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Introduction

This article makes a report of the talk given by the author at the 62nd Algebra Sympo-
sium, which was held at Osaka University in September, 2017. The talk is based on joint
work with Hiroki Matsui. The complete proofs of the results in this article that are due
to Matsui and the author are all stated in [10], together with more detailed information
and other related results.

Tensor triangular geometry is a theory established by Balmer [2] at the beginning of the
current century. Let T = (T ,⊗, 1l) be an (essentially small) tensor triangulated category,
that is, a triangulated category T equipped with symmetric tensor product ⊗ and unit
object 1l. A (thick tensor) ideal of T is defined to be a thick subcategory of T which is
closed under the action of T by ⊗. A proper ideal P of T is called prime if it satisfies:

X ⊗ Y ∈ P =⇒ X ∈ P or Y ∈ P .

Prime ideals of tensor triangulated categories turn out to behave similarly to prime ideals
of commutative rings; both share a lot of analogous properties. Among other things,
the Balmer spectrum Spc T of T , which is defined as the set of prime ideals of T , has
the structure of a topological space, corresponding to the fact that the Zariski spectrum
SpecR of a commutative ringR has a Zariski topology. Tensor triangular geometry studies
Balmer spectra and develops commutative-algebraic and algebro-geometric observations.
It is related to a lot of branches of mathematics, including commutative algebra, alge-
braic geometry, stable homotopy theory, modular representation theory, motivic theory,
noncommutative topology and symplectic geometry. As Balmer [4] addressed an invited
lecture at the International Congress of Mathematicians (ICM) in 2010, tensor triangular
geometry has been attracting a great deal of attention.

Let R be a commutative noetherian ring. Let D-(R) be the right bounded derived
category of finitely generated R-modules. It is then a routine to verify that

(D-(R),⊗L
R, R)

is a tensor triangulated category. The main topics of the talk at the symposium by
the author concern the structure of the ideals of D-(R) and the structure of the Balmer
spectrum SpcD-(R) of D-(R).

1. Tensor triangulated categories and Balmer spectra

In this section, we introduce some of Balmer’s works on general tensor triangulated
categories. All the materials in this section are taken from [2, 3, 4]. First of all, we recall
the definition of a tensor triangulated category.
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Definition 1.1. A tensor triangulated category (T ,⊗, 1l) is a triangulated category T
equipped with symmetric tensor product ⊗ and unit object 1l. To be more precise, T is
both a triangulated category and a symmetric monoidal category such that the triangu-
lated and symmetric monoidal structures are compatible.

Here are several examples of a tensor triangulated category. Note that all of them are
essentially small.

Example 1.2.

(1) Let X be a (quasi-compact and quasi-separated) scheme. Denote by Dperf(X) the
derived category of perfect complexes of OX-modules. Then (Dperf(X),⊗L

OX
,OX) is

a tensor triangulated category.
(2) LetR be a commutative ring. Denote by Kb(projR) the homotopy category of bounded

complexes of finitely generated projective R-modules. Then (Kb(projR),⊗R, R) is a
tensor triangulated category. This is nothing but the affine case of (1).

(3) Let k be a field of positive characteristic, and G a finite group (scheme over k).
Denote by mod kG the stable category of finitely generated kG-modules. Then
(mod kG,⊗k, k) is a tensor triangulated category.

(4) Let k,G be as in (3). Denote by Db(mod kG) the derived category of bounded com-
plexes of finitely generated kG-modules. Then (Db(mod kG),⊗k, k) is a tensor trian-
gulated category.

(5) Let R be a commutative noetherian ring. Denote by D-(modR) the derived category
of homologically right bounded complexes of finitely generated R-modules. Then
(D-(modR),⊗L

R, R) is a tensor triangulated category. This tensor triangulated cate-
gory plays a main role in this article.

Next, we give the definitions of a (thick tensor) ideal and a Balmer spectrum. We recall
here that a thick subcategory of a triangulated category is by definition a nonempty full
subcategory which is closed under direct summands, shifts and cones.

Definition 1.3. Let T be an essentially small tensor triangulated category.

(1) A thick subcategory I of T is a (tensor) ideal if it satisfies the following implication.

a ∈ T , x ∈ I =⇒ a⊗ x ∈ I.
This is an analogue of an ideal of a commutative ring.

(2) An ideal I of T is radical if I =
√
I, where

√
I := {a ∈ T | a⊗ · · · ⊗ a︸ ︷︷ ︸

n

∈ I for some n > 0}

is the radical of I. These are analogues of a radical ideal and the radical of an ideal
of a commutative ring, respectively.

(3) A proper ideal P of T is prime if it satisfies the following implication.

x⊗ y ∈ P =⇒ x ∈ P or y ∈ P .
This is an analogue of a prime ideal of a commutative ring.

(4) The Balmer spectrum of T is defined by:

Spc T = {Prime ideals of T }.
This corresponds to the Zariski spectrum SpecR of a commutative ring R.
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(5) The Balmer support of an object x of T is defined by:

Spp(x) = {P ∈ Spc T | x /∈ P}.
This corresponds to the subset V(f) = {p ∈ SpecR | f ∈ p} of SpecR for an element
f of R. Note that the containment is opposite.

(6) We put

U(x) := Spp(x)∁ = {P ∈ Spc T | x ∈ P}.
This corresponds to the subset D(f) = {p ∈ SpecR | f /∈ p} of SpecR.

Throughout the rest of this article, we assume that all tensor triangulated categories
are essentially small, so that we can always define their Balmer spectra.

We make the definitions of a maximal ideal and a minimal prime of a tensor triangulated
category.

Definition 1.4. Let T be a tensor triangulated category.

