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1 What is Moonshine?

Moonshine is fundamentally about strange connections between finite groups and modular forms.
These connections should be very special. In particular, if there are infinitely many cases of a
phenomenon, then we typically do not call it moonshine. Instead, we should expect a general
theory to explain the phenomenon.

2 Monstrous Moonshine

Monstrous moonshine began in 1978 with a numerical observation by McKay relating representa-
tions of the monster simple group with coefficients of the modular J function. This observation
initially appeared to be a coincidence, but soon additional numerical evidence together with
theoretical advances showed that there is a substantial connection.

The finite simple groups are now known to be naturally organized into 18 infinite families,
together with 26 additional groups, called sporadic groups. The monster M, constructed in
[Griess 1982], is the largest of the 26 sporadic simple groups, with order about 8× 1053. This is
roughly the number of protons in Jupiter, so it is not feasible to compute with all of the elements
of the group at once. On the other hand, it is somewhat smaller than the number 52! ∼ 8×1067

of permutations in a standard deck of playing cards. We can compute by hand with this group
of permutations, but computation with the monster is much more difficult despite its smaller
size because M has no small representations. In particular, there are no faithful permutation
representations of degree less than about 9 × 1019, and no complex linear representations of
dimension less than 196883.

The J-function is an analytic function on the complex upper half-plane that is invariant
under the action of SL2(Z) by Möbius transformations. The quotient of the upper half-plane
by this action is complex-analytically isomorphic to C, i.e., it is a punctured genus zero curve,
and J realizes such an isomorphism. In general, a function that generates the function field
of an upper half-plane quotient is called a hauptmodul, or principal modulus. Thus, J is a
hauptmodul for SL2(Z). J has the Fourier expansion

q−1 + 196884q + 21493760q2 + · · · (q = e2πiz)

and all of its coefficients are non-negative integers.
In 1978, McKay noted that 196884 = 196883 + 1, where the left side is q-coefficient of the J

function, and the numbers on the right side are the dimensions of the smallest irreducible rep-
resentations of the monster. He suggested that there was a connection, and later computations
by Thompson [Thompson 1979] strongly suggested this was not a coincidence, as the first few
coefficients of J were easily written as very simple combinations of dimensions of irreducible
representations of the monster:
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196884 = 1 + 196883 (1)

21493760 = 1 + 196883 + 21296876 (2)

864299970 = 2× 1 + 2× 196883 + 21296876 + 842609326 (3)

McKay’s observation could be explained by the existence of a natural graded representation
V =

⊕
n Vn of the monster, such that

∑
(dimVn)qn−1 = J . This existence problem is now known

as the McKay-Thompson conjecture, and it was solved with the construction of the “Moonshine
Module” V \ by Frenkel, Lepowsky, and Meurman. They initially constructed it as a graded
representation V \ =

⊕
Vn with graded dimension

∑
(dimVn)qn−1 = J in 1984, using vertex

operators. However, Borcherds introduced a notion of vertex algebra in [Borcherds 1986], and
claimed that their construction is an example. Frenkel, Lepowsky, and Meurman then showed
that this was true, and furthermore, that the monster is the full automorphism group of V \ as
a vertex algebra [Frenkel-Lepowsky-Meurman 1988].

Conway and Norton, acting on a suggestion by Thompson, computed a conjectural list of
graded traces of elements of the monster on the graded representation V [Conway-Norton 1979].
They noted that all of the trace functions appeared to be Hauptmoduls of genus zero dis-
crete subgroups of SL2(R). From this evidence, they proposed the “Monstrous Moonshine”
conjecture, a refinement of the McKay-Thompson conjecture that asserted the existence of a
graded representation V =

⊕
n Vn such that for each element g in the monster, the graded trace∑

n Tr(g|Vn)qn−1 matched the function they computed.
Atkin, Fong, and Smith showed in 1980 that a satisfactory virtual representation exists, but

with no explicit construction. Borcherds showed in [Borcherds 1992] that V \ satisfies Conway
and Norton’s conjecture, using the vertex algebra structure in an essential way. Specifically, he
showed that for each g ∈ M, the series Tg(τ) =

∑
n Tr(g|V

\
n)qn−1 is equal to the Hauptmodul

for g proposed by Conway and Norton.

3 More monstrous moonshine

Conway and Norton suggested in 1979 that there may be similar behavior for other groups, and
Queen computed several potential character functions in 1980. As an example of this behavior,
the second largest sporadic group, called the Baby monster, has irreducible representations of
dimension 1, 4371, 96255, . . ., and the Hauptmodul for Γ0(2)+ is q−1 + 4372q + 96256q2 + · · · .

