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Abstract. This is a survey talk on recent developments in the cobordism theory of
Morse functions. We present results on the computation of several cobordism groups of
Morse functions of compact manifolds possibly with boundary.

1. Introduction

We are concerned with differentiable1 maps between differentiable manifolds. Cobor-

dism groups of differentiable maps with prescribed singularities are generally studied by

means of stable homotopy theory (see e.g. the works of Rimányi and Szűcs [13], Ando

[1], Kalmár [10], Sadykov [14], and Szűcs [19]). Historically, the topic was pioneered in

the middle of the 20th century by René Thom [20], who applied the Pontryagin-Thom

construction to study embeddings of manifolds into Euclidean spaces up to cobordism. In

doing so, Thom reduced the study of cobordism groups of closed differentiable manifolds

to the computation of homotopy groups of certain spaces. In the sequel, the structures

of the n-dimensional oriented cobordism group ΩSO
n and its unoriented version ΩO

n have

been completely determined by several authors. It remains an interesting problem to study

cobordism theory of differentiable maps with concrete prescribed types of singularities.

In this short note, we shall focus on cobordism theory of Morse functions. Recall that

Morse functions of closed differentiable manifolds are real valued differentiable functions

whose critical points are all nondegenerate. We point out that Morse theory is a fun-

damental tool in the study of differentiable manifolds, for example by virtue of Smale’s

h-cobordism theorem. Thus, when studying Morse functions up to suitable notions of

cobordism, we expect that we can still detect important information about algebraic

topology and differential topology of manifolds.

Cobordism groups of various types of Morse functions have been studied by several

authors by applying explicit methods of global singularity theory of differentiable maps.

For instance, Ikegami [4] used Levine’s cusp elimination technique to compute cobordism

groups of Morse functions on closed manifolds (this generalized results of Ikegami-Saeki [5]

and Kalmàr [9]). An application of Ikegami’s techniques to the construction of topological

invariants of generic differentiable map germs was found by Ikegami and Saeki [6]. Saeki

and Yamamoto [17, 18] studied Morse functions on compact surfaces with boundary up

This work was supported by JSPS KAKENHI Grant Number JP18F18752 and a JSPS Inter-
national Postdoctoral Fellowship.

1In this note, “differentiable” always means differentiable of class C∞.
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to so-called admissible cobordism by using the cohomology of the universal complex of

singular fibers in [17], as well as a combinatorial argument based on labeled Reeb graphs

in [18]. By using similar techniques, Yamamoto [26] studied versions of these cobordism

groups without cusps. Saeki [15] applied the technique of Stein factorization and Cerf’s

pseudoisotopy theorem to study cobordism groups of so-called special generic functions,

i.e., Morse functions with only maxima and minima as their critical points. In [22], the

author has imposed more general index constraints on the Morse functions, and studied

the resulting cobordism relations for such “constrained” Morse functions by means of

the two-index theorem of Hatcher and Wagoner, as well as handle extension techniques

for fold maps due to Gay and Kirby. As an application to high-dimensional topological

field theory (compare [21]), the author has shown how exotic Kervaire spheres can be

distinguished in infinitely many dimensions from other exotic spheres as elements of the

cobordism group of constrained Morse functions.

Let n ≥ 2 be an integer. In this note, we consider several variants of cobordism

relations for Morse functions of compact n-dimensional manifolds possibly with boundary.

In principle, one defines cobordisms of such Morse functions to be certain differentiable

maps of (n + 1)-dimensional cobordisms (with corners) into the plane. Following Saeki

and Yamamoto [17, 18], we impose the natural requirement that these maps are locally

modeled on C∞ stable map germs into the plane. At interior points, it is well-known that

the possible C∞ stable map germs (Rn+1, 0)→ (R2, 0) are

(x0, . . . , xn) 7→


(x0, x1), regular point,

(x0,±x2
1 ± · · · ± x2

n), fold point,

(x0, x0x1 + x3
1 ± x2

2 ± · · · ± x2
n), cusp.

