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Vı́ctor Hugo Yañez (Ehime University)∗

Abstract
Continuing the classical work of Bohr on almost periodic func-

tions, in 1940 von Neumann introduced the concept of a minimally
almost periodic (MinAP) group. A topological group is MinAP if all
its non-trivial homomorphisms to a compact group are discontinuous.
Around the same time, the 5th problem of Hilbert was resolved in
the works of Gleason, Montgomery-Zippin and Yamabe who proved
that Lie groups are precisely the locally compact NSS groups. A
topological group is NSS if it has a neighbourhood of its identity con-
taining no non-trivial subgroup. We examine the history of MinAP
groups, from von Neumann to the recent progress of Dikranjan and
Shakhmatov. By looking for a connection between NSS and MinAP
topological groups, we are led to compare groups described by their
small subgroups, with those described by their continuous homomor-
phisms.

1. Notations and preliminaries
We assume that every topological space is Hausdorff. If X is a topological space,
given A ⊆ X we denote by clX(A) the closure of A in X. If G is a group and
g ∈ G is an element of G we denote by 〈g〉 the smallest subgroup of G containing
g. A group is said to be Abelian if its operation is commutative.

For a group G with an operation ·G, there is a natural product mapping
mG : G×G→ G such that mG(x, y) = x ·G y for all x, y ∈ G. Similarly, there is
an inversion mapping inG : G→ G such that inG(x) = x−1 for all x ∈ G.

A topology τ defined on a group G is a group topology on G if the product
mapping mG and the inversion mapping iG are continuous in the topological
product (G, τ)× (G, τ) and in the topology τ for G respectively. The pair (G, τ)
of a group with such a topology is called a topological group. In what follows,
when we refer to a group G as being a topological group (without specifying τ),
we assume the group G to be equipped with some Hausdorff group topology.

Symbols Z and C denote the groups of integer and complex numbers, respec-
tively.
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N denotes the set of natural numbers, and P its subset of prime numbers.

Definition 1.1. Let G be an Abelian group and p ∈ P ∪ {0}.

(i) A subset X of G is said to be p-independent provided that for every n ∈
N, each pairwise distinct elements x1, . . . , xn ∈ X and arbitrary integers
m1, . . . ,mn ∈ Z, the equation

∑n
i=1mixi = 0 implies that mi ≡ 0 (mod p)

for all i = 1, . . . , n.

(ii) The symbol rp(G) denotes the maximal cardinality of a p-independent sub-
set of G (which exists by Zorn’s lemma).

(iii) The cardinal rp(G) is called the p-rank of G.

(iv) The cardinal r(G) = r0(G) +
∑

p∈P rp(G) is called the rank of G.

2. Hilbert’s Fifth Problem and topological groups without
small subgroups (NSS groups)

Definition 2.1. Let G be a topological group. We say that G has no small
subgroups (commonly abbreviated to NSS) if there exists an open neighbourhood
of the identity of G containing no non-trivial subgroups of G.

The class of NSS groups played a fundamental role for the solution of the
classical 5th problem of Hilbert from the 1900s. This classical problem was in
regard to a characterization for locally compact groups which are simultaneously
topological manifolds (known commonly as Lie groups). The solution, which is
due to Gleason [11], Montgomery-Zippin [15] and Yamabe [26], involved the class
of groups from Definition 2.1:

Theorem 2.2. A topological group is Lie if and only if it is both locally compact
and NSS.

3. Topological groups described by their continuous homo-
morphisms

3.1. Von Neumann’s work on almost periodic functions

For a topological space X, the set B(X) denotes the family of all bounded
complex-valued continuous functions on X equipped with the topology of uniform
convergence. Given a topological group G, an element g ∈ G and a complex-
valued function f on G, we define the translation of f by g as the function
fg : G→ C satisfying fg(x) = f(xg) for all x ∈ G.

Definition 3.1. Let G be a topological group. A function f ∈ B(G) is almost
periodic if every sequence {fgn : n ∈ N} of translations of f by elements gn ∈ G
(n ∈ N) has a subsequence which is uniformly convergent in B(G).