One of the most interesting phenomena to appear in these computations was that if g ∈ M
has prime order p, and lies in the conjugacy class named pA, then the graded trace function Tg
has non-negative integer coefficients that look like dimensions of representations of the centralizer
CM(g). For p = 2, the centralizer of an element in class 2A is isomorphic to a central extension
2.B of the Baby monster. Thus, our example is still connected to the Monster, but in a way
that is different from the Conway-Norton conjecture.

This phenomenon now has two explanations, both involving the existence of representations
of groups whose dimensions are given by the non-negative coefficients.

Conjecture 1: Generalized Moonshine (Norton 1987) For each g ∈ M, there exists a
1
NZ-graded projective representation V (g) =

⊕
n V (g)n of CM(g), such that the trace functions

Z(g, h; τ) =
∑

n Tr(h̃|V (g)n)qn−1 satisfy good modularity properties. Here, h̃ is some lift of h
to a linear transformation on V (g), and N is the level of Tg(τ). [Norton 1987]

Conjecture 2: Modular Moonshine (Ryba 1994) For each g in conjugacy class pA, there
is a Z≥0-graded vertex algebra Vg over Fp with a CM(g) action, such that the graded Brauer
character of each p-regular h ∈ CM(g) on Vg is equal to the Monstrous Moonshine function Tgh.
[Ryba 1996]

Both conjectures were rather quickly given conjectural interpretations that placed the cen-
tral objects V (g) and Vg in a meaningful context. For Generalized Moonshine, the physicists
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Dixon, Ginsparg, and Harvey proposed that the representations V (g) are twisted sectors of a
conformal field theory with M symmetry, and the functions Z(g, h; τ) are genus 1 partition func-
tions with twisted boundary conditions [Dixon-Ginsparg-Harvey 1988]. For Modular Moonshine,

Borcherds and Ryba proposed that Vg is the Tate cohomology group Ĥ0(g, V \
Z) with coefficients

in a self-dual integral form V \
Z of V \ with M-symmetry [Borcherds-Ryba 1996].

Both conjectures saw substantial progress in the mid 1990s. For Generalized Moonshine,
the representations V (g) were reinterpreted as irreducible g-twisted V \-modules, and these were
shown to exist in [Dong-Li-Mason 1997]. For Modular moonshine, the conjecture was proved
in [Borcherds-Ryba 1996], [Borcherds 1998], and [Borcherds 1999] under the assumption that

V \
Z exists. The self-dual integral form was not known to exist at the time, but they got an

unconditional result for odd primes by using a self-dual form over Z[1/2]. However, the complete
solutions to these conjectures required the following critical advance in the theory of vertex
algebras:

Theorem [van Ekeren-Möller-Scheithauer 2015] If V is strongly regular and holomorphic,
and g ∈ Aut(V ) is finite order, then there exists an abelian intertwining algebra structure on
the direct sum of irreducible twisted modules

gV :=

|g|−1⊕
i=0

V (gi)

Here, the notion of abelian intertwining algebra, introduced in [Dong-Lepowsky 1993], is a
generalization of vertex operator algebra, where the multiplication operation is only commutative
and associative after some adjustment with a braiding structure. The existence of abelian
intertwining algebra structure was essential to the proof of the Hauptmodul property of Z(g, h; τ)

in [Carnahan 2012], and the existence of V \
Z in [Carnahan 2017b].

Another important corollary is the cyclic orbifold construction, which lets us build new
holomorphic vertex algebras using finite order automorphisms of existing objects.

Corollary
Let V be a strongly regular and holomorphic vertex operator algebra, and g ∈ Aut(V ) finite

order. Assume g is “anomaly-free” (i.e., eigenvalues of L(0) on the twisted module V (g) are in
1
|g|Z). Decompose gV :=

⊕|g|−1
i=0 V (gi) under the canonical g action to get a graded structure⊕

i,j V
i,j , where V =

⊕
j V

0,j . Then V/g :=
⊕
V i,0 is a strongly regular holomorphic vertex

operator algebra, and there is a canonical automorphism g∗ such that V i,0 is the e2π
√
−1i/|g|

eigenspace.
With this result, we get 51 constructions of V \ from the Leech lattice vertex operator algebra

VΛ:

1. An order 2 orbifold [Frenkel-Lepowsky-Meurman 1988], the original construction.

2. An order 3 orbifold [Chen-Lam-Shimakura 2016]

3. Orders 5, 7, 13 [Abe-Lam-Yamada 2017]

4. 46 classes of composite order [Carnahan 2017a]

These constructions were conjectured in [Tuite 1993] as part of his orbifold correspondence
between massless classes in the Conway group Co0 and non-Fricke classes in M.

