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This is a summary of the talk I gave at the Algebra Symposium, held at Tohoku University
in September 2019. It is based on the papers [6, 8], joint with B. Hennion and E. Vasserot.
The common theme of these papers is application of the concept of factorization algebras,
originally defined for the needs of Quantum Field Theory, to “purely algebro-geometric"
problems, i.e., problems in Algebraic Geometry which a priori do not involve this concept.

1 Factorization algebras: algebro-geometric version
The concept of factorization algebras on an algebraic curve was introduced by Beilinson
and Drinfeld in their 2004 book [1]. Their goal was to give a geometric axiomatization of
the theory of vertex algebras or, in the physical language, of 2-dimensional Conformal Field
Theory. This theory has been extended to varieties of arbitrary dimensions by Francis and
Gaitsgory [3]. The fundamental tool here is the concept of the Ran space.

Let X be a smooth algebraic variety over a field {k, charpkq “ 0. The Ran space of X,
is, informally, the “space”

RanpXq “ tall finite, nonempty subsets I Ă Xu.

In this definition a subset I Ă X is considered without multiplicity. So, for example, a 2-
element subset tx, yu can, if x and y merge, degenerate into a 1-element subset txu “ tx, xu.
In the opposite direction, one point can split into many, similarly to elementary particles
in physics. Combining all finite subsets together can be seen as an instance of “second
quantization of algebraic geometry" (Y.I. Manin).

There is no way of making RanpXq into an algebraic variety in a rigorous sense of the
word. However, we can do meaningful algebraic geometry on it: consider sheaves, D-modules,
etc. This is explained in [1, 3, 6].

In particular, a factorization algebra on X is a sheaf (D-module) on RanpXq with natural
identifications

FI\J » FI b FJ .

where FI means the fiber of F at a point I P RanpXq, i.e., a finite subset I Ă X. This
corresponds to the principle of locality in Quantum Field Theory: points which are away
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from each other are “independent”. Tensor multiplication of vector spaces can be seen a
a quantum analog of the usual multiplication of probabilities, something that happens for
independent events.

There are various versions of the notion of a factorization algebra, corresponding to
different meaning of the word “sheaf" that can be defined for RanpXq.

A factorization algebra has a global invariant, the factorization cohomology
ż

X

F “ RΓpRanpXq,DRpFqq.

Here RΓ is the derived functor of global sections, and DR is the de Rham complex of a
D-module.

Example 1.1.Let X “ A1 be the affine line. A translation invariant factorization algebra
F on X is the same as a vertex algebra V which is recovered as the fiber F0 of F at 0.

2 Smooth Manifold version
A different framework for factorization alebras, closer to the Quantum Field Theory intuition,
was given by Lurie [9] and Costello-Gwilliam [2].

Let M be C8-manifold. It is not assumed to be algebraic but can be (in which one can
compare with the previous setting). We consider M with the usual topology (so not Zariski
if M is in fact algebraic).

A factorization algebra on M is a datum A associating:

(1) Any open pU ĂMq ÞÑ ApUq, a cochain complex {k.

(2) Any (U1 \ ¨ ¨ ¨ \ Um Ă U0) ÞÑ multiplication

µ : ApU1q b ¨ ¨ ¨ bApUmq ÝÑ ApU0q, so that:

(3) For U0 equalling U1 \ ¨ ¨ ¨ \ Um, µ is a quasi-isomorphism.

(4) The m “ 1 part of data (pre-co-sheaf) is a cosheaf for a certain class of coverings,
called Weiss coverings.

The condition (3) corresponds to ocality in Quantum Field Theory. A covering V “
Ť

Vi
is called a Weiss covering, if any finite subset I Ă V is contained in one of the Vi. This
may seem counterintuitive, but it simply means that RanpV q is covered by the RanpViq. So
the Weiss topology is simply a means to bring the Ran space into the consideration without
mentioning it explicitly and working on M all along.
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3 Locally constant factorization algebras: topological QFT
A factorization algebra A is called locally constant, if for any two disks U1 Ă U0 the map
µ is a quasi-isomorphism. In the physical jargon this condition means that the de Rham
differential dDR acts “trivially” (in a Q-exact way). In other words, our quantum field theory
is “topological”.

In the flat case M “ Rn it was proved by Lurie that we have a 1:1 correspondence

Locally constant FA AÐÑ En ´ algebras A “ ApRn
q

Here En is the operad of little n-disks. It describes commutativity “up to level n”.