(1) An ideal of T is said to be a maximal ideal of T if it is a proper ideal of T which is
maximal with respect to the inclusion relation. We denote by Mx T the set of maximal
ideals of T .

(2) An ideal of T is said to be a minimal prime of T if it is a prime ideal of T which is
minimal with respect to the inclusion relation. We denote by Mn T the set of minimal
primes of T .

Each Balmer spectrum has the structure of a topological space such that the Balmer
supports are closed subsets. We state this here together with several fundamental prop-
erties which will often be used later.

Proposition 1.5 ([2]). Let T be a tensor triangulated category.

(1) Spc T is a topological space with an open basis {U(x)}x∈T .
(2) Every proper ideal of T is contained in a maximal ideal.
(3) Maximal ideals of T are prime.
(4) Every prime ideal of T contains a minimal prime.

(5) For each P ∈ Spc T the closure {P} of {P} is irreducible, and described as follows.

(1.5.1) {P} = {Q ∈ Spc T | Q ⊆ P}.
Conversely, any nonempty irreducible closed subset of Spc T has this form.

(6) The open subset U(x) of Spc T is quasi-compact for each x ∈ T . Conversely, any
nonempty quasi-compact open subset of Spc T has this form.

(7) For an ideal I of T one has
√
I =

∩
I⊆P∈Spc T

P .

The equality (1.5.1) corresponds to the equality

{p} = {q ∈ SpecR | q ⊇ p}
of subsets of SpecR for a commutative ring R and a prime ideal p of R. Again, the
containment is opposite.

Thus, ideals of tensor triangulated categories have a lot of similar properties to ideals
of commutative rings.
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For a full subcategory X of T and a subset S of Spc T , set

SppX =
∪
x∈X

Spp(x),

Spp−1 S = {x ∈ T | Spp(x) ∈ S}.

The following theorem is a celebrated result due to Balmer [2, Theorem 4.10].

Theorem 1.6 (Balmer (2005)). Let T be a tensor triangulated category. Then there is a
one-to-one correspondence

{Radical ideals of T }
Spp

1−1
//
{Thomason subsets of Spc T }.

Spp−1
oo

Here, a subset A of a topological space X is said to be Thomason if one can write

A =
∪
i∈I

Bi

for some family {Bi}i∈I of subsets of X such that B∁i = X \ Bi is a quasi-compact open
subset. A subset C of X is said to be specialization-closed if it satisfies the implication

x ∈ C =⇒ {x} ⊆ C.

We notice that this condition is equivalent to saying that C is a (possibly infinite) union of
closed subsets. Therefore, a Thomason subset is always specialization-closed. The name of
a Thomason subset comes from the fact that for a quasi-compact quasi-separated scheme
X, Thomason [13] gives a complete classification of the ideals of Dperf(X) in terms of the
Thomason subsets of the underlying topological space of X.

Theorem 1.7 says that for a given tensor triangulated category T the understanding of
the structure of the Balmer spectrum of T provides a complete classification of the radical
ideals of T . Since each ideal of T is the kernel of some tensor triangulated functor from
T and vice versa, classifying ideals of T leads us to the understanding of the structure of
tensor triangulated functors from T . In this sense, the above theorem is quite meaningful.

For each tensor triangulated category T one can define the structure sheaf OT on
T , and then the Balmer spectrum Spc T has the structure of a locally ringed space [4,
Constructions 24 and 29]. More precisely, for each quasi-compact open subset U of Spc T
we define

T (U) := (T / Spp−1(U ∁))♮,

where (−)♮ stands for the idempotent completion. Then it holds that

Spc T (U) ∼= U.

The assignment U 7→ EndT (U)(1l) induces a presheaf of commutative rings, and we define
the structure sheaf OT on T as its sheafification. Thus we obtain a locally ringed space

Spec T := (Spc T ,OT ).

The following theorem due to Balmer is also well-known. We refer the reader to [2,
Theorem 6.3] and [4, Theorem 57]; see also [3, Proposition 6.11].

Theorem 1.7 (Balmer (2005, 2010)).
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(1) Let X be a quasi-compact quasi-separated scheme. Then there is an isomorphism

SpecDperf(X) ∼= X

of locally ringed spaces.
(2) Let k be a field of positive characteristic, and G a finite group (scheme over k). Then

there are isomorphisms

SpecDb(mod kG) ∼= Spech H•(G, k),

Spec(mod kG) ∼= ProjH•(G, k)

of locally ringed spaces.

Here H•(G, k) stands for the group cohomology ring. For a graded-commutative ring
A, we denote by SpechA the set of homogeneous prime ideals of A. For a commutative
nonnegatively graded ring R we denote by ProjR the set of homogeneous prime ideals
of R that do not contain R+ =

⊕
i>0 Ri. Note that ProjH•(G, k) is nothing but the

(projective) support variety VG(k).
The isomorphism in Theorem 1.7(1) says that a scheme X is reconstructed from its

derived category Dperf(X); see also [1]. This is actually because of the tensor structure
of Dperf(X). Indeed, only from the triangulated structure of Dperf(X) the original scheme
X cannot be reconstructed, since there are a lot of derived equivalences of nonsingular
algebraic varieties (e.g. the Fourier–Mukai transformation).

The second isomorphism in Theorem 1.7(2) is obtained by restricting the first one.
Key roles in the proof of Theorem 1.7 are played by the classification theorems of
ideals due to Hopkins [9], Neeman [11], Thomason [13], Benson–Carlson–Rickard [5] and
Friedlander–Pevtsova [8]; see also the works of Benson–Iyengar–Krause [6] and Benson–
Iyengar–Krause–Pevtsova [7]. The Balmer spectra are described for some other tensor
triangulated categories by several authors; details can be found in [4].

