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1. Introduction
In the last chapter of his seminal book [8] Milnor discusses the real analogue of links of
isolated singularities of complex plane curves, later termed real algebraic links.

Definition 1.1. A link L is real algebraic if there exists a polynomial f : R4 → R2 such that

• f ((0,0,0,0)) = (0,0),

• ∇ f ((0,0,0,0)) =
(

0 0 0 0
0 0 0 0

)
,

• there is a neighbourhood B of (0,0,0,0) such that (0,0,0,0) is the only point in B
where the rank of ∇ f is not full,

• f−1((0,0))∩S3
ρ = L for all small enough radii ρ .

The first three conditions state that f has an isolated singularity at the origin in R4.
Milnor himself points out that it is highly challenging to construct examples of such links

that do not come from complex plane curves f : C2 → C. Indeed, the family of links that is
known to be real algebraic is still comparatively small [5, 7, 9, 10].

One difference between the complex and the real polynomials is that in general the argu-
ment of a real polynomial as in Definition 1.1 (arg f : S3

ρ → S1) is not a fibration. However,
Milnor established that the following is still true.

Theorem 1.2 (Milnor [8]). If a link L is real algebraic, then L is fibred.

According to Benedetti and Shiota, this implication should be an equivalence.

Conjecture 1.3 (Benedetti-Shiota [2]). A link L is real algebraic if and only if L is fibred.

In this short note we discuss a construction of real polynomial maps with isolated singu-
larities as in Definition 1.1, following [5]. Section 2 reviews the this construction in a quite
general setting, while Section 3 focuses on the class of homogeneous braids.

Definition 1.4. A braid B on s strands is called homogeneous if for every i = 1,2, . . . ,s−1
the generator σi appears in the word B if and only if σ−1

i does not appear.

The 3-strand braid (σ1σ−1
2 )2 for example is homogeneous, because σ1 always comes

with a positive sign and σ2 always comes with a negative sign. If we change one of the
signs however, or if we consider the same braid word as a 4-strand braid, we obtain an
inhomogeneous braid. Note that the homogeneous braids contain all alternating braids that
do not close to split links.

Theorem 1.5 (Bode [5]). Let B be a homogeneous braid. Then the closure of B2 is real
algebraic.
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The proof that homogeneous braids close to fibred links is due to Stallings [12]. An
important aspect of the proof in [5] is that for a loop in the space of complex polynomials, we
can establish a close relation between the braid that is formed by the roots of the polynomials
and the braid that is formed by their critical values. Here, we give more details on this relation
and illustrate how this could be used to generalize the construction to a larger family of links.

Section 4 gives an example of the outlined construction.

2. Constructing real algebraic links
Let B be a braid on s strands. We denote by C the set of connected components of the closure
of B or equivalently the set of cycles of the image of B under the permutation representation.
For every C ∈ C we write sC for the number of strands that make up the component C or
equivalently the length of that corresponding cycle. Then the total number of strands s equals
∑C∈C sC. Suppose we have a parametrisation of B in C× [0,2π] given by

⋃

C∈C

sC⋃

j=1

(
FC

(
t +2π j

sC

)
+ iGC

(
t +2π j

sC

)
, t
)
, t ∈ [0,2π], (1)

where FC, GC : [0,2π]→R are trigonometric polynomials. Such a parametrisation exists for
every braid and in fact there are even some bounds on the Fourier degree of FC and GC [4].

Then we can define the polynomial gλ : C× [0,2π]→ C,

gλ (u, t) = ∏
C∈C

sC

∏
j=1

(
u−λ

(
FC

(
t +2π j

sC

)
+ iGC

(
t +2π j

sC

)))
(2)

with λ > 0 and the nodal set g−1
λ (0) is B for all values of λ .

Furthermore, expanding the product in Equation (2) results in a polynomial not only in
the complex variable u, but also in eit and e−it .

We now replace every instance of eit in the polynomial expression of gλ by another
complex variable v and every instance of e−it by its conjugate v. This identifies the variable
t with the angular coordinate of v. We thus obtain a polynomial fλ : R4 ∼= C2 → C ∼= R2

in u, v and v. In general, fλ does not have an isolated singularity. However, it is an easy
calculation to show the following.