(1.1)

At boundary points, we point out that the possible C∞ stable map germs (Rn×[0,∞), 0)→
(R2, 0) are given by

(x0, . . . , xn) 7→


(x0, x1), ∂-regular point,

(x0,±x2
1 ± · · · ± x2

n−1 + xn), ∂-fold point,

(x0, x0x1 + x3
1 ± x2

2 ± · · · ± x2
n−1 + xn), ∂-cusp,

(x0,±x2
1 ± · · · ± x2

n−1 ± x2
n + x0xn), B2 point,

(1.2)

where the first three types are regular map germs that are named after their restrictions

to the boundary (Rn × {0}, 0) ⊂ (Rn × [0,∞), 0), while the so-called B2 point2 is a

singular map germ. In Definition 1.2 below, we introduce various cobordism relations of

Morse functions by requiring that cobordisms are locally modeled on prescribed subsets

of the possible C∞ stable map germs into the plane. On the technical side, we note that

our definition of cobordism relations differs from that of Saeki and Yamamoto [17, 18]

2According to [26], the terminology “B2 point” has its origin in the case of dimension n = 3,
where the map germ is a versal unfolding of the function germ B2 = ±x2 ± y2 (see Arnold [2]).
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in that we do not assume Morse functions and their cobordisms to be proper C∞ stable

maps. Nevertheless, by means of slight perturbations we see that both definitions result

in isomorphic cobordism groups.

Next, we introduce the cobordism relations that will be discussed in this note. Let

M be an n-dimensional compact differentiable manifold possibly with boundary. By a

Morse function of M we mean a real valued differentiable function f : M → R which is a

submersion near the boundary ∂M , and such that the critical points of both f and f |∂M
are all nondegenerate. We consider the following notion of oriented generic cobordisms

between two Morse functions f0 : M0 → R and f1 : M1 → R of oriented compact n-

dimensional manifolds possibly with boundary.

f0

M0

f1

R

M1

W

V

F

[0, 1]

Figure 1. Illustration of an oriented generic cobordism (W,V, F ) from f0

to f1. The singular point set of F and its image in the plane are indicated

as follows. Fold lines are red, cusps are triangles, and B2 points are squares.

Definition 1.1. An oriented generic cobordism from f0 : M0 → R to f1 : M1 → R is a

triple (W,V, F ) (see Figure 1), where

• the pair (W,V ) is an oriented cobordism (with corners) from M0 to M1, that is,

W is a compact oriented (n + 1)-dimensional manifold with corners such that3

∂W = M0∪∂M0
V ∪−∂M1

−M1, where M0, −M1 and V are oriented codimension 0

submanifolds of ∂W such that M0 ∩M1 = ∅, V ∩M0 = ∂M0 and V ∩M1 = ∂M1,

V is an oriented cobordism from ∂M0 to ∂M1 (that is, V is a compact oriented

n-dimensional manifold with boundary ∂V = ∂M0 ∪ −∂M1), and W has corners

precisely along ∂V , and

• F : W → [0, 1]×R is a differentiable map such that

3For an oriented manifold X, the manifold with opposite orientation is denoted by −X.
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– there exist collars (with corners) [0, ε)×M0 ⊂ W of M0 ⊂ W and (1− ε, 1]×
M1 ⊂ W of M1 ⊂ W such that F |[0,ε)×M0

= id[0,ε)×f0 and F |(1−ε,1]×M1
=

id(1−ε,1]×f1, and

– at every point x ∈ W \ (M0 tM1), the map germ of F at x is C∞ right-left

equivalent4 to a C∞ stable map germ into R2 (see (1.1) and (1.2)).

Similarly, we can define an unoriented version of the notion of oriented generic cobordism

by ignoring orientations of manifolds in the above definition.