Let (T ,⊗, 1l) be a tensor triangulated category. Balmer [3] constructs a continuous map

ρ•T : Spc T → Spech R•
T ,

which is given by

ρ•T (P) := (f ∈ R•
T | cone(f) /∈ P).

Here,

R•
T = HomT (1l,Σ

•1l)

is a graded-commutative ring.
It is seen that for T = Kb(projR) with R being a commutative ring we have R•

T = R,
and it is also observed that for T = Db(mod kG) with k being a field k of positive
characteristic and G being a finite group (scheme over k) we have R•

T = H•(G, k). It is
shown by Balmer [3, Propositions 8.1 and 8.5] that the isomorphism in Theorem 1.7(1)
in the affine case, and the first isomorphism in Theorem 1.7(2) are given by the map ρ•T
given above. Thus the following conjecture has been presented by Balmer [4, Conjecture
72] in his invited lecture at the International Congress of Mathematicians (ICM), which
was held in 2010 at Hyderabad.

Conjecture 1.8 (Balmer, ICM 2010). The map ρ•T is (locally) injective if T is algebraic
as a triangulated category.
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Let f : X → Y be a continuous map of topological spaces. We say that f is locally
injective at a point x ∈ X if there exists a neighborhood N of x such that the restriction
f |N of f on N is injective. The map f is called locally injective if for all points x ∈ X it
is locally injective at x. Also, recall that a triangulated category is called algebraic if it is
described as the stable category of a Frobenius exact category.

It is known that the conjecture does not hold for a non-algebraic triangulated category;
indeed, if T is the Spanier–Whitehead stable homotopy category SHfin of finite pointed
CW-complexes, then ρ•T is not injective; see [4, Theorem 51]. On the other hand, as we
have seen above, the conjecture does hold for Kb(projR) and Db(mod kG).

Now we introduce some notation, which will be used throughout the rest of this article.

Notation 1.9.

(1) Let R be a commutative noetherian ring.
(2) We denote by SpecR the Zariski spectrum of R, namely, the set of prime ideals of R

equipped with the Zariski topology.
(3) For an ideal I of R we define V(I) the set of prime ideals of R containing I, and put

D(I) = V(I)∁ = SpecR \ V(I).
(4) The set of maximal ideals (respectively, minimal primes) of R is denoted by MaxR

(respectively, MinR).
(5) We denote by modR the category of finitely generated R-modules, and by projR the

full subcategory of modR consisting of finitely generated projective R-modules.
(6) We denote by D∗(R) the derived category D∗(modR) of the abelian category modR,

and by K∗(R) the homotopy category K∗(projR) of the additive category projR, where
∗ ∈ {−, b}. There are obvious inclusions

Kb(R) ⊆ Db(R) ⊆ D-(R).

Taking projective resolutions induces an equivalence

D-(R) ∼= K-(R)

of tensor triangulated categories. We will often identify D-(R) with K-(R) via this
equivalence.

From the next section on, we will investigate the structure of D-(R) as a tensor trian-
gulated category. We close this section by giving comments about how hard it is.

Difficulities for D-(R). The tensor triangulated category D-(R) possesses a lot of defects
on its structure, compared with the other well-established tensor triangulated categories:

(1) D-(R) does not have arbitrary products or coproducts. (However, it does have some
specific infinite coproducts, which will somehow play a crucial role in the proofs of
our results.)

(2) D-(R) is not closed under duals. For example, in the case where R is an algebra over
a field k, D-(R) is not closed under k-duals.

(3) In particular, D-(R) is never rigid. Recall that a triangulated category T is called
rigid if there exist an exact functor D : T op → T and a functorial isomorphism

HomT (a⊗ b, c) ∼= HomT (a,D(b)⊗ c)

for a, b, c ∈ T . In fact, D-(R) is even never closed as a symmetric monoidal category.
There are a lot of results on rigid tensor triangulated categories, but we cannot use
them for D-(R).
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(4) One has

thickD-(R) R ̸= D-(R).

Indeed, the left hand side coincides with Kb(R). There are several results on tensor
triangulated categories (T ,⊗, 1l) satisfying thickT 1l = T , but they are not available
for D-(R).

Thus, results in the literature are quite limited on tensor triangulated categories that can
be applied to our tensor triangulated category D-(R).

2. Compactly and cocompactly generated thick tensor ideals of D-(R)

In this section, we classify compactly or cocompactly generated ideals of the tensor
triangulated category D-(R). We begin with recalling the definitions of compact and
cocompact objects.

Definition 2.1. Let T be a triangulated category.

(1) An object M ∈ T is called compact (respectively, cocompact) if the natural morphism⊕
λ∈Λ

HomT (M,Nλ)→ HomT (M,
⊕
λ∈Λ

Nλ)(
respectively,

⊕
λ∈Λ

HomT (Nλ,M)→ HomT (
∏
λ∈Λ

Nλ,M)

)

is an isomorphism for all families {Nλ}λ∈Λ of objects of T such that the coproduct⊕
λ∈ΛNλ (respectively, the product

∏
λ∈ΛNλ) exists in T .

(2) We denote by T c (respectively, T cc) the full subcategory of T consisting of compact
(respectively, cocompact) objects of T .

(3) An ideal of T is said to be compactly generated (respectively, cocompactly generated)
if it is generated by some compact (respectively, cocompact) objects of T as an ideal.

The following equalities hold for compactly and cocompactly generated ideals of D-(R).

Fact 2.2. There are equalities

D-(R)c = Kb(R),

D-(R)cc = Db(R).

The second equality in the above fact is due to Oppermann–Stovicek [12, Theorem 18].
The first equality is well-known, and actually proved along the same lines as in the proof
of the fact that the compact objects of the unbounded derived category of all R-modules
are the perfect complexes over R.