For the construction of V \
Z, we need the prime order constructions: For p ∈ {2, 3, 5, 7, 13},

the pair (VΛ, pa) is orbifold dual to (V \, pB).
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4 Cyclic orbifolds over small rings

The general idea behind the construction of V \
Z is the construction of forms of V \ over many

cyclotomic S-integer rings, followed by a step where these forms are glued together. Thus, we
need a theory of vertex algebras and cyclic orbifolds over these rings so we can construct suitable
forms of V \.

Definition: A vertex algebra over a commutative ring R is an R-module V , with an element
1 ∈ V and a multiplication map V ⊗R V → V ((z)), written u ⊗ v 7→ Y (u, z)v =

∑
unvz

−n−1,
satisfying:

1. Y (1, z) = idV z
0 and Y (a, z)1 ∈ a+ zV [[z]].

2. For any r, s, t ∈ Z, and any u, v, w ∈ V ,∑
i≥0

(
r

i

)
(ut+iv)r+s−iw =

∑
i≥0

(−1)i
(
t

i

)
(ur+t−i(vs+iw)− (−1)tvs+t−i(ur+iw))

When Borcherds introduced vertex algebras, he allowed coefficients in arbitrary commutative
rings, and he gave the following example:

For any positive definite even unimodular lattice L there is a self-dual vertex algebra (VL)Z
over Z (Borcherds 1986). It is a Z-form of Sym(t−1(C⊗L)[t−1])⊗C[L] spanned by monomials
of the form sα1,n1 · · · sαk,nk

eα, where eα is a basis element of C[L], αi are chosen from a basis of

L, and the operator sα,k is the zk-coefficient of exp(
∑

n>0
α(−n)
n zn). Here, Sym(t−1(C⊗L)[t−1])

is a representation of the Heisenberg algebra, with generators α(n) = αt−n ∈ L[t, t−1]⊕ CK.
We will need a more refined notion, where the underlying R-modules are direct sums of

finite projective modules. The notion of vertex operator algebra over a field was introduced in
[Frenkel-Lepowsky-Meurman 1988] as a variant of vertex algebras with similar finiteness prop-
erties, so we give one of perhaps many natural extensions of the definition to commutative
rings:

Definition: A vertex operator algebra over R with half central charge c is a vertex algebra
V over R equipped with a “conformal element” ω and a Z-grading V =

⊕
Vn, such that

1. If u ∈ Vm, v ∈ Vn, then ukv ∈ Vm+n−k−1.

2. The coefficients of Y (ω, z) =
∑
Lnz

−n−2 satisfy Virasoro relations: [Lm, Ln] = (m −
n)Lm+n + c

(
m+1

3

)
δm+n,0idV .

3. Each Vn is a finite rank projective R-module, and L0 acts on Vn by n · idVn .

We can also define abelian intertwining algebras over certain subrings of C, as long as the
subrings contain suitable denominators and enough roots of unity.

For the cyclic orbifold construction, we have the following key result
Lemma: Let V =

⊕
i,j∈Z/NZ V

i,j be a self-dual abelian intertwining algebra over C, where

each V i,j is an irreducible V 0,0-module, and let U =
⊕
V 0,j and W =

⊕
V i,0. If R is a suitable

subring of C, and we are given self-dual R-forms UR and WR such that UR ∩ V 0,0 = WR ∩ V 0,0,
then they generate a self-dual R-form of V .

To apply this result to the construction of V \, we use an intermediate orbifold method
introduced in [Abe-Lam-Yamada 2017]:

Theorem: Let P0 = {2, 3, 5, 7, 13}. If p, q are distinct in P0, and pq 6∈ {65, 91}, then there
is an automorphism ḡ of the Leech lattice of order pq, such that no non-identity power of ḡ has
fixed points, and an order pq lift g ∈ Aut(VΛ). Then:

1. VΛ/g
p ∼= VΛ/g

q ∼= V \

2. VΛ/g ∼= VΛ.
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In particular, there are 2 copies of V \ inside the abelian intertwining algebra
⊕

i VΛ(gi), which
is generated by 2 copies of VΛ.

Corollary: Let p, q be distinct elements of P0 = {2, 3, 5, 7, 13}, such that pq 6∈ {65, 91},
and let Rpq = Z[1/pq, eπ

√
−1/pq]. Then, there is a self-dual Rpq-form of the abelian intertwining

algebra
⊕

i VΛ(gi), and it contains 2 isomorphic self-dual Rpq-forms of V \.

5 Monster symmetry

Before we can glue our forms of V \, we need to show that they have full Monster symmetry. There
are two reasons for this: First, the symmetry gives us more flexibility in finding isomorphisms
between forms so that we can glue. Second, when we have control over symmetry, we can restrict
how many isomorphism types can come from gluing.

