braid-
ing, and its dimension is the number of irre-
ducible objects. So a completely rational net
of factors produces such a unitary representa-
tion. This is not irreducible in general, but is
often almost irreducible.

Bockenhauer-Evans-K (CMP 1999) have shown
that the matrix (Z) ,) defined by

Zy,, = dim Hom(aj’,a;)

IS in the commutant of the representation .
(using Ocneanu’s graphical calculus).

Such a matrix Z is called a modular invari-
ant, and we have only finitely many such Z
for a given w. For any completely rational net
{A(I)}, any extension {B(I) D A(I)} produces
such Z. Matrices Z are much easier to classify
than extensions.



10
Classification of chiral CFT with ¢ < 1:

For a net of factors, we can naturally define
a central charge and it is known to take dis-
crete values below 1. We have the Virasoro
net {Vir.(I)} for such ¢ and it corresponds to
the Virasoro VOA. Any net of factors {A(I)}
with central charge ¢ < 1 is an extension of the
Virasoro net with the same central charge and
it is automatically completely rational. So we
can apply the above theory and we get the fol-
lowing complete classification list. (K-Longo,
Ann. Math. 2004)

(1) Virasoro nets {Vir.(I)} with ¢ < 1

(2) Simple current extensions of the Virasoro
nets with index 2

(3) Four exceptionals at ¢ = 21/22, 25/26,
144/145, 154/155

They are labeled with pairs of A-Dy,-FEg g Dynkin
diagrams — McKay correspondence.
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Three in (3) are identified with coset mod-
els, but the other does not seem to be re-
lated to any other known constructions. This
IS constructed with “extension by Q-system’ .
A Q-system of Longo is a certain analogue of
a Hopf algebra, and is essentially same as an
“algebra in a tensor category’.

From a viewpoint of tensor category, the above
classification problem of extensions of a com-
pletely rational net of factors is the same as
the following problem for VOA. (cf. Huang-
Kirillov-Lepowsky)

Let V be a (rational) VOA and W; be its irre-
ducible modules. Classify VOA's arising from
putting a VOA structure on &, n;W; and using
the same Virasoro element, where n; is multi-
plicity and Wg =V, ng = 1.

So the above classification theorem solves a
classification problem of such extensions of the
Virasoro VOA’'s with ¢ < 1.
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Classification of full CFT with ¢ < 1:

Using the above results and more techniques,
we can also completely classify full conformal
field theories within AQFT framework for the
case c < 1.

Full conformal field theories are given as cer-
tain nets of factors on 14+ 1-dimensional Minkowski
space. Under natural symmetry and maximal-
ity conditions, those with ¢ < 1 are completely
labeled with the pairs of A-D-FE Dynkin di-
agrams with the difference of their Coxeter
numbers equal to 1. (K-Longo, CMP 2004).
We now naturally have Dopy1, E7 as labels,
unlike the chiral case.

The main difficulty in our work lies in prov-
iINng uniqgueness of the structure for each ma-
trix in the Cappelli-Itzykson-Zuber list. This is
done through 2-cohomology vanishing for cer-
tain tensor categories.
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Classification of boundary CFT with ¢ < 1:

Using the above results and further techniques,
we can also completely classify boundary con-
formal field theories for the case ¢ < 1.

Boundary conformal field theories are given as
certain nets of factors on a 1 4+ 1-dimensional
Minkowski half-space. Under a natural max-
imality condition, these with ¢ < 1 are com-
pletely labeled with the pairs of A-D-FE Dynkin
diagrams with distinguished vertices having the
difference of their Coxeter numbers equal to 1.
(K-Longo-Pennig-Rehren, to appear in CMP).

“Chiral fields” in boundary CFT should pro-
duce a net of factors on the boundary (which is
compactified to S1) as in the AQFT approach
of Longo-Rehren. Then a general boundary
CFT restricts to the boundary to produce a
non-local extension of this chiral conformal field
theory on the boundary.
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Classification of N = 1 super CFT with
c < 3/2:

We obtain a super-local net by replacing the
commutator in the locality axiom with a su-
percommutator. The net now has a Z/2Z-
grading, the even and odd parts.

The ordinary Virasoro algebra:
C
[Lim, Ln] = (m —n) Ly, 1y + Em(m2 — 1)bm.—n,

where m,n € Z and c is central.