Next, let us recall the definition of the (usual) support of a chain complex. Note that
this notion is different from that of a Balmer support introduced in the previous section.

Definition 2.3.
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(1) Let X ∈ D-(R) be a complex. The support of X is defined to be the union of the
supports (as R-modules) of homologies of X. One has equalities

SuppX =
∪
i∈Z

SuppHi(X)

= {p ∈ SpecR | Xp ̸= 0}(2.3.1)

= {p ∈ SpecR | κ(p)⊗L
R X ̸= 0}

of subsets of SpecR, where κ(p) denotes the residue field Rp/pRp of the local ring Rp.
(2) For a full subcategory X of D-(R), set

SuppX =
∪
X∈X

SuppX.

It is easy to see that the following hold.
• SuppX is a specialization-closed subset of SpecR.
• There is an equality SuppX = Supp(thick⊗X ).

Here, thick⊗X stands for the ideal generated by X , that is, the smallest ideal of D-(R)
containing X .

(3) For a subset S of SpecR, set

⟨S⟩ = thick⊗
D-(R)

{R/p | p ∈ S}.

The second equality in (2.3.1) holds even for unbounded complexes of non-finitely gen-
erated R-modules, while the third equality only holds for complexes in D-(R).

The following theorem is the first main result of this article.

Theorem 2.4 ([10, Theorem 2.12]). There is a one-to-one correspondence{
Cocompactly generated

ideals of D-(R)

} Supp

1−1
//
{
Specialization-closed
subsets of SpecR

}
⟨⟩

oo .

Thus the cocompactly generated ideals of D-(R) are completely classified.
In fact, this one-to-one correspondence is not just a bijection of sets. For ideals X ,Y

of D-(R), define X ∧ Y and X ∨ Y by:{
X ∧ Y = thick⊗{X ⊗L

R Y | X ∈ X , Y ∈ Y},
X ∨ Y = thick⊗(X ∪ Y).

It is then seen that for specialization-closed subsets A,B of SpecR there are equalities{
⟨A⟩ ∧ ⟨B⟩ = ⟨A ∩B⟩,
⟨A⟩ ∨ ⟨B⟩ = ⟨A ∪B⟩.

Using these equalities, one can show that the set of cocompactly generated ideals of D-(R)
forms a lattice with join ∨ and meet ∧, and that the bijections in the theorem are lattice
isomorphisms; see [10, Proposition 2.18].

On the other hand, using the above theorem, we observe that the assignments X 7→
X ∩ Kb(R) and thick⊗ Y ← [ Y make a one-to-one correspondence

{Cocompactly generated ideals of D-(R)}⇄ {Thick subcategories of Kb(R)};
see [10, Corollary 2.14].
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To prove the theorem, we need to extend the Hopkins–Neeman smash nilpotence the-
orem as follows; see [10, Theorem 2.7].

Lemma 2.5 (Generalized smash nilpotence). Let f : X → Y be a morphism in K-(R)
such that Y ∈ Kb(R). If f ⊗R κ(p) = 0 for all prime ideals p of R, then f⊗t = 0 for some
integer t > 0.

We do not state the proof of this lemma, but give several comments on the proof.

Remark 2.6.

(1) If we assume further that X ∈ Kb(R), then the assertion of the lemma is nothing
but the original smash nilpotence due to Hopkins [9, Theorem 10] and Neeman [11,
Theorem 1.1]. In the proof of the original smash nilpotence, one can reduce to the
case where X = R by replacing the morphism f : X → Y with a morphism f ′ : R→
RHomR(X, Y ) via the isomorphim

HomKb(R)(R,RHomR(X,Y )) ∼= HomKb(R)(X,Y ).

Thanks to this reduction, one can identify the morphism f ∈ HomKb(R)(R, Y ) with
the element f(1) ∈ H0Y , which plays a key role in the proof of the original smash
nilpotence.

(2) We show and use the following statements; see [10, Lemmas 2.5 and 2.6].
(a) Let T be a tensor triangulated category. Let f, g be a morphism in T , and let X ,Y

be full subcategories of T . If f⊗X = 0 and g⊗Y = 0, then (f⊗g)⊗(X ∗Y) = 0.
(b) Let x = x1, . . . , xn be a sequence of elements of R. Let f be a morphism in K-(R).

If f ⊗R R/(x) = 0, then f⊗2n ⊗R K(x) = 0.
Here, X ∗Y stands for the full subcategory of K-(R) consisting of objects E such that
there exists an exact triangle

X → E → Y ⇝
in T with X ∈ X and Y ∈ Y , and K(x) stands for the Koszul complex of R with
respect to x. The statement (b) is deduced by using (a).

(3) We need the assumption that Y ∈ Kb(R) to have the equality

annRp(fp) = annR(f)p

for all prime ideals p of R. Here, the annihilator of a morphism f : X → Y in D-(R)
is defined by

annR(f) := {a ∈ R | af = 0 in D-(R)},
which is nothing but the kernel of the morphism R → HomD-(R)(X, Y ) given by
a 7→ af .

By virtue of the generalized smash nilpotence, we can prove the following key proposi-
tion. For an object X of D-(R) we define the annihilator annX of X as the annihilator
of the identity morphism of X.

Proposition 2.7 ([10, Proposition 2.9]). Let X,Y ∈ D-(R) be complexes. Then the
following implication holds true.

V(annX) ⊆ SuppY =⇒ X ∈ thick⊗ Y.

Again, we do not state the proof of this proposition but give some comments on it.
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Remark 2.8.

(1) For every X ∈ D-(R) one has

V(annX) ⊇ SuppX.