Real-valued almost periodic functions play a central role in the works of Bohr
pertaining to harmonic analysis, and years later the same concept was considered
by von Neumann in the context of complex-valued functions. In [17, Theorem
36(i)], von Neumann proved that the family of all almost periodic functions of a
topological group G separate its points when G is either compact or locally com-
pact Abelian (and separable). This result motivated the following two concepts:



Definition 3.2 ([17, Definition 16]). A topological group G is called:

(a) maximally almost periodic (MAP) if its family of almost periodic functions
separates its points.

(b) minimally almost periodic (MinAP) if its family of almost periodic functions
is comprised of only the constant functions.

The above mentioned result of von Neumann implies that compact groups and
(separable) locally compact Abelian groups are MAP. von Neumann also showed
that almost periodic functions can be replaced by continuous homomorphisms in
Definition 3.2:

Theorem 3.3 ([17, Theorem 3](i)). Let G be a topological group.

(i) G is MinAP if and only if it admits no non-trivial continuous homomor-
phism to a unitary group.

(ii) G is MAP if and only if the family of continuous homomorphisms to unitary
groups separate its points.

By the classical Peter-Weyl-van Kampen theorem, every compact group is
isomorphic to a closed subgroup of a product of unitary groups, so Theorem 3.3
can be reformulated as follows:

Corollary 3.4. Let G be a topological group.

(i) G is MinAP if and only if it admits no non-trivial continuous homomor-
phism to a compact group.

(ii) G is MAP if and only if the family of continuous homomorphisms to com-
pact groups separate its points.

In [18], von Neumann and Wigner focus on the class of minimally almost
periodic groups. In their paper, they construct a handful of examples of minimally
almost periodic groups [18, Section 5] via linear transformations. They note,
however, that constructing groups in this class is not a trivial effort.

The class of minimally almost periodic groups gained a great deal of attention
from experts in topological group theory thanks to two high-profile open problems
which we shall describe in the next two subsections.

3.2. The connection of MinAP groups to extreme amenability

The first problem is related to the concept of extremely amenable groups.

Definition 3.5. A topological group is extremely amenable (or satisfies the fixed
point in compacta property) if every continuous action of it on a compact space
admits a fixed point.

Extremely amenable groups appeared in the context of Harmonic Analysis
and Dynamical Systems (see [10, 19]). These groups are intimately connected to
the class of MinAP groups by the following fact:

Fact 3.6. Every extremely amenable group is minimally almost periodic.



It is known that the converse implication does not hold in general. However,
whether the converse implication holds or not in the realm of Abelian groups
remains as a major open problem to this day:

Problem 3.7 (Pestov, 1998). Is every Abelian MinAP topological group ex-
tremely amenable?

A topological group is monothetic if it contains a dense subgroup which is
isomorphic to the group of integers. Every monothetic group is Abelian. The
following particular version of Problem 3.7 was posed by Glasner as far back as
1988:

Problem 3.8 (Glasner, 1988). Must every monothetic MinAP topological group
be extremely amenable?

This particular version of Glasner has important implications in number the-
ory. A negative answer to Problem 3.8 of Glasner would provide an answer to
the following ancient problem (see [24]) of combinatoric number theory:

Problem 3.9. If S is a big set of the integers, is it true that the difference S−S
is a Bohr neighbourhood of 0?

Problems 3.7, 3.8 and 3.9 are still open.

3.3. Algebraic structure of MinAP groups

The difficulty in the construction of MinAP groups sparked a great deal of interest
in regards to their algebraic structure. First examples of MinAP groups were
the additive groups of some topological vector spaces [3], as explained in [14].
Nienhuys [16] constructed a connected monothetic group of cardinality at most
continuum which is minimally almost periodic. This implies the existence of a
MinAP group topology on the group Z of integers.

In 1984 Protasov posed the question of whether every Abelian group admits a
minimally almost periodic group topology. In 1989 Remus provided an example
of a bounded Abelian group which does not admit a MinAP group topology, so
Comfort proposed the following modification of the original question of Protasov:

Problem 3.10 (Comfort, 1990 [1, Question 521]). Does every Abelian group
which is not of bounded order admit a minimally almost periodic group topology?