In the curved case (any M with G-structure in the tangent bundle, G Ă Opnq, e.g.,
G “ Updq for d-dim C-mflds) we have the following extension of the above, also due to
Lurie:

Every En-algebra A equipped with a homotopy G-action gives a locally constant fac-
torization algebra AM on M . In particular, we can form the factortization homology
ş

M
pAq :“ AMpMq.

4 Nonabelian Poincaré duality (Salvatore-Lurie)
Suppose that we are given:

Y : a topological space with G-action;
M : an n-manifold with G-structure;
Let YM ÑM be the fibration with fiber Y associated to TM .
Let also A “ C‚pY,kq be the cochain algebra. It is:

• “Commutative”: En for any n.

• Has a homotopy G-action.

One formulation of the Non-Abelian Poincaré duality is as follows: If Y is pn ´ 1q-
connected, then

ż

M

pC‚pY qq “ C‚pSectpYM{Mq,kq.

Here Sect means the space of continuous sections. Statements of such kind goback to the
work of Bott-Segal and Haefligher on cohomology of Lie algebras of vector fields (see bellow),
well before factorization algebras.

Let us explain, roughly, the meaning of this statement. Suppose G acts trivially, so
SectpYM{Mq “ MappM,Y q is the space of maps M Ñ Y .

Approximate statement: if A “ H‚pY q has the form A “ Sym‚
pV q, then

ż

M

pAq “ Sym‚
pV bH‚pMqq.
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How is this related? In such cases typically V ‚ “ pπ‚pY q b kq˚. Expecting the same for
MappM,Y q we reduce to the known fact (Haefligher)

π‚MappM,Y q b k “ H‚
pM,kq b π‚pY q.

How is this related to the usual Poincaré duality? We have an alternative (Koszul
dual) formulation (w.r.t. Koszul self-duality of the En-operad):

Suppose y P Y isG-fixed point. Then YM ÑM has a distinguised section y corresponding
to y. Let also B “ ΩnpY, yq be n-fold loop space, an En-algebra in spaces. Then (as spaces!):

ż

M

pΩn
pY, yqq “ SectcpYM{Mq.

Here Sectc means the space of sections with “compact support”, i.e., sections which coincide
with y outside a compact set. If Y “ Kpπ, nq, then ΩnpY q “ π. Assume G-action trivial.
Then:

ş

M
pπq is the space with homotopy groups being the homology H‚pM,πq, and we get

HipM,πq “ πiMapcpM,Kpπ, nqq “ Hn´i
c pM,πq.

5 Holomorphic FA: vertex algebras
OnM “ C, we can speak about holomorphic factorization algebras A (in which the antiholo-
morphic Dolbeault differential B, rather than the de Rham differential d, acts in a Q-exact
way). As shown in [2], under appropriate assumptions,

Such A 1:1
ÐÑ Vertex Algebras V “ At|z| ă 1u.

Remarks 5.1. (a) The Algebro-Geometric (AG) and and Smooth-Manifold versions are
intuitively equivalent: the important U ’s are

ğ

small disks „ finite sets of points.

(b) Most “outside” applications of AG formalism have been in dimC “ 1 case: Geometric
Langlands etc.

6 Application 1: Gelfand-Fuchs cohomology in AG
Let X{k be smooth algebraic variety. Let g “ T pXq “ RΓpX,T q be the (derived, dg-) Lie
algebra of global vector fields. Usual global vector fields, if X affine. We want to find the
Lie algebra cohomology (with coefficients in k)

H‚
LiepT pXqq “?

This cohomology is important (e.g., H2
Lie „ central extensions) but usually hard to find.

Already here:
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Example 6.1.X “ A1´t0u punctured affine line. In this case T pXq has basis Li “ zi`1d{dz,
i P Z with the well known commutation relations

rLi, Ljs “ pj ´ iqLi`j.

It is known: H‚
Lie “ krβ2, β3s, with β2 “ being the famous Virasoro cocycle. But no direct

purely algebraic proof of this fact is known (!), the classical argument goes through the case
of C8 vector fields on the circle (for k “ R).
Example 6.2.An easier example is obtained for X “ A1, so g “ Derkrzs, with basis only
L´1, L0, L1, ¨ ¨ ¨ . Note: L´1, L0, L1 span an sl2.

Recall: any g acts trivially on its own H‚
Lie. So

C‚Liepgq „ C‚LiepgqL0 (degree 0 wedges).

But this “ C‚Liepsl2q (balanced wedges cannot involve Lě2).
H‚

Liepgq “ H‚
Liepsl2q “ H‚

toppSU2q.

Now SUp2q “ S3 is the 3-sphere, so we get

H‚
Liepgq “ H‚

toppS
3
q “ krβ3s.

Note: for Derkrz, z´1s the degree 0 complex is still very hard to analyze.