The equality holds if X ∈ Db(R).
(2) The original statement that is due to Hopkins and Neeman and corresponds to the

proposition asserts that for perfect complexes X,Y over R the implication

SuppX ⊆ SuppY =⇒ X ∈ thick⊗ Y

holds true; see [11, Lemma 1.2].
(3) Proposition 2.7 does not hold if V(annX) is replaced with SuppX or if SuppY is

replaced with V(annY ); we will see this in Remark 3.14.
(4) In the proof of the proposition, we first take a truncation Y ′ ∈ Kb(R) of Y such that

V(annX) is contained in SuppY ′. Then we consider the morphism R→ HomR(Y
′, Y )

sending 1 ∈ R to the inclusion morphism Y ′ → Y . The stream of the proof is similar
to [11, Lemma 1.2], but we need to make various modifications.

(5) In the proposition, we can replace the object Y of D-(R) with any full subcategory Y
of D-(R). Indeed, we find an object Y ∈ Y such that SuppY contains all the prime
ideals (minimally) containing annX. Then V(annX) is contained in SuppY , and we
can reduce to the case where the subcategory Y consists only of Y .

As a corollary of Proposition 2.7 we have the following result. This result will be used
in the proof of Theorem 2.4, and several other places.

Corollary 2.9 ([10, Corollary 2.11 and Proposition 4.11]).

(1) Let X be a complex in D-(R). Then it holds that

SuppX = SpecR ⇐⇒ thick⊗ X = D-(R).

(2) Let I be an ideal of R, and let X be an ideal of D-(R). Take a system of generators
x = x1, . . . , xn of I. Then it holds that

V(I) ⊆ SuppX ⇐⇒ R/I ∈ X ⇐⇒ K(x) ∈ X .

Proof. (1) The implication (⇐) follows from the equalities

SuppX = Supp(thick⊗ X) = SuppD-(R) = SpecR.

As for the implication (⇒), for all objects M ∈ D-(R) one has that V(annM) is contained
in SuppX. Hence M belongs to thick⊗ X by Proposition 2.7.

(2) We have

SuppR/I = V(annR/I) = V(I) = V(annK(x)) = SuppK(x).

Using Proposition 2.7 completes the proof of the assertion. □
Now we can obtain the proof of the main result of this section.

Proof of Theorem 2.4. Let X be a cocompactly generated ideal of D-(R). Then one
can write X = thick⊗ C for some full subcategory C of Db(R). What we want to show is
the equality X = ⟨SuppX⟩. As to the inclusion (⊇), Corollay 2.9(2) implies that R/p is
in X for all p ∈ SuppX . As for the inclusion (⊆), it suffices to show that C is contained in
⟨SuppX⟩ = ⟨Supp C⟩. Pick an object M ∈ C. Then M is a bounded complex of finitely
generated R-modules, whence it is in thick{R/p | p ∈ SuppM}. Now we are done. □
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As a corollary of Theorem 2.4 we have the following result.

Corollary 2.10 ([10, Corollary 2.16]). The following are equivalent for an ideal X of
D-(R).

(1) X is compactly generated.
(2) X is cocompactly generated.

When this is the case, we simply say that X is compact.

Proof. Since Kb(R) is contained in Db(R), compact generation implies cocompact gen-
eration. Therefore (1) implies (2). Let us show that (2) implies (1). Let W be a
specialization-closed subset of SpecR. Put

A := thick⊗{R/p | p ∈ W},
B := thick⊗{K(x) | xR ∈ W}.

Then A is cocompactly generated, while B is compactly generated. We see that SuppA =
SuppB = W . Using Theorem 2.4, we obtain A = B. □

As another corollary of Proposition 2.7, we get the following result.

Corollary 2.11 ([10, Corollary 2.20]). If R is artinian, then all ideals of D-(R) are
compact. Therefore one has a one-to-one correspondence

{Ideals of D-(R)}⇄ {Subsets of SpecR}.

3. The Balmer spectrum of D-(R) and classifications of thick tensor
ideals

In this section, we consider the structure of the Balmer spectrum of D-(R), and
make correspondences among some classes of ideals of D-(R) and subsets of SpecR and
SpcD-(R). The section consists of three subsections.

3.1. The structure of SpcD-(R).
We investigate the structure of the Balmer spectrum of D-(R) as a topological space,
comparing it with the Zariski spectrum of R. We start by defining a tame ideal of D-(R).

Definition 3.1.

(1) For a subset S of SpecR, we define the full subcategory Supp−1 S of D-(R) by

Supp−1 S = {X ∈ D-(R) | SuppX ⊆ S}.
One easily sees that Supp−1 S is an ideal of D-(R), and furthermore, the following
equalities hold.
• Supp−1 S = Supp−1 Sspcl.
• Supp(Supp−1 S) = Sspcl.

Here, Sspcl stands for the largest specialization-closed subset of SpecR contained in
S. (This is the spcl-interior of S in SpecR if we use the terminology in the next
Subsection 3.2.)

(2) An ideal X of D-(R) is called tame if X = Supp−1 S for some subset S of SpecR. We
set

tSpcD-(R) = {tame prime ideals of D-(R)}.
One can construct the following correspondence between SpecR and SpcD-(R); see

[10, Propositions 3.4 and 3.7].
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Proposition 3.2.

(1) For p ∈ SpecR, the full subcategory

S(p) := {X ∈ D-(R) | Xp = 0}
of D-(R) is a prime ideal of D-(R)

(2) For P ∈ SpcD-(R), the set

{I ⊆ R | R/I /∈ P}
of ideals of R has a unique maximal element s(P) with respect to the inclusion relation,
which is a prime ideal of R

Concerning the correspondence constructed in the above proposition, the following
statements hold.