As it turns out, oriented generic cobordism (or its unoriented version) is not an interest-

ing cobordism relation to study because any Morse function f : M → R is nullcobordant,

i.e., there exists an oriented generic cobordism from f to the unique function on the empty

set. (In fact, the double M ∪∂M −M of M is oriented nullcobordant, and any oriented

nullcobordism W can be considered as an oriented cobordism (W,M) (with corners) from

M to the empty set. Then, the desired differentiable map W → [0, 1]×R is obtained by

a generic extension of the {0} ×M -germ of the map id[0,ε)×f defined on a collar (with

corners) [0, ε)×M ⊂ W .) Nevertheless, we can use the above notion of (oriented) generic

cobordism to define the following more interesting cobordism relations5.

Definition 1.2. An (oriented) generic cobordism (W,V, F ) is called

(i) an (oriented) admissible cobordism if F has no B2 points.

(ii) an (oriented) fold cobordism if F has no cusps and no ∂-cusps.

(iii) an (oriented) admissible fold cobordism if F has no cusps, no ∂-cusps, and no B2

points.

The oriented cobordism relations of the previous definition clearly define equivalence

relations on the set bMn of Morse functions of oriented compact n-dimensional manifolds

possibly with boundary. Let bCn, bFn, and bAn denote the sets of equivalence classes

[f : M → R] of Morse functions in bMn up to oriented admissible cobordism, oriented

fold cobordism, and admissible fold cobordism, respectively. Disjoint union “t” induces

an additive group law on each of the sets bCn, bFn, and bAn as follows. The identity

element is represented by the unique map ∅ → R, and the inverse of a class [f : M → R] is

represented by −f : −M → R, x 7→ −f(x), where −M denotes the manifold M equipped

with the opposite orientation. We call bCn (resp. bFn, bAn) the n-dimensional oriented

admissible (resp. fold, admissible fold) cobordism group of Morse functions. Similarly,

we can define bMO
n by ignoring orientations of manifolds, and the unoriented versions

4Given differentiable manifolds N possibly with boundary and P without boundary, two
differentiable maps f, g : N → P are called C∞ right-left equivalent if there exist diffeomorphisms
Φ: N → N and Ψ: P → P such that Ψ ◦ f = g ◦ Φ.

5More generally, it seems interesting to study cobordism relations for Morse functions on
compact differentiable manifolds with corners. As this problem is beyond the scope of the
methods presented in this note, we mention it as an interesting direction of future research.
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bCOn , bFOn , and bAO
n of the oriented cobordism groups bCn, bFn, and bAn by using the

unoriented versions of the cobordism relations of Definition 1.2.

Saeki and Yamamoto [17, 18] introduced the cobordism groups bCn, bAn and their

unoriented versions bCOn , bAO
n . In [18], they showed that bCO2

∼= Z2 by means of a

geometric method using Reeb graphs which is based on [5, 9, 16]. Moreover, they posed

the problem to study the group structures of bCn, bAn, and bCOn , bAO
n for arbitrary n ≥ 2

(see Section 6 in [18]). Based on similar techniques, Yamamoto [26] showed that bFO2
∼= Z2

and bAO
2
∼= Z⊕ Z⊕ Z2.

In the following sections, we outline our results on the computation of the oriented

cobordism groups bCn, bFn, and bAn, and their unoriented versions bCOn , bFOn , and bAO
n

for arbitrary n ≥ 2.

2. Admissible cobordism group of Morse functions

Our Theorem 2.1 below answers the problem of Saeki and Yamamoto [18] to determine

the group structures of the (oriented) admissible cobordism groups of Morse functions

bCn and bCOn for all n ≥ 2. Our proof is based on a geometric method that combines

Levine’s cusp elimination technique [12] with the complementary process of creating pairs

of cusps along fold lines.

R

dfx4(v4)

dfx3(v3)

dfx2(v2)

dfx1(v1)

x1

x3

x2

f

x4

M

Figure 2. Illustration of a Morse function f : M → R of a compact surface

with boundary induced by the height function in R3. The surface M is the

connected sum of two tori with two small open 2-disks removed. The critical

points of f |∂M are x1, x2, x3, and x4. Using the indicated inward pointing

tangent vectors vi ∈ TxiM , we see that σf (xi) = +1 if and only if i ∈ {1, 3}.
Hence, we have S+

0 [f ] = {x1}, S+
1 [f ] = {x3}, and thus χ+[f ] = 1− 1 = 0.