Proposition 2.1 (Bode [5]). Let k ≥ (deg fλ )/(2s). Then for all small enough λ > 0 the map
pλ : R4 ∼= C2 → C∼= R2 given by

pλ (u,v) = (vv)sk fλ

(
u

(vv)k ,
v√
vv

)
, (3)

or equivalently

pλ (u,reit) =

{
r2skgλ

(
u

r2k , t
)

if r > 0,
us if r = 0,

(4)

has an isolated singularity at the origin if and only if arggλ : (C× [0,2π])\g−1
λ (0)→ S1 is a

fibration. The link of the singularity is the closure of B.

There are a couple of things to note here. Firstly, the condition on arggλ does not depend
on λ . Secondly and very importantly, the map pλ is in general not a polynomial because we
have introduced square root terms. However if Equation (1) is a π-periodic parametrisation,
then all of the exponents with non-zero coefficients in the trigonometric polynomials FC and
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GC are even. This can be arranged if and only if B is a square, i.e., B = A2 for some braid A.
It follows that in this case all exponents of v and v in fλ can be taken to be even, so that all
square roots in Equation (3) cancel.

Proposition 2.2. If a braid B can be parametrised as in Eq. (1) such that arggλ gives a
fibration over S1, then B2 closes to a real algebraic link.

We now want to investigate which braids satisfy the condition in Proposition 2.2 and
study in particular the case of homogeneous braids.

3. Homogeneous real algebraic links
For every t ∈ [0,2π] the map u )→ gλ (u, t) is a monic complex polynomial. We denote by
vi(t), i = 1,2, . . . ,s−1, the critical values of gλ (u, t), i.e., the images gλ (ci, t) of the critical
points ci of u )→ gλ (u, t), determined by the condition ∂gλ

∂u (ci, t) = 0. It is again a simple
calculation to show that arggλ is a fibration over S1 if and only if for all i = 1,2, . . . ,s−1 the
derivative ∂ argvi(t)

∂ t never vanishes. This has a nice geometric interpretation in terms of the
movement of the critical values in the complex plane as t varies. Since gλ (u, t) has distinct
roots, the critical values vi(t) are always non-zero. The inequality states that no critical value
vi(t) ever changes the orientation in which it twists around the origin 0 ∈ C as t increases
from 0 to 2π . Every critical value moves either always clockwise

(
∂ argvi(t)

∂ t < 0
)

or always

counterclockwise
(

∂ argvi(t)
∂ t > 0

)
.

Proposition 2.2 can therefore be updated and rewritten in terms of polynomials and criti-
cal values. Let X̃s be the space of monic complex polynomials of degree s with distinct roots.
The fundamental theorem of algebra gives a straightforward identification of a polynomial
f = ∏s

j=1(u − xi) ∈ X̃s with its unordered set of roots {x1,x2, . . . ,xs}. This allows us to
identify a loop ft in X̃s with the (closed) braid that is formed by the roots of the polynomials

s⋃

j=1

(
x j(t), t

)
⊂ C×S1. (5)

Proposition 3.1. Let ft , t ∈ S1, be a loop in X̃s such that for all i= 1,2, . . . ,s−1 the derivative
∂ argvi(t)

∂ t never vanishes. Let B be the braid that is formed by the roots of ft . Then the closure
of B2 is real algebraic.

In Proposition 3.1 we do not require explicitly that the parametrisation of B is given in
terms of trigonometric polynomials. Since these are C1-dense in the space of 2π-periodic
real C1-functions, we can always approximate a parametrisation as in Proposition 3.1 without
losing the property that ∂ argvi(t)

∂ t does not vanish.
We can also assume that the critical values are distinct. This means that

(0, t)∪
s−1⋃

j=1
(v j(t), t)⊂ C×S1 (6)

forms a closed braid. Let Xs ⊂ X̃s be the space of those polynomials in Xs that have distinct
critical values. Then the space of possible sets of critical values of a polynomial in Xs is
given by

Vs = {(v1,v2, . . . ,vs−1) ∈ (C\{0})s−1 : vi ̸= v j if i ̸= j}/Ss−1, (7)

where Ss−1 is the permutation group on s− 1 elements. Then the braid in Equation (6) can
be interpreted as a loop in Vs. Another interpretation of Proposition 3.1 is therefore asking
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v2

Figure 1: If the critical values v j(t) move on ellipses around the origin in the complex plane
without ever changing direction (from clockwise to counterclockwise or vice versa) as t
varies, the derivatives ∂ argv j(t)

∂ t never vanishes.

which braids can be parametrized as loops in Vs satisfying the condition on ∂ argvi(t)
∂ t and such

that this loop is the image of a loop in Xs under the map that sends a polynomial to the set of
its critical values.