Theorem 3.3 ([10, Theorems 3.9, 4.5, 4.7, 4.12 and 4.14]).

(1) One has the order-reversing maps

S : SpecR⇄ SpcD-(R) : s

such that {
s · S = 1,

S · s = Supp−1 Supp .

In particular, the inequality

dim(SpcD-(R)) ≥ dimR

between the Krull dimensions holds.
(2) The subset tSpcD-(R) of SpcD-(R) is dense. There is a commutative diagram

SpecR
S //

S′

&&NN
NNN

NNN
NNN

NNN
NNN

NNN
NNN

N
SpcD-(R)

s // SpecR

tSpcD-(R)
?�

inc

OO

s′

88pppppppppppppppppppppppp

such that S ′ is an open bijection, s′ is a continuous bijection and s is a continuous
map. In particular, the image of S coincides with tSpcD-(R).

(3) There is a commutative diagram

MinR
Smin //

� _

inc

��

MxD-(R)
_�

inc
��

SpecR
S // SpcD-(R)

MaxR � � Smax //
� ?

inc

OO

MnD-(R)
?�

inc

OO

such that Smin is a homeomorphism, and the injective map Smax is also a homeomor-
phism if R is a semilocal ring.

(4) The following are equivalent.
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(a) The map S is continuous.
(b) The map S ′ is homeomorphic.
(c) The map s′ is homeomorphic.
(d) The set SpecR is finite.

Here are several comments on this theorem.

Remark 3.4.

(1) Recall that for a topological space X the Krull dimension dimX of X is by definition
the supremum of the lengths of chains of nonempty irreducible closed subsets of X.
For a tensor triangulated category T we have

dim(Spc T ) = sup{n ≥ 0 | ∃ chain {P0} ⊊ · · · ⊊ {Pn} of subsets of Spc T }
= sup{n ≥ 0 | ∃ chain P0 ⊊ · · · ⊊ Pn of points of Spc T }.

(2) Note that MaxR, MinR, Mx T and Mn T are all T1-spaces, and that, in general, any
finite subset of a T1-space is closed. Thus, to show Theorem 3.3(3), it is enough to
check that the top and bottom horizontal maps are bijective and injective, respectively
(after we verify that they are induced).

(3) The following are equivalent ([10, Lemma 4.6]).
• All specialization-closed subsets of SpecR are closed.
• There are only finitely many specialization-closed subsets of SpecR.
• There are only finitely many closed subsets of SpecR.
• There are only finitely many prime ideals of R.

Using this equivalences, we can deduce Theorem 3.3(4).
(4) More precisely than Theorem 3.3(1), we actually have a commutative diagram

tSpcD-(R)

θ inc
��

s′

))TTT
TTTT

TTTT
TTTT

T

SpecR

S̃

))TTT
TTTT

TTTT
TTTT

T
S //

S′
55jjjjjjjjjjjjjjjj
SpcD-(R)

π can
��

s // SpecR

SpcD-(R)/ Supp

s̃

55jjjjjjjjjjjjjjjj

such that sS is identity, S ′, S̃, s′, s̃, πθ are bijections, S ′, S̃ are open and closed, and
s, s′, s̃ are continuous ([10, Theorem 4.5]). Here, SpcD-(R)/ Supp denotes the quotient
topological space by the equivalence relation induced by taking Supp(−), and π the
canonical surjection. (To be precise, we define a relation ∼ in SpcD-(R) by

P ∼ Q ⇐⇒ SuppP = SuppQ
for P ,Q ∈ SpcD-(R). Then ∼ is an equivalence relation in SpcD-(R). We denote by
SpcD-(R)/ ∼ the set of equivalence classes, and by π : SpcD-(R) → SpcD-(R)/ ∼
the map sending each P ∈ SpcD-(R) to its equivalence class [P ] ∈ SpcD-(R)/ ∼.
The set SpcD-(R)/ ∼ is a topological space, where a subset S of SpcD-(R)/ ∼ is
open if and only if π−1(S) is an open subset of SpcD-(R).)

(5) More precisely than Theorem 3.3(4), the following assertion holds true ([10, Theorem
4.7]). Consider the three conditions

(a) The map S̃ is a homeomorphism,
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(b) The map s̃ is a homeomorphism,
(c) The map πθ is a homeomorphism.

Then (a) is equivalent to (b), and (b)∧(c) is equivalent to the four conditions in
Theorem 3.3(4).

Suppose that R is artinian. Then R is semilocal, has only finitely many prime ideals
and satisfies MaxR = SpecR = MinR. Hence, Theorem 3.3 yields the following corollary.

Corollary 3.5. Let R be an artinian ring. Then the following statements hold true.

(1) The maps S : SpecR⇄ SpcD-(R) : s are mutually inverse homeomorphisms.
(2) One has dim SpcD-(R) = dimR = 0 <∞.
(3) All prime ideals of D-(R) are tame.

In fact, a more complete statement holds true; see Theorem 3.11.

3.2. Classifications of ideals of D-(R).
In this subsection, we consider making correspondences among compact, radical and tame
ideals of D-(R), and specialization-closed subsets of SpecR, SpcD-(R) and tSpcD-(R).
First of all, we explore the relationships among these three properties of ideals of D-(R).

Proposition 3.6 ([10, Lemma 5.8]). Let X be an ideal of D-(R).

(1) There are equalities of ideals of D-(R):

Xcpt = ⟨SuppX⟩,

X rad =
√
X ,

X tame = Supp−1 SuppX .
(2) There are inclusions

Xcpt ⊆ X ⊆ X rad ⊆ X tame

of ideals of D-(R), all of whose supports are equal. In particular, every tame ideal of
D-(R) is radical.