The bounded case was resolved by Gabriyelyan [9] who showed that a bounded
Abelian group admits a minimally almost periodic group topology if and only if
all of its leading Ulm-Kaplansky invariants are infinite. The general case was
resolved by Dikranjan and Shakhmatov [6] in 2014:

Theorem 3.11 (Dikranjan-Shakhmatov [6, Theorem 3.3]). For an Abelian group
G, the following conditions are equivalent:

(i) G admits a minimally almost periodic group topology;

(ii) G is connected with respect to its Markov-Zariski group topology [5];

(iii) for every n ∈ N, the subgroup nG = {ng : g ∈ G} of G is either trivial or
infinite.



3.4. Classes MinAP(C) for various classes C of topological groups

The author proposed the following terminology in [25]:

Definition 3.12. Let C denote a class of topological groups. We say that a
topological group is MinAP(C) (or satisfies the MinAP(C) property) if the only
continuous homomorphism to a group contained in the class C is the trivial ho-
momorphism.

The following remark is obtained from Corollary 3.4 in this new terminology:

Remark 3.13. The class of MinAP(Compact) topological groups coincides with
the class of MinAP topological groups of von Neumann.

We are interested in finding natural classes C of topological groups for which
the class of MinAP(C) groups becomes a proper subclass of MinAP groups. A
necessary condition for this is that C has at least one group which is not MAP.

Naturally, if a class D is a subclass of C, then

MinAP(C)→ MinAP(D).

Theorem 3.14 ([25]). The following diagram describes implications for all topo-
logical groups. In Figure 1 below LC stands for “locally compact”.

MinAP(LC) + MinAP(NSS)

MinAP(LC) MinAP(Lie) MinAP(NSS)

MinAP

MinAP(Compact)

8 72

1

6 5

3

4

Figure 1: Diagram of implications between MinAP(C) properties

Arrows 2–7 are not reversible in general. The reversibility of arrow 1 is unclear.
For Abelian groups, arrows 1 and 5 of Figure 1 become reversible:

Theorem 3.15 ([25]). For an Abelian topological group G, properties MinAP,
MinAP(Locally compact) and MinAP(Lie) are equivalent.

4. Topological groups with many small subgroups
4.1. The property DW of Dierolf and Warken

Definition 4.1 (Implicitly used in [4]). Let G be a topological group. We say
that G satisfies property DW if for every open neighbourhood U of the identity
of G, every element g ∈ G can be written as g =

∏n
i=1 xi for some x1, . . . , xn ∈ G

such that 〈xi〉 ⊆ U for i = 1, . . . , n.

In [4, Proof of Theorem 1.1], Dierolf and Warken essentially prove the following



Proposition 4.2. A topological group with property DW is MinAP.

The original theorem of Dierolf and Warken [4] can thus be stated as follows:

Theorem 4.3 ([4, Theorem 1.1]). Every topological group G is topologically iso-
morphic to a closed subgroup of some topological group HG (depending on G)
which satisfies property DW. As a consequence, the group HG is MinAP.

4.2. The SSGP property of Gould

Gould [12] isolated Proposition 4.2 from the result of Dierolf and Warken and
considered the following class of topological groups:

Definition 4.4 (Originally by Gould [12]). A topological group G has the small
subgroup generating property (SSGP) if and only if for every open neighbourhood
U of the identity of G, the set of all g ∈ G such that g =

∏n
i=1 xi for some

elements x1, . . . , xn ∈ U satisfying 〈xi〉 ⊆ U (i = 1, . . . , n), is dense in G.

The difference between the SSGP property of Gould and property DW used
by Dierolf and Warken is subtle, but none the less non-trivial. Property DW is
an algebraic expression for all elements of the group depending on the neighbour-
hoods of the identity. Meanwhile, in Definition 4.4, the requirement is that the
set of elements which can be represented in the way proposed in property DW
is topologically dense. Gould [12] proved that every SSGP topological group is
MinAP, so

DW→ SSGP→ MinAP. (1)

Theorem 4.5 ([22]). For groups of bounded order, properties SSGP and DW
coincide.