The words

Ai, j = σ jσ j−1 . . .σi+1σ2
i σ−1

i+1 . . .σ
−1
j−1σ−1

j with i ≤ j < s (8)

are a set of generators for the braid group Bs. The generator Ai, j takes the strand j+ 1 and
twists it around the strand i.

Lemma 3.2. The s-strand braid ∏n
j=1 A

εi j
1,i j

can be parametrised as in Eq. (6) such that
∂ argvi(t)

∂ t , i = 1,2, . . . ,s−1, never vanishes if for every k = 1,2, . . . ,s−1 there is a j such that
i j = k.

Proof. The parametrisation can be achieved if all vi(t) move on ellipses in the complex plane
as t varies as indicated in Figure 1. Then for every j the generator A1, j can be parametrised
such that ∂ argv j−1(t)

∂ t does not vanish and all other strands are stationary. We can now con-
catenate the parametrisations for the A1, j to obtain the desired braid word.

The fact that the generator A1, j appears in the braid word if and only if A−1
1, j does not

appear implies that none of the vi ever turns around on its ellipse. The condition that for
every k = 1,2, . . . ,s−1 there is a j such that i j = k means that every vi moves at some point.
We can thus slightly perturb the parametrisation of each A1, j such that none of the vi is non-
stationary. For example, for the parametrisation of A1, j every vi with i ̸= j − 1 moves an
ε-amount on its ellipse.

The braids in Lemma 3.2 allow for the desired kind of parametrisation. What we need to
check now is that there is a loop in the space of polynomials Xs, whose critical values form
that parametrisation. Then we want to know which braid is formed by the roots of these
polynomials.

The following theorem is very useful for this. Recall that Xs is the space of monic poly-
nomials with distinct roots and distinct critical values.

Theorem 3.3 (Beardon-Carne-Ng [1]). Let X0
s ⊂ Xs be the space of those polynomials in

Xs that have constant term equal to 0. Then the map θs : X0
s → Vs that sends a polynomial

f ∈ X0
s to the set of its critical values (v1,v2, . . . ,vs−1) is a covering map of degree ss−1.
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The map θs is well-defined even if the constant term is not equal to zero.

Corollary 3.4. Let X̂s ⊂ Xs be the space of those polynomials in Xs whose critical values are
not equal to their constant terms, i.e. vi ̸= f (0) for all i = 1,2, . . . ,s−1. Let γ be a loop in
Vs and γ̃ a path in X̂s such that θs(γ̃) = γ . Then any homotopy of γ in Vs lifts to a homotopy
of γ̃ in X̂s.

The homotopy lifting property in Corollary 3.4 means that the properties that we want to
check do not depend on the particular braid parametrisation, but only on the braid type. We
are going to show that there is a braid that is conjugate to the braid in Lemma 3.2 for which
it is relatively easy to determine that if it is interpreted as a loop in Vs, then it lifts to a loop
in X̂s. Furthermore, determining the braid B that is formed by the roots of the corresponding
polynomials is straightforward. Corollary 3.4 then implies that the braids in Lemma 3.2 also
lift to a loop in X̂s and the braid that corresponds to the roots of the polynomials is conjugate
to B.

We start with a polynomial f , whose roots are real. Then all of its critical points and
critical values are real as well. This is depicted in Figure 2. Between each pair of roots there
is exactly one critical point. We label the critical points {ci}i=1,2,...,s−1 such that ci is the
critical point between the ith and i+1th smallest root. We set vi = f (ci). We now consider a
particular loop γi : [0,2π]→C in the target complex plane based at the origin. The loop stays
close to the real line and encircles the critical value vi in a counterclockwise direction. The
loop γi does not intersect any critical values. When it is about to encounter a critical value
v j, it avoids it by moving into the upper or the lower half plane. If j > i and i ≡ s+1 mod 2
or if j < i and i ≡ s mod 2, then γi moves into the upper half plane. Otherwise, it avoids v j
by moving into the lower half plane. At the moment this choice might seem arbitrary (and
to some degree it is), but we will come back to why this turns out to be a good rule. An
example of γ1 is shown in Figure 2b).