Here, X P (respectively, XP) stands for the P-closure (respectively, P-interior) of X ,
namely, the smallest (respectively, largest) P-ideal containing (respectively, contained in)
X . Also, cpt and rad denote the compact and radical properties, respectively.

The assertion (1) of the above proposition is seen to hold just by checking the defintions.
In relation to (2), the following statement holds: Let W be a specialization-closed subset
of SpecR. Then ⟨W ⟩ (respectively, Supp−1W ) is the smallest (respectively, largest) ideal
of D-(R) whose support coincides with W ; see [10, Theorem 6.6(2)].

To state the main result of this section, we introduce notation.

Notation 3.7. We use the following sets in the rest of this subsection.

Rad = {Radical ideals of D-(R)},
Tame = {Tame ideals of D-(R)},
Cpt = {Compact ideals of D-(R)},

Spcl(Spec) = {Specialization-closed subsets of SpecR},
Spcl(tSpc) = {Specialization-closed subsets of tSpcD-(R)},

Thom = {Thomason subsets of SpcD-(R)}.
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Proposition 3.6(2) implies the inclusion

Rad ⊇ Tame.

The main result of this section makes correspondences among the above six sets.

Theorem 3.8. [10, Theorems 5.13 and 5.20] One has the following diagram, which is
naturally commutative. (More precisely, the diagram with sections and bijections and the
diagram with retractions and bijections are commutative.)

Rad
Spp

∼
//

()cpt⊣

��

Thom
Spp−1

oo

S−1⊣

��

()spcl

⊣

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

J

Cpt

()rad

OO

∼
Supp //

∼
()tame

##F
FF

FF
FF

FF
FF

FF
FF

FF
FF

FF
FF

FF
FF

FF
Spcl(Spec)

S

OO

⟨⟩
oo ∼

S //

Supp−1∼

��

Spcl(tSpc)

()spcl

ddJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

s
oo

∼

Sp−1

zztt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
t

Tame

()cpt

ccFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Sp

::ttttttttttttttttttttttttttttttt

Supp

OO

Here:

•

{
f ∼ g ⇐⇒ gf = 1 and fg = 1 (i.e. (f, g) is a bijection pair),

f ⊣ g ⇐⇒ gf = 1 (i.e. (f, g) is a section-retraction pair).

•

{
Aspcl = the spcl-interior of A in tSpcD-(R),

Bspcl = the spcl-closure of B in SpcD-(R).

•



S(W ) =
∪

p∈W {S(p)},
S−1(A) = {p ∈ SpecR | S(p) ∈ A},
Sp(−) = Spp(−) ∩ tSpcD-(R),

Sp−1(B) = {M ∈ D-(R) | SpM ⊆ B},
S(W ) = {S(p) | p ∈ W},
s(B) = {s(P) | P ∈ B}.

Moreover, the following are equivalent.

(1) The pair S : SpecR⇄ SpcD-(R) : s of maps is a one-to-one correspondence.
(2) The pair (()rad, ()cpt) of maps is a one-to-one correspondence.
(3) The pair (S,S−1) of maps is a one-to-one correspondence.
(4) The pair (()spcl, ()spcl) of maps is a one-to-one correspondence.
(5) The equality Rad = Tame holds.
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The spcl-interior Aspcl is the largest specialization-closed subset of tSpcD-(R) contained
in A, while spcl-closure Bspcl is the smallest specialization-closed subset of SpcD-(R)
containing B.

Here are some comments on the above theorem.

Remark 3.9.

(a) The one-to-one correspondence Rad ∼= Thom in the diagram of Theorem 3.8 is
nothing but Theorem 1.6 due to Balmer, while the one-to-one correspondence Cpt ∼=
Spcl(Spec) is nothing but Theorem 2.4. Thus this diagram connects Theorems 1.6
and 2.4, and gives rise to several related correspondences.

(b) The proof of Theorem 3.8 proceeds step by step; for example, we show and use the
equalities{

Aspcl = A ∩ tSpcD-(R),

Bspcl = {P ∈ SpcD-(R) | P tame ∈ B} =
∪

P∈Bspcl Spp(R/s(P)).

(c) Theorem 3.8 yields a commutative diagram

Rad

()cpt

vvlll
lll

lll
lll

lll
lll

lll
lll

lll
lll

ll

Supp

����
��
��
��
��
��
��
��

()tame

��9
99

99
99

99
99

99
99

Sp

((QQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

Cpt
∼

Spcl(Spec)
∼

Tame
∼

Spcl(tSpc)

where the bottom bijections are the ones in the diagram of Theorem 3.8. Further-
more, the conditions (1)–(5) in Theorem 3.8 are also equivalent to the following three
conditions.
(6) The map Supp : Rad→ Spcl(Spec) is a bijection.
(7) The map ()tame : Rad→ Tame is a bijection.
(8) The map Sp : Rad→ Spcl(tSpc) is a bijection.
For the details, we refer the reader to [10, Corollary 5.21].

The corollary below is immediately obtained from the above theorem.

Corollary 3.10. If every radical ideal of D-(R) is compact, then Rad = Tame.

Proof. For each radical ideal X of D-(R) one has X = Xcpt = (Xcpt)
rad. Hence

()rad : Cpt⇄ Rad : ()cpt

is a one-to-one correspondence. Theorem 3.8 implies Rad = Tame. □

We are interested in what rings R are characterized by the eight conditions (1)–(8)
appearing in Theorem 3.8 and Remark 3.9.

Theorem 3.11 ([10, Theorem 6.5]). The equivalent conditions (1)–(8) are also equivalent
to the condition that

(9) the ring R is artinian.