7 Classical Gelfand-Fuchs theory
The classical theory (explained in more detail in [4]) addresses the following question. Let
M be C8 manifold, and consider the Lie algebra VectpMq of C8 vector fields. What is its
H‚

Lie? The theory then proceeds in two stages:

Stage 1: formal vector fields. We start with the Lie algebra

Wn “
 

ÿ

fiB{Bzi, fi P Rrrz1, ¨ ¨ ¨ , znss
(

.

For this Lie algebra, Gelfand and Fuchs found that:

H‚
LiepWnq “ H‚

toppYnq

where Yn is the fiber product

Yn

GLnpCq
��

// EGLnpCq “ Stiefel variety

GLnpCq
��

sk2nBGLnpCq // BGLnpCq “ Grpn,C8q

and sk2nBGLnpCq is the 2n-skeleton of the infinite Grassmannian in the cell decomposition
by Schubert cells.

Stage 2: general M : We form the fibration YM
Yn
ÝÑ M , via TM and GLnpRq Ă GLnpCq.

Then the result is:
H‚

LiepVectpMqq » H‚
toppSectpYM{Mqq.
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Example 7.1. Suppose M “ S1 is the circle. In this case:

VectpS1q is a completion of the (LiqiPZ algebra above.

BGL1pCq “ CP8; sk2BGL1pCq “ CP 1
“ S2; Y1

hom.eq.
„ S3.

So we get the statement of Example 6.2. Further, TS1 is trivial, so YS1 „ S1 ˆ S3,

SectpYS1{S1
q „ MappS1, S3

q
S3 is a group
““ S3

ˆ ΩpS3
q,

and the cohomology of this is krβ3s b krβ2s.

8 Algebro-Geometric version

Let now X{C be a smooth algebraic variety, dimCpXq “ n. We then have YX
Yn
ÝÑ X, via

TX and GLnpCq. Note that its fibers are identified with Yn, not Y2n, even though from the
C8-point of view, X is of dimension 2n.

Theorem 8.1 (B. Hennion-M.K.[6] 1). (a) We have a canonical map λ : H‚
LiepT pXqq ÝÑ

H‚
toppSectpYX{Xqq.
(b) If X is affine, λ is an isomorphism.

The proof is based on the theory of factorization algebras (both in the n-dimensional AG
and 2n-dimensional Smooth-Manifold versions). It is straightforward:

D natural (algebro-geometric) FA qC‚ on RanpXq s.t.

H‚
LiepT pXqq »

ż

X

qC‚.

The crucial tool for the next step is the Covariant Verdier Duality of Gaitsgory-Lurie [5]
which can be explained as follows.

The “space” RanpXq is 8-dimensional, union of fin-dim skeleta

X “ Ran1 Ă Ran2 Ă ¨ ¨ ¨ Ă RanpXq.

Here RanppXq is formed by finite subsets I Ă X of cardinality ď p. Given a FA F on
RanpXq, there is a new FA ψpFq with

ψpFq|Rank
“ RΓRank

pFq (Cohomology with support)

There is always a map

λ :

ż

X

F ÝÑ
ż

X

ψpFq

1Conjectured by B. Feigin in the 80’s.
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Its image consists of classes “supported on a finite-dimensional skeleton”.

In our case the Covariant Verdier Duality allows us to pass from algebro-geometric to
C8 FA. Here are the main points.

Main Point 1: ψpqC‚q is topological (locally constant) while qC‚ itself is holomorphic, related
to the vacuum module (with c “ 0)

V “ Ind
T pPunctured formal diskq
Wn“T pFormal n-diskq C,

which is a vertex algebra (derived (dg), for n ą 1).

Main Point 2: Factorization homology of ψpqC‚q are found topologically, via SectpYX{Xq.
This is done by associating to it a locally constant FA in the C8 sense and applying Non-
Abelian Poincaré Duality.

9 Application 2: Cohomological Hall Algebras for sur-
faces

We recall the classical concept of the Hall Algebra in the following context. Let X be an
algebraic variety over a finite field Fq. Let CohpXq be the category of coherent sheaves on
X with proper support. Then for any two F ,G P CohpXqq all the Ext-groups ExtipF ,Gq are
finite-dimensional Fq-vector spaces, in particular, they are finite sets.

Let H “ FunpCohpXq Ñ Cq be the space of isomorphism invariant functions on objects
of CohpXq. This space carries the Hall Multiplication via the Induction Diagram

t0 Ñ E 1 Ñ E Ñ E2 Ñ 0u
pp1,p2q

tt

p

))
Cohˆ Coh Coh

where on the top we have the category of short exact sequences. The multiplication is defined
by the pullback and pushforward of functions:

H bH “ FunpCohpXq ˆ CohpXqq
p˚˝pp1,p2q˚

ÝÑ FunpCohpXqq “ H.