Recall the Leech lattice Λ has Co0 = 2.Co1 symmetry. From this, the lattice vertex algebra
has symmetry given by AutVΛ

∼= (C×)24.Co0, a non-split extension.
Let p ∈ P0, ḡ ∈ Co0 fixed-point free, order p. Then any order p lift g ∈ AutVΛ has centralizer

(Z/pZ)24/(p−1).CCo0(ḡ). The same is true for suitably chosen automorphisms of the Rpq-form.
We therefore obtain natural actions of large finite groups on abelian intertwining algebras, and
on the forms of V \. In particular, the self-dual Rpq-forms of V \ naturally inherit an action

of Gp = p1+24/(p−1).(CCo0(ḡq)/ḡq) from an abelian intertwining algebra containing V \
Rpq

and

(VΛ)Rpq (and similarly for Gq).
We therefore have Rpq-forms of V \ with actions of the subgroups Gp and Gq of M. By work

of Wilson on maximal subgroups of M [Wilson 2017], we conclude that the only subgroup of M
containing these groups is M itself. These forms therefore have monster symmetry.

6 Gluing forms over small rings

We now have a collection of forms of V \ over rings Rpq, each with monster symmetry, and we
wish to show that all of them arise from a form over Z by tensor product. In commutative
algebra, this is known as a descent problem, and we may use the tools of Zariski and faithfully
flat descent to prove this. For the data we have, it is easiest to phrase this as a gluing problem:

Definition: Given a diagram R1 → R3 ← R2 of commutative rings, a gluing datum for
vertex operator algebras is a triple (V 1, V 2, f), where

1. V 1 is a vertex operator algebra over R1,

2. V 2 is a vertex operator algebra over R2, and

3. f : V 1 ⊗R1 R3 → V 2 ⊗R2 R3 is an isomorphism of vertex operator algebras over R3.

These form a category, where morphisms are pairs of maps satisfying a commutative square
condition.

Proposition: Let i1 : R → R1 and i2 : R → R2 be maps of commutative rings, such that
either

1. i1 and i2 form a Zariski open cover, or

2. i1 and i2 are faithfully flat.

Then, the category of gluing data for R1 → R1 ⊗R R2 ← R2 is equivalent to the category of
vertex operator algebras over R.

The proof of this proposition easily reduces to a gluing problem for modules over commu-
tative rings. I initially thought the gluing problem for modules would follow immediately from
effectiveness of faithfully flat descent, but the proof turned out to be unexpectedly tricky.
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To construct the gluing data, we first produce isomorphisms between certain fixed-point
vertex operator subalgebras by comparing them to vertex operator subalgebras of VΛ. We then
extend them to isomorphisms of forms of V \ using the action of elementary abelian subgroups
of M. This is the first place where monster symmetry is essential.

Proposition: Let Rn = Z[1/n, eπ
√
−1/n] and let g ∈ pB. Recall (V \, pB) is orbifold dual to

(VΛ, pa), and V g
pq
∼= (VΛ)σRpq

. Then V g
pq ⊗Rpq Rpqr

∼= (VΛ)σRpqr
∼= V g

pr ⊗Rpr Rpqr.

By a theorem in [Wilson 1988], for each p ∈ P0, there is an elementary subgroup Hp ⊂M of
order p2, whose non-identity elements lie in conjugacy class pB. Vpq and Vpr are generated by
g-fixed point subalgebras for g ranging over Hp, so Vpq ⊗Rpq Rpqr

∼= Vpr⊗Rpr Rpqr by uniqueness
of generated self-dual forms.

From our isomorphisms Vpq ⊗Rpq Rpqr
∼= Vpr ⊗Rpr Rpqr, we may produce a self-dual Z-form

with M-symmetry by repeated gluing. Uniqueness comes from the fact that the double coset
space M\M/M is a singleton. This is the second place where monster symmetry is essential.
The main result is then:

Theorem: There is a unique self-dual Z-form V \
Z of V \ such that V \

Z⊗Rpq ∼= Vpq. This form
has M-symmetry, and the natural inner product is positive definite.

Corollary (Modular moonshine conjecture): For any g ∈ pA, the vertex algebra

Ĥ0(g, V \
Z) has an action of CM(g) by automorphisms, and for any p-regular h ∈ CM(g), the

graded Brauer character is the q-expansion of the Monstrous Moonshine hauptmodul Tgh(τ).
Corollary: There exists a positive definite unimodular lattice of rank 196884 with a faithful

monster action.
This lattice is just the weight 2 part of V \

Z, and in fact, it carries a commutative non-
associative product structure, such that the automorphism group of the algebra is M. This is
essentially a self-dual Z-form of the Griess algebra, with a slight modification at the identity
element.

7 Further questions
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