Furthermore, when this is the case, every ideal of D-(R) is compact, tame and radical.
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The most difficult part of the proof of this theorem is to show the necessity of the
condition (9). Here, let us only check the last assertion of the theorem. Suppose that
R is artinian, and pick any ideal X of D-(R). Then Corollary 3.5(3) implies that X is
compact, and that taking Supp(−) makes an injective map. Hence the equality

Supp(X ) = Supp(Supp−1 SuppX )

implies that X coincides with Supp−1 SuppX , which shows that X is tame. In general, a
tame ideal of D-(R) is radical, and hence X is radical.

Using Theorem 3.11 and Corollary 3.10, we immediately obtain the following.

Corollary 3.12. Suppose that R is not artinian. Then there exists a non-compact radical
ideal of D-(R).

3.3. On Balmer’s conjecture for D-(R).

From now on, we consider Balmer’s conjecture stated in Section 1 for our tensor tri-
angulated category D-(R). First of all, we investigate the difference between radical and
tame ideals of D-(R). We have already learned that the following holds.

X rad ⊆ X tame.

The following theorem says that if X is compact, then the equality does not hold under
mild assumptions.

Theorem 3.13 ([10, Theorem 6.6]). Let W be a nonempty proper specialization-closed
subset of SpecR, and put X = ⟨W ⟩. Assume that R is either a domain or a local ring.
Then

X rad ⊊ X tame.

Proof. Since W is nonempty, it contains a prime ideal P . Take a system of generators
x = x1, . . . , xr of P . It is essential to think of the following complex.

C :=
⊕
i>0

K(xi)[i].

Thanks to the shifts, this infinite direct sum exists in our tensor triangulated category
D-(R). Since SuppC = V(P ) is contained in W , the complex C is in Supp−1W = X tame

by Proposition 3.6(1).

Suppose X rad = X tame. Then C belongs to X rad =
√
X . Hence there is an integer n > 0

such that

C ′ := C ⊗L
R · · · ⊗L

R C︸ ︷︷ ︸
n

belongs to X . Note that C ′ contains

D :=
⊕
i>0

K(xi)[ni]

as a direct summand. Therefore D is in X = ⟨W ⟩ = thick⊗{R/p | p ∈ W}, and we find a
finite number of prime ideals p1, . . . , pm in W such that

annD ⊇ (annR/p1) · · · (annR/pm) = p1 · · · pm.



18 RYO TAKAHASHI

Krull’s intersection theorem implies

annD =
∩
i>0

xiR = 0,

and we have p1 · · · pm = 0. Thus for every prime ideal p of R there exists an integer
1 ≤ t ≤ m such that p contains pt. Since W is specialization-closed and contains pt, the
prime ideal p belongs to W . This shows that W = SpecR, contrary to the assumption
on W . □

Using the above proof, we have an observation related to Proposition 2.7.

Remark 3.14. We use the same notation as in the proof of Theorem 3.13.

(1) It holds that SuppC is contained in SuppR/P , but C does not belong to thick⊗ R/P .
Indeed, we have SuppC = V(P ) = SuppR/P . Assume that C is in thick⊗ R/P . Then

0 = annC ⊇ (annR/P )u = P u

for some integer u > 0. Hence the equality SpecR = V(P ) holds, which is contained
in W since W is specialization-closed. Therefore W coincides with SpecR, which is
a contradiction.

(2) It holds that V(annR) is contained in V(annC), but R does not belong to thick⊗ C.
In fact, we have V(annR) = V(0) = V(annC). As SuppC = V(P ) is a proper subset
of SpecR, it is observed from Corollary 2.9(1) that R is not in thick⊗C.

Now, we consider Balmer’s conjecture (Conjecture 1.8) for our tensor triangulated cat-
egory D-(R). First of all, let us check that the triangulated category D-(R) is algebraic.
The category C-(R) of right bounded complexes of finitely generated R-modules is a
Frobenius exact category with respect to the split short exact sequences of complexes in
C-(R), and K-(R) is the stable category of C-(R). Thus K-(R) is an algebraic triangulated
category.

Recall that Conjecture 1.8 concerns the continuous map

ρ•
D-(R)

: SpcD-(R)→ Spech R•
D-(R)

.

One can actually observe that

(a) R•
D-(R)

= R0
D-(R)

= R,

(b) Spech R•
D-(R)

= SpecR, and

(c) ρ•
D-(R)

= s.

Thus, Conjecture 1.8 for D-(R) just claims the local injectivity of the map s.
We can show that under quite mild assumptions the algebraic tensor triangulated cat-

egory D-(R) does not satisfy Balmer’s conjecture.

Corollary 3.15 ([10, Corollary 6.10]). Assume that dimR > 0, and that R is either a
domain or a local ring. Then s is not locally injective. Hence, Balmer’s Conjecture 1.8
does not hold true for D-(R).

Proof. By assumption we find a nonunit x ∈ R such that the principal ideal xR of R has
positive height. We apply Theorem 3.13 to X = ⟨V(x)⟩ to get∩

X⊆P∈SpcD-(R)

P = X rad ⊊ X tame =
∩

X⊆P∈tSpcD-(R)

P .
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Hence we can choose a prime ideal P of D-(R) such that X ⊆ P ⊊ P tame.
Assume that s is locally injective at the point P . Then there exists an objectM ∈ D-(R)

with P ∈ U(M) such that s|U(M) is injective. Then U(M) contains two distinct points P
and P tame, which are sent by s to the same point in SpecR. This contradicts the injectivity
of the map s|U(M). □

We end this section by stating a bit about the case where R is a discrete valuation ring.
Since everything is clarified when R is artinian, the case of discrete valuation rings should
be the first nontrivial case, but in fact, it turns out that even in this case the structure of
D-(R) is highly complicated. For the details, we refer the reader to [10, Section 7].
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