This makes H into an associative algebra known as the Hall algebra of CohpXq.

Examples 9.1. (a)Suppose that X a smooth projective curve. In this case Coh splits into:

• Vector bundles. They give rise to an algebra HBun formed by unramified automorphic
forms on all the GLn (with r being the rank of the bundle). The multiplication is
given by Eisenstein series, and the resulting algebra is related/similar to quantum
affine algebras [7].
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• Sheaves with 0-dimensional support. They give rise to an algebraH0 formed by classical
Hecke operators. It is commutative. Its multiplication with elements of HBun gives the
classical action of Hecke operators on automorphic forms.

(b) In the case dimpXq ą 1, nothing interesting is known about such algebras. They
have huge size, and it is not clear what are the good questions to ask.

In higher-dimensional case one can follow a different approach, forming the so-called
cohomological Hall algebra, or COHA. For this, we consider X defined over C, not over a
finite field and consider CohpXq as an algebraic stack. Instead of invariant functions on
objects, we consider the stack-theoretic (co)homology of this stack. (roughly, equivariant
(co)homology with respect to the stabilizer groups. Then we want to use the functoriality
of (co)homology to produce a multiplication out of the Induction Diagram. However, the
maps in the diagram are singular, so it is subtle, as we need both types of functorialities,
covariant as well as contravariant, for a single theory (say, homology).

For n “ 1 and 2 it was shown in [8] and [10] that one can define the multiplication using
virtual fundamental classes to account for the singular nature of the maps. More precisely,
we work with HBM

‚ pCoh0pXqq, the Borel-Moore homology of the stack of coherent sheaves
with 0-dimensional support. So the resulting algebra is the analog of the classical algebra of
Hecke operators for curves over a finite field.

Remark 9.2.This construction is related to the concept of COHA for 3-dimensional Calabi-
Yau (CY3) categories, as defined by Kontsevich and Soibelman. This COHA, is defined, in-
tuitively, as the space of vanishing cycles for (holomorphic) Chern-Simons functional. Given
a surface X, one can form the CY3 manifolld TotpKXq (the total space of the canonical
bundle), and the two constructions should match in this case. But there is so far, no ge-
ometric treatment (for CY3 categories associated to manifolds), the examples considered
being related to quivers.

10 Factorization of COHA
Observation (M.K. - E. Vasserot, [8]): HpCoh0q is a factorization algebra on X, in the
Smooth-Manifold sense:

Coh0pU1 \ U2q “ Coh0pU1q ˆ Coh0pU2q.

Further, this factorization algebra is locally constant. Therefore, HpCoh0pXqq found from
the case of the flat space Hflat “ HpCoh0pA2qq by Factorization Homology. Now, a coherent
sheaf F on A2 with 0-dimensional support is the same as a finite-dimensional vector space
V “ H0pFq with action of Crx, ys, i.e., with a pair of commuting operators x, y : V Ñ V .
Therefore the stack Coh0pA2q is identified with a disjoint union of quotient stacks:

Coh0pA2
q “

ğ

ně0

Cn{{GLn, where

8



Cn “
 

pA,Bq P gln ˆ gln
ˇ

ˇ rA,Bs “ 0
(

is the commuting variety.

It is known (goes back to the Feit-Fine 1962 formula for |CnpFqq|) that as a bigraded vector
space (by n above and coh. degree),

Hflat » Sym‚
pV q, V “ qtCrq´1, ts, degpqq “ p0,´2q, degptq “ p1, 0q.

Theorem 10.1 ([8]). (a) Hflat » Sym‚
pV q as an algebra, in particular, it is commutative.

(b) (Poincaré-Birkhoff-Witt-type theorem for COHA) For any surface X, we have an
identification as bigraded vector spaces

(10.2) HBM
‚ pCoh0pXq » Sym‚

pHBM
‚ pXq b V 1q.

Here V 1 “ V p0, 4q (shifted grading), so that for X “ A2 with HBM
4 pA2q “ C we have

V “ V 1 bHBM
‚ pA2

q.

(Note that Eq. (10.2) is analogous to the Non-abelian Poincaré Duality. )

This means that we can find the size (graded dimension) of HpCoh0pXqq, and the answer
looks like

H‚
toppSectpFX{Xqq

for a fibraton FX Ñ X with fiber F s.t. H‚
toppF q “ Hflat. So the situation here is formally

similar to Gelfand-Fuchs!
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