In order to present our result, we need to introduce some more notation for Morse

functions g : N → R defined on p-dimensional manifolds possibly with boundary, p ≥ 1.
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Following Curley [3], we assign to every critical point x ∈ ∂N of the Morse function g|∂N
a sign σg(x) ∈ {±1} (see Figure 2) that is uniquely determined by requiring that for an

inward pointing tangent vector v ∈ TxN the tangent vector

σg(x) · dgx(v) ∈ Tg(x)R = R

points into the positive direction of the real axis. Let S(g|∂N ) denote the set of critical

points of the Morse function g|∂N . We note that the resulting assignment σg : S(g|∂N )→
{±1} depends only on the map germ [g] of g near ∂N . Let S+

i [g] ⊂ S(g|∂N ) denote

the subset of those critical points x of the Morse function g|∂N of index i for which

σg(x) = +1. If ∂N is compact, then S(g|∂N ) is finite, and we define in analogy with a

well-known Euler characteristic formula6 the integer

χ+[g] =

p−1∑
i=0

(−1)i · ν+
i [g],

where ν+
i [g] denotes the cardinality of the finite set S+

i [g] (for example, see Figure 2).

Theorem 2.1 (W. [23], 2019). Let n ≥ 2 be an integer. The assignment bM(O)
n → Z,

(f : M → R) 7→ χ(M)− χ+[f ], induces group isomorphisms

bC(O)
n

∼=−→

{
Z2, n even,

Z, n odd.

In particular, bCOn ∼= bCn for all n ≥ 2.

3. Admissible fold cobordism group of Morse functions

In this section, we discuss a structural relationship between admissible fold cobordism

groups of Morse functions and SKK-groups of compact differentiable manifolds possibly

with boundary (see Theorem 3.2 below). The concept of SKK-groups of manifolds goes

back to Jänich [7, 8], who observed that the index of elliptic operators is invariant un-

der natural cutting and pasting operations on manifolds. This operation cuts a closed

n-dimensional manifold along a submanifold Q of codimension 1 with trivial normal bun-

dle, and pastes back together the two resulting copies of Q in the boundary by means of

some gluing automorphism Q → Q. The resulting notion of SK-invariants7 of closed n-

manifolds was studied systematically in [11] by viewing SK-invariants as homomorphisms

on a universal SK-group SKn with values in some abelian group. As a generalization,

6If h : P → R is a Morse function on a closed (p − 1)-dimensional manifold, then the Euler

characteristic of P can be computed as χ(P ) =
∑p−1

i=0 (−1)i · νi(h), where νi(h) denotes the
number of critical points of h of index i.

7from German “Schneiden und Kleben” = “cutting and pasting”
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the notion of SKK-invariants8 and the corresponding universal SKK-group SKKn in-

corporate a correction term that may depend on the gluing automorphism Q→ Q.

In Theorem 3.2 below, we compute the (oriented) admissible fold cobordism groups

of Morse functions, bAn and bAO
n , in terms of the (oriented) SKK-groups of compact

manifolds possibly with boundary, which we will denote by bSKKn and bSKKO
n . The

underlying bSKK-relations are a version with boundary of the SKK-relations which are

studied systematically in the manuscript [11] by Karras, Kreck, Neumann, and Ossa.

M

PM

ϕ

−M ′

−PM ′

N

PN

ψ

−N ′
−PN ′

M

PM

ψ

−M ′

−PM ′

N

PN

ϕ

−N ′
−PN ′

−→bSKKt t
Q

−Q′

Q

−Q′

Q

−Q′

Q

−Q′

Figure 3. bSKK-related oriented n-dimensional manifolds X and Y .