For the Ramond/Neveu-Schwarz algebras, we
have extra relations,

[Lm7 G?“] — (% T T) Gm—l—ra

1
(Gr,Gs} = 2Loq,+ 2 <7°2 - Z) 51 s,

where we have r,s € Z for the Ramond alge-
bra and r,s € Z + 1/2 for the Neveu-Schwarz
algebra.
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We now have discrete values for ¢ up to 3/2.
The values below 3/2 are again realized with
coset construction, as in the case of the Vi-
rasoro nets with ¢ < 1. Then we can classify
their extensions of the ‘“super-Virasoro nets”
again with modular invariants and @Q-system.

Now classification of modular invariants is more
complicated due to existence of a “fixed point”
of a symmetry in the fusion rules, but tech-
niqgue of Gannon-Walton with an extra care
applies.

Then now the extensions are labeled with the
pairs of A-Dy,-Egg Dynkin diagrams with the
difference of their Coxeter numbers equal to
2. Besides the super-Virasoro nets and their
(easy) extensions of index 2, we have six ex-
ceptionals related to Eg and Eg. (Carpi-K-
Longo) (These are also understood as mirror
extensions in the sense of Xu.)
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Moonshine Conjecture (Conway-Norton 1979)

Mysterious relations between finite simple groups
and modular functions (since McKay)

Monster: the largest among 26 sporadic finite
simple groups whose order is about 8 x 10°3

Its non-trivial irreducible representation having
the smallest dimension is 196883 dimensional.

The following function, called j-function, has
been classically studied.

j(r) = ¢ 14744 + 1968844 +
21493760¢° + 864299970¢° + - - -

For ¢ = exp(2mit), Im 7 > 0, we have mod-

. . . /aT + b
ular invariance property, j(7) = j( ) for
ct + d

( CCL Z) € SL(2,7), and this is the only func-
tion satisfying this property and starting with

g~ 1, up to freedom of the constant term.
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McKay noticed 196884 = 196883+ 1, and sim-
ilar simple relations for other coefficients of the
g7-function and dimensions of irreducible repre-
sentations of the Monster group turned out
to be true. Then Conway-Norton formulated
the Moonshine conjecture roughly as follows,
which has been now proved by Borcherds in
1992.

(1) We have a “natural” infinite dimensional
graded vector space V = ?f:o V., with some
algebraic structure having a Monster action
preserving the grading and each V, is finite

dimensional.

(2) For any element g in the Monster, the
power series 25 o(Tr gl )g"~! is a special
function called a Hauptmodul for some discrete
subgroup of SL(2,R). When g is the identity
element, we obtain the j-function minus con-
stant term 744.
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Construction of Frenkel-Lepowsky-Meurman
(1984) of the Moonshine VOA for part (1):

Leech lattice A: an exceptional lattice in di-
mension 24

= lattice VOA Vi, which is “close” to our final
object

We take a fixed point algebra under a natural
action of Z/27Z, and then make a simple cur-
rent extension of order 2. The resulting VOA
is the Moonshine VOA V1. (Twisted orbifold
construction). The series > 02 4(dim Vi)gn 1
is indeed the j-function minus constant term
744,

Miyamoto’s new construction (2004): realiza-
tion of VI as an extension of a tensor power of
the Virasoro VOA with ¢ = 1/2, L(1/2,0)®48
(based on Dong-Mason-Zhu). This kind of ex-
tension of a Virasoro tensor power is called a
framed VOA.
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Operator algebraic counterpart:
K-Longo (Adv. Math. 2006)

We realize a Leech lattice net of factors on
St as an extension of Viry ,®%8 using certain
Ziy-code. Then we can perform the twisted
orbifold construction to get a net of factors,
the Moonshine net A%. Theory of a-induction
IS used for getting various decompositions. We
then get a Miyamoto-type description of this
construction, as a counterpart of the framed
VOA'’s. We then obtain the following proper-
ties.

(1) c=24
(2) Representation theory is trivial
(3) The automorphism group is the Monster

(4) Hauptmodul property (as above)
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Outline of the proof is as follows.
(1), (2) are easy.

Property (3) is the most difficult part. For the
Virasoro VOA L(1/2,0), the energy-momentum
tensor is indeed a well-behaved Wightman field
and smeared fields produce the Virasoro net
Virl/z. This nice property passes to the entire
VOA and we can prove that the automorphism
group as a VOA and the automorphism group
as a net of factors are the same. Then (4) is
now a trivial corollary of the Borcherds theo-
rem.

Still, these examples are treated with various
tricks case by case. We expect a bijective cor-
respondence between VOA’s and nets of fac-
tors on S! under some nice conditions. The
Co-finiteness condition of Zhu (with unitarity)
for VOA and our complete rationality for nets
of factors seem to be such “nice” conditions,
but we do not know much vet.