Now we look at the preimage f−1(γi). These are s−2 distinct loops and two paths that
exchange the ith and i+ 1th smallest root. The braid that is formed by f−1(γi) forms the
generator σi if we choose the convention that the overpassing strand corresponds to the root
with the smaller imaginary part. Note that this braid is given by ( f−1(γi(t)), t) = (( f −
γi(t))−1(0), t)⊂ C× [0,2π].

This gives us therefore a parametrisation of the generator σi as a loop in X̂s, whose critical
values form the braid

(0, t)∪
s−1⋃

j=1
(vi − γi(t), t)⊂ C× [0,2π], (9)

depicted in Figure 3. We can consider the path γ = ∏ℓ
j=1 γε j

i j
, which is the concatenation of

γi. The path f − γ(t) is a loop in the space of polynomials X̂s, whose roots form the s-strand
braid B = ∏ℓ

j=1 σε j
i j

and whose critical values form a braid that is easily seen to be conjugate

to ∏ℓ
j=1Y ε j

i j
, where

Yj =

⎧
⎨

⎩

A
1, j+1

2
if j is odd,

A
1, j

2+⌊ s
2⌋

if j is even. (10)

This is illustrated in an example in Figure 4.
We have shown the following.

Lemma 3.5. For every s-strand braid B = ∏ℓ
j=1 σε j

i j
there is a conjugate of B that can be

parametrised as a loop in X̂s whose image in Vs corresponds to the braid ∏ℓ
j=1Y ε j

i j
. Equiv-
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a)

b)

c1 c2 c3

v1 v2v3 0

f

f

γ1

Figure 2: The definition of the loop γi. a) A real polynomial f has a critical point ci between
each pair of roots and the corresponding critical values vi = f (ci) must be real too. Points
with the same shape have the same image under f . E.g., the circles are the roots of f , all
squares get mapped to v1 and so on. The lines in the domain are the preimage set of the real
line. b) The loop γ1 encircles v1. Its preimage set under f consists of two loops and two
paths exchanging the first and second root.
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a) b)

v1 v2v3 0

f

=

v1 v2v3 0v1 v2v3 0

f − γ1(t)

Figure 3: a) The relation between the braid of roots and the braid of critical values. a)
The preimage set of γ1(t) under f forms the generator σ1, while γ1(t) itself forms the braid
σ2σ2

1 σ−1
2 . (We read braid words from the bottom to the top.) b) We can interpret σ1 as

the roots of the loop of polynomials f − γ1(t). The braid of its critical values is isotopic to
σ−1

1 σ2
2 σ1.

alently, every parametrisation of any braid that is conjugate to ∏ℓ
j=1Y ε j

i j
can be seen as a

loop in Vs, which lifts to a loop in X̂s, which corresponds to a conjugate of B.

Note that if B is homogeneous, then the braid ∏ℓ
j=1Y ε j

i j
is as in Lemma 3.2. Recall the

rule in the construction of the loop γi that determines if γi avoids a critical value v j by moving
into the upper half of the complex plane or the lower half. This rule is quite arbitrary. The
only thing it changes is which generator Yk corresponds to which generator σ j. With our rule
we have the nice correspondence that Yj is directly related to σ j.

Corollary 3.6. Every parametrisation of ∏n
j=1 A

εi j
1,i j

lifts to a loop in X̂s and the correspond-
ing braid is conjugate to a homogeneous braid. Conversely, for every homogeneous braid
there is such a braid of critical values ∏n

j=1 A
εi j
1,i j

.

The construction that establishes this relation between the braid that is formed by the
roots of a loop of polynomials and the braid that is formed by their critical values takes a lot
of inspiration from work by Rudolph [11].

The main theorem now follows from Lemma 3.2 and Proposition 3.1:

Theorem 3.7. If B is a homogeneous braid, then the closure of B2 is real algebraic.

It can also be shown that on 3-spheres of small radius arg pλ is a fibration of the link
complement of the circle, exactly as in the complex case [5].