4.3. A family of SSGP(α) properties of Dikranjan and Shakhmatov

Dikranjan and Shakhmatov invented an operator-based approach to define an
entire series of SSGP-type properties in [8]. This operator (denoted by SG for a
topological group G) was designed along with a series of very carefully crafted

iterations (which are denoted by S
(α)
G for every ordinal α). The iterations of this

operator are monotone with respect to subsets and with respect to ordinals:

Proposition 4.6 ([8, Lemma 4.5, Lemma 4.8]). The following hold:

(i) The operator S
(α)
G is monotone with respect to subsets. So X ⊆ Y ⊆ G

implies that S
(α)
G (X) ⊆ S

(α)
G (Y ) ⊆ S

(α)
G (G).

(ii) The operators S
(α)
G are monotone with respect to ordinals. So β ≤ α implies

that S
(β)
G (X) ⊆ S

(α)
G (X) for all X ⊆ G.

With this iterated operator, they define the following:

Definition 4.7 (Dikranjan-Shakhmatov [8]). A topological group G is SSGP(α)

(or satisfies the SSGP(α) property) for some ordinal α if and only if S
(α)
G (U) = G

is satisfied for every neighbourhood of the identity of G.



The above definition is an extension of the SSGP property, as it was shown in
[8] that the SSGP(1) property coincides with the original SSGP property of Gould.
Comfort and Gould had pioneered a concept of a countable number of SSGP(n)
properties (for every integer n ∈ N) in [2]. The series of properties defined by
Dikranjan and Shakhmatov, however, are substantially more general as they are
defined for every ordinal (including infinite ones). Moreover, these two concepts
were shown to coincide in the realm of Abelian groups ([8, Corollary 6.3]) when
the index is a natural number.

Dikranjan and Shakhmatov prove in [8, Proposition 5.3(ii)] that every SSGP(α)
group admits no non-trivial continuous homomorphism to an NSS group, i.e. it
is MinAP(NSS) in the terminology of Definition 3.12. Combining this with the
hierarchy described in [8, Proposition 5.1] and arrow 4 of Figure 1, we obtain the
following transfinite chain of implications:

SSGP = SSGP(1)→ · · · → SSGP(n)→ SSGP(n+ 1) · · · → SSGP(α)→ . . .

· · · → SSGP(α + 1)→ · · · → MinAP(NSS)→ MinAP.
(2)

Definition 4.8 ([25]). We say that a topological group is SSGP(∞) if and only
if it is an SSGP(α) group for some ordinal α.

As an application of a theorem of Yamabe [26], we proved the following

Theorem 4.9 ([25]). Every SSGP(∞) group is MinAP(Locally compact).

Combining this with (1), (2) and terminology from Definition 4.8, we get

DW→ SSGP→ SSGP(∞)→ MinAP(NSS) + MinAP(Locally compact). (3)

Therefore, the implications in (3) can be added “on top” of Figure 1.

4.4. Abelian MinAP(NSS) groups are precisely SSGP(∞)

The following theorem bridges topological groups described by continuous homo-
morphisms with those described by abundance of small subgroups.

Theorem 4.10 ([25]). Properties SSGP(∞) and MinAP(NSS) are equivalent for
abelian topological groups.

Theorems 3.15 and 4.10 lead to the following diagram for Abelian groups:

MinAP(NSS) SSGP(∞)

MinAP MinAP(Lie) MinAP(Locally compact)

3

Abelian

7

9

Abelian Abelian

Figure 2: Simplified diagram of implications in Abelian topological groups

Corollary 4.11 ([25]). An Abelian topological group G satisfies the equivalence

MinAP(Locally compact) + MinAP(NSS) ⇐⇒ MinAP(Lie)

if and only if G has the SSGP(∞) property.



The following example shows that the converse of Theorem 4.9 does not hold,
and Theorem 4.10 fails for non-Abelian topological groups.