Definition 3.1. Two compact oriented n-dimensional differentiable manifolds possibly

with boundary X, Y are called bSKK-related, X
bSKK−−−−→ Y (see Figure 3), if there exist

• compact oriented (n−1)-dimensional differentiable manifolds possibly with bound-

ary PM , PM ′ , PN , PN ′ , Q,Q′ such that−∂PM = ∂Q = −∂PN and−∂PM ′ = ∂Q′ =

−∂PN ′ ,

• compact oriented n-dimensional differentiable manifoldsM , M ′, N , N ′ with bound-

aries ∂M = PM ∪∂QQ, ∂M ′ = PM ′ ∪∂Q′ Q′, ∂N = PN ∪∂QQ, ∂N ′ = PN ′ ∪∂Q′ Q′,

and corners along ∂PM , ∂PM ′ , ∂PN , ∂PN ′ , respectively, and

• orientation preserving diffeomorphisms ϕ, ψ : Q→ Q′ such that

X =
(
M ∪ϕ −M ′

)
t
(
N ∪ψ −N ′

)
,

Y =
(
M ∪ψ −M ′

)
t
(
N ∪ϕ −N ′

)
.

Let bMn denote the set of oriented diffeomorphism classes of oriented compact n-

dimensional differentiable manifolds possibly with boundary. We regard bMn as an

abelian semigroup with addition [M ] + [N ] = [M tN ] and identity element 0 = [∅].
While the bSKK-relation on bMn given by Definition 3.1 is obviously symmetric, it

might not be an equivalence relation. Nevertheless, we can use the bSKK-relation to

define an equivalence relation ∼bSKK via stabilization as follows. Given two manifolds

8from German “SK-Kontrollierbar” = “SK-controllable”
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M and N in bMn, we define [M ] ∼bSKK [N ] if there exist manifolds X and Y in bMn

such that X
bSKK−−−−→ Y and [M ] + [X] = [N ] + [Y ] in bMn. Then, it is straightforward

to check that “∼bSKK” is an equivalence relation on bMn. The quotient bMn/ ∼bSKK
inherits an abelian semigroup structure from bMn. We define the additive group bSKKn

to be the Grothendieck group of bMn/ ∼bSKK . In particular, note that an element

of bSKKn is not always represented by a manifold, but can in general be written as

a difference [M ] − [N ]. The group bSKKn is called the n-dimensional oriented SKK-

group of manifolds possibly with boundary. Similarly, we can define an unoriented version

bSKKO
n by ignoring orientations of manifolds.

By taking boundaries of manifolds, we obtain natural maps bSKK
(O)
n → SKK

(O)
n−1 to

the usual SKK-groups of closed manifolds. The groups bSKKn and bSKKO
n do not

depend on singularity theory of differentiable maps, and will be computed in [24].

To relate admissible fold cobordism groups to bSKK-groups, we define an assignment

(3.1) Σ
(O)
n : bM(O)

n → Z, (f : M → R) 7→

{
ν0(f) + · · ·+ νk(f), n = 2k + 1,

µk−1(f) +
σ(M)−χ(M)

2 , n = 2k,

where νi(f) denotes the number of critical points of f of index i, and µi(f) = νn−i(f)−
νi(f). We also recall the definition of the assignment bM(O)

n → Z, f 7→ ν+
i [f ] from

Section 2, and set µ+
i [f ] = ν+

n−i[f ]− ν+
i [f ].

Theorem 3.2 (W. [24], 2020). Let n ≥ 2 be an integer. The assignment

ω
(O)
n : bM(O)

n → bSKKn, (f : M → R) 7→ [M ] + Σ
(O)
n (f) · [Sn] + Σ

(O)
n−1(f |∂M ) · [Dn],

induces a group isomorphism

bA(O)
n

∼=−→ bSKK
(O)
n ⊕ Zb(n−1)/2c ⊕ Zb(n−2)/2c ⊕ Zdn/2e,

[f : M → R] 7→ (ω
(O)
n [f ],µb(n−1)/2c(f),µb(n−2)/2c(f |∂M ),µ+

dn/2e[f ]),

where we make use of the vector notation µ
(+)
N = (µ

(+)
0 , . . . , µ

(+)
N−1).