4. Examples
In this section we give an example of the explicit construction of real polynomials with
isolated singularities. If we wanted to strictly follow the procedure outlined in the proof of
Theorem 1.5, we would first have to write down the parametrisation for the braid of critical
values and then lift this loop in Vs to a loop in X̂s. This corresponds to solving a system of
polynomial equations for every t ∈ [0,2π]. In practice, this will be done for a discrete set
in [0,2π] of sufficiently many data points. The resulting interpolating function gives a braid
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a)

b)
v1 v2v3 0 v1 v2v30

∼

v1

v2

v3

f − γ(t)

v

Figure 4: a) Concantenation of the loops γi allows us to construct any braid as the roots of a
loop of polynomials in X̂s. Here we see the braid σ1σ2σ1σ−2

3 σ2 as the roots of f − γ(t). The
corresponding critical values form a braid that is conjugate to Y1Y2Y1Y−2

3 Y2. The generator
Yj describes a movement of the strand labelled by the critical value v j around the 0-strand.
b) The resulting braid Y1Y2Y1Y−2

3 Y2 can be parametrised such that ∂ argvi
∂ t never vanishes. This

is possible because σ1σ2σ1σ−2
3 σ2 is homogeneous.
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parametrisation, which is then approximated by trigonometric polynomials, which we can
use to define the functions gλ and finally pλ in Proposition 2.1.

Depending on the number of data points in [0,2π] this can be a computationally quite
extensive process. For our purposes it is easier to start with a trigonometric parametrisation
and vary some parameters until the resulting gλ leads to a fibration.

For all values of a, b > 0 the parametric curves
4⋃

j=1

(
acos

(
t +2π j

4

)
+bi sin

(
3(t +2π j)

4

)
, t
)

(11)

form the braid (σ2σ−1
1 σ−1

3 ).
We set a = 1 and b = 1

2 and obtain

gλ (u, t) =u4 +λ 2u2
(

1
2

e−it − 3
8
− 1

2
eit
)

+λ 4
(
− 1

256
e−3it +

1
16

e−2it − 1
4

e−it +
1

128
− 1

16
eit − 1

256
e3it

)
. (12)

Figure 5 shows a plot argv1(t), argv2(t) and argv3(t), the critical values of g1(u, t). We
see immediately that there are no stationary points. Therefore arggλ (u, t) is a fibration and
this means that (u, t) )→ arggλ (u,nt) is also fibration for all n. This justifies our choice of a
and b. Note that the nodal set of (u, t) )→ arggλ (u,nt) is (σ2σ−1

1 σ−1
3 )n. For even exponents

we obtain the following polynomials:

fλ (u,v) = u4 +λ 2u2
(

1
2

v2n − 3
8
− 1

2
v2n

)

+λ 4
(
− 1

256
v6n +

1
16

v4n − 1
4

v2n +
1

128
− 1

16
v2n − 1

256
v6n

)
,

pλ (u,v) = (vv)4×2n fλ

(
u

(vv)2n ,
v√
vv

)

= u4 +λ 2u2
(

1
2

v7nv9n − 3
8
(vv)8n − 1

2
v9nv7n

)

+λ 4
(
− 1

256
v5nv11n +

1
16

v6nv10n − 1
4

v7nv9n +
1

128
(vv)8n − 1

16
v9nv7n − 1

256
v11nv5n

)
.

(13)

Here we have chosen k = 2n, which is larger than deg f/s= 6n/4. Note that all exponents
of v and v in fλ are even, so that there are no square root terms in pλ .

Therefore the braids (σ2σ−1
1 σ−1

3 )2n close to real algebraic links for all n. They belong
to the family of lemniscate links which where studied in [3]. Note that the constructed
functions are semiholomorphic, i.e., holomorphic in one complex variable u and degu pλ = s,
the number of strands.

If we want to construct real algebraic links that are not in the family of closures of squares
of homogeneous braids, it is important to recall that in our construction we only considered
one lift of the braid of critical values ∏ℓ

j=1 A
εi j
1,i j

. If any of its other lifts in X̂s are also loops,
then the closure of the squares of the corresponding braids are also real algebraic. Recently,
this was studied in more detail [6], but since it is challenging to check if a given link is the
closure of a homogeneous braid it remains unclear if the constructed families in [6] lead to
new real algebraic links.
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Figure 5: Plots of graphs of the arguments of the 3 critical values of g as functions of t.
Because of symmetries of the braid parametrisations two of the three functions are identical.
None of the functions have any stationary points.
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