Example 4.12 (Shakhmatov). Let S(N) be the group of all bijections of N with
the composition of maps as its group operation, equipped with the subspace
topology it inherits from the Tychonoff product NN when N is considered with
its discrete topology. Then, S(N) is a complete separable metric (Polish) group
which is both MinAP(NSS) and MinAP(Locally compact) but is not SSGP(∞).

4.5. Algebraic structure of SSGP-type groups and MinAP(NSS) groups

The following problem is a natural heir of Problem 3.10 of Comfort and Protasov:

Problem 4.13 ([2, Comfort and Gould]). Which Abelian groups admit an SSGP
group topology?

In the series of papers [12, 13, 2] Gould constructs a variety of SSGP groups.
He also provides several examples of groups which can never be equipped with
an SSGP group topology. One aspect of note, however, is that the results of
Gould required very careful manual manipulation of group metrics, highlighting
the difficulty of obtaining a full answer of Problem 4.13.

Definition 4.14 ([7, Definition 7.2]). For an Abelian group the cardinal rd(G) =
min{r(nG) : n ∈ N+} is called the divisible rank of G.

Problem 4.13 of Comfort and Gould was solved even for the wider class of
SSGP(∞) topological groups. The result was achieved in three steps. The first
step concerning torsion groups was made by Comfort and Gould themselves, by
showing that a torsion group admits an SSGP group topology if and only if it
admits a MinAP group topology. The second step concerning groups of infinite
divisible rank was done by Dikranjan and Shakhmatov in [8]. The remaining
case of positive finite divisible rank was then reduced by them to a very specific
question, which in turn was recently resolved in [20].

Theorem 4.15 ([8, 20]). The following are equivalent for an Abelian group G:

(a) G admits an SSGP group topology,

(b) G admits an SSGP(∞) group topology, and

(c) one of the two conditions is satisfied:

(i) G is of infinite divisible rank, or

(ii) the quotient H = G/t(G) of G by its torsion part t(G) has finite free
rank r0(H) and r(H/A) = ω for some (equivalently, every) free sub-
group A of H such that H/A is torsion.

Combining this with Theorem 4.10, we obtain a complete description of
Abelian groups which admit a MinAP(NSS) group topology:

Corollary 4.16 ([25]). An Abelian group G admits a MinAP(NSS) group topology
if and only if G satisfies condition (c) of Theorem 4.15.



4.6. Algebraic structure of DW groups

Thanks to Theorems 3.11 and 4.5, it only remains to describe which unbounded
groups admit property DW.

Theorem 4.17 ([22]). A torsion Abelian group G admits a group topology with
property DW if and only if every p-component of G admits a group topology with
property DW.

For Abelian groups of positive finite 0-rank we have the following necessary
condition:

Theorem 4.18 ([22]). Let G be an Abelian group such that 0 < r0(G) < ∞. If
G admits a group topology with property DW, then there exists a prime number
p such that the p-rank rp(G) of G is infinite.

As for the construction of these topologies on Abelian groups, we have the
following sufficient condition for countable groups:

Theorem 4.19 ([23]). If a countable Abelian group G possesses one of the fol-
lowing properties, then it admits a metric group topology with property DW:

(i) G has infinite r0(G) rank,

(ii) G is torsion and every non-trivial p-component Gp of G is either bounded
with all of its leading Ulm-Kaplansky invariants infinite, or it has infinite
divisible rank rd(Gp).

Theorem 4.20 ([23]). Let G be an Abelian torsion group which is either divisible
or countable. Then G admits a group topology with property DW if and only if
each of its non-trivial p-components Gp admits an SSGP group topology.

For non-Abelian groups, we have the following results for free groups:

Theorem 4.21 ([21, Theorem 2.2 and 2.3]). The following hold:

(i) A free group with a countably infinite set of generators admits a metric
group topology with property DW.

(ii) A free group with infinitely many generators admits a group topology with
property DW.

By contrast, the symmetric groups S(X) with the topology of pointwise con-
vergence do not admit an SSGP(∞) group topology by [8, Example 5.4(d)], so
they cannot have a group topology with property DW by (3).
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