4. Fold cobordism group of Morse functions

In Theorem 4.2 below, we determine the group structure of the (oriented) fold cobordism

groups of Morse functions, bFn and bFOn (except for bFn in the case n ≡ 1 mod 4).

First, we need to review the group structure of the (oriented) fold cobordism group

of Morse functions of closed manifolds. For this purpose, let Mn−1 denote the set of

Morse functions of oriented closed (n − 1)-dimensional manifolds. An oriented generic

cobordism between two Morse functions f0 : M0 → R and f1 : M1 → R in Mn−1 is an

oriented generic cobordism (W,V, F ) from f0 to f1 (seen as elements of bMn−1) in the

sense of Definition 1.1 such that V = ∅. We call (W, ∅, F ) an oriented fold cobordism from

f0 to f1 in Mn−1 if F is an oriented fold cobordism from f0 to f1 (seen as elements of
8



bMn−1) in the sense of Definition 1.2. This is obviously equivalent to requiring that all

singular points of F are fold points. Oriented fold cobordism clearly defines an equivalence

relation on Mn−1, and we denote the set of equivalence classes by Fn−1. Disjoint union

defines an additive group law on Fn−1 in a similar way as for bFn. We call Fn−1 the

oriented fold cobordism group of Morse functions (on closed manifolds). We can also

define the unoriented version FOn−1 by ignoring orientations of manifolds.

Theorem 4.1 (Ikegami [4], 2004). For n ≥ 2, there are group isomorphisms of the form

FOn−1
(βO,ΦO)−−−−−→∼=

ΩO
n−1 ⊕ Zbn/2c,

and Fn−1
(β,Φ)−−−→∼=

ΩSO
n−1 ⊕ Zbn/2c, n 6≡ 1 mod 4,

Fn−1
(β,Φ,Λ)−−−−→∼=

ΩSO
n−1 ⊕ Zbn/2c ⊕ Z2, n ≡ 1 mod 4,

where βO : FOn−1 → ΩO
n−1 (resp. β : Fn−1 → ΩSO

n−1) is the natural map [f : M → R] 7→ [M ].

By construction, there is a natural map α(O) : bF(O)
n → F(O)

n−1 induced by restriction to

the boundary, [f : M → R] 7→ [f |∂M ].

Theorem 4.2 (W. [25], 2020). For n ≥ 2, there are short exact sequences0→ bFOn
αO

−−→ FOn−1
βO

−−→ ΩO
n−1 → 0, n ≡ 1 mod 2,

0→ bFOn
(γO,αO)−−−−−→ Z2 ⊕ FOn−1

βO◦pr2−−−−→ ΩO
n−1 → 0, n ≡ 0 mod 2,

and {
0→ bFn

α−→ Fn−1
β−→ ΩSO

n−1 → 0, n ≡ 2, 3 mod 4,

0→ bFn
(γ,α)−−−→ Z2 ⊕ Fn−1

β◦pr2−−−→ ΩSO
n−1 → 0, n ≡ 0 mod 4,

where the map γO : bFO2k → Z2 (resp. γ : bF4k → Z2) is given by9

[f : M → R] 7→ χ(M) +
1

2
#S(f |∂M ) mod 2.
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10. B. Kalmár, Pontryagin-Thom-Szűcs type construction for non-positive codimensional singu-
lar maps with prescribed singular fibers, The second Japanese-Australian Workshop on Real
and Complex Singularities, RIMS Kôkyûroku 1610 (2008), 66–79.

11. U. Karras, M. Kreck, W.D. Neumann, E. Ossa, Cutting and Pasting of Manifolds; SK-
groups. Publish or Perish, Inc., Boston, Mass., 1973. Mathematics Lecture Series, No. 1.

12. H.I. Levine, Elimination of cusps, Topology 3, Suppl. 2 (1965), 263–296.
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