Congruences for modular form coefficients

Ken Ono

(University of Wisconsin at Madison).

Fact. Modular form coefficients are important.

They are a source of interesting problems:

- Ramanujan-Petersson Conjecture (a.k.a Deligne's Theorem).
- Taniyama-Shimura Conjecture.
- Lehmer's Conjecture.
- Serre's Conjectures.
- etc.

These coefficients also play central roles in many applications such as:

- Ramanujan's work on partitions.
- Quadratic forms and sphere packing.
- Artin's L-function Conjecture.
- Proof of Fermat's Last Theorem.
- Birch and Swinnerton-Dyer Conjecture.
- Monstrous Moonshine.
- Class field theory of CM fields.
- Elliptic curves in so many many ways....etc.

Goal. We recall some classical congruences for modular form coefficients, and give one modern application to elliptic curves.
underbarRamanujan's works.

We begin with Ramanujan's work on $p(n)$ and $\tau(n)$, examples which "inspired" much of the early history of work on modular forms.

I. Partitions.

Definition. A partition of an integer N is a sequence of non-increasing positive integers with sum N.

$$
\begin{array}{ccc}
p(N):=\#\{\text { partitions of } N\} \\
\underline{N} & \text { Partitions of } N & \underline{p(N)} \\
1 & 1 & p(1)=1 \\
2 & 2 & p(2)=2 \\
& 11 & \\
3 & 3 & p(3)=3 \\
& 21 & \\
& 111 & \\
4 & 4 & p(4)=5 \\
& 31 & \\
& 21 & \\
& 211 & \\
& 111 &
\end{array}
$$

Question. What is the size of $p(N)$?
N

$$
p(N)
$$

10 42

100 190569292

100024061467864032622473692149727991

The Hardy-Ramanujan Asymptotic Formula.

Inventing the "circle method", they proved:

$$
p(N) \sim \frac{e^{\pi \sqrt{2 N / 3}}}{4 N \sqrt{3}}
$$

Theorem (Ramanujan).
If $n \geq 0$, then

$$
\begin{aligned}
& p(5 n+4) \equiv 0 \quad(\bmod 5) \\
& p(7 n+5) \equiv 0 \quad(\bmod 7) \\
& p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

Remark. These results require "modularity".

Theorem (Euler).

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

As a weight $-\frac{1}{2}$ modular form, we have

$$
\frac{1}{\eta(24 z)}=\sum_{n=0}^{\infty} p(n) q^{24 n-1} .
$$

II. The tau-function.

Following Ramanujan, define integers $\tau(n)$ by:

$$
\begin{aligned}
\Delta(z) & =\sum_{n=1}^{\infty} \tau(n) q^{n}=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \\
& =q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}-\cdots .
\end{aligned}
$$

Remarks.

1. Throughout, we let $q=e^{2 \pi i z}$.
2. This function is a weight 12 modular form.
3. This function drove much of the early history in the study of modular forms.

Some examples of important results for $\tau(n)$:

1. (Ramanujan) For every $n \geq 1$, we have

$$
\tau(n) \equiv \sum_{d \mid n} d^{11} \quad(\bmod 691)
$$

2. (Mordell) If n and m are coprime positive integers, then

$$
\tau(n) \tau(m)=\tau(n m)
$$

This marked the birth of Hecke operators.
3. (Deligne) If p is prime, then

$$
|\tau(p)| \leq 2 p^{11 / 2}
$$

This follows from the Weil Conjectures.

Remark. Although Ramanujan proved the " 691 congruence" using a simple q-series identity, it is a special case of a very deep theory.

Galois representations.

By work of Deligne (and others), we have:

Theorem. If $f(z)=\sum_{n=1}^{\infty} a(n) q^{n} \cap \mathbb{Z}[[q]]$ is an integer weight Hecke eigenform, then for each prime ℓ there is an ℓ-adic representation

$$
\rho_{f, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)
$$

such that for every prime $p \nmid \ell N$ we have

$$
\operatorname{Tr}\left(\rho_{f, \ell}(\operatorname{Frob}(p))=a(p)\right.
$$

Remarks.

1. Proving congruences are reduced to the computation of Galois representations.
2. "Nice" representations give congruences.

In particular, for primes $p \neq 691$ we have

$$
\rho_{\Delta, 691}(\operatorname{Frob}(p)) \equiv\left(\begin{array}{cc}
1 & * \\
0 & p^{11}
\end{array}\right) \quad(\bmod 691)
$$

3. These representations play a central role in Wiles' proof of Fermat's Last Theorem.

Basics about modular forms.
$\mathrm{SL}_{2}(\mathbb{Z})$-action on \mathcal{H}.

$$
\begin{gathered}
\text { If } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \text { and } z \in \mathcal{H} \text {, then we let } \\
\qquad A z=\frac{a z+b}{c z+d} .
\end{gathered}
$$

Congruence Subgroups.

The level N congruence subgroups are

$$
\begin{aligned}
& \Gamma_{0}(N):=\left\{A \in \mathrm{SL}_{2}(\mathbb{Z}): A \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad(\bmod N)\right\} \\
& \Gamma_{1}(N):=\left\{A \in \mathrm{SL}_{2}(\mathbb{Z}): A \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad(\bmod N)\right\} .
\end{aligned}
$$

Integer weight modular forms.

Definition. A holomorphic function $f(z)$ on \mathcal{H} is a modular form of integer weight k on a congruence subgroup Γ if

1. We have

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

$$
\text { for all } z \in \mathcal{H} \text { and all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma \text {. }
$$

2. If $f(z)$ is holomorphic at each cusp.

Half-integral weight modular forms

Notation. If d is odd and $c \in \mathbb{Z}$, then let

$$
\begin{aligned}
& \left(\frac{c}{d}\right):= \begin{cases}\left(\frac{c}{|d|}\right) & \text { if } d<0 \text { and } c>0, \\
-\left(\frac{c}{|d|}\right) & \text { if } d<0 \text { and } c<0, \\
\left(\frac{c}{|d|}\right) & \text { if } d>0 \text { and } c \neq 0, \\
1 & \text { if } c=0 \text { and } d= \pm 1,\end{cases} \\
& \epsilon_{d}:= \begin{cases}1 & \text { if } d \equiv 1 \quad \bmod 4 \\
i & \text { if } d \equiv 3\end{cases} \\
&
\end{aligned}
$$

$\sqrt{z}=$ branch of \sqrt{z} with argument in $(-\pi / 2, \pi / 2]$.

Definition. Suppose that $\lambda \geq 0$ and that Γ is a congruence subgroup of level $4 N$.

A holomorphic function $f(z)$ on \mathcal{H} is a halfintegral weight modular form of weight $\lambda+\frac{1}{2}$ on 「 if

1) If $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$, then
$f\left(\frac{a z+b}{c z+d}\right)=\left(\frac{c}{d}\right)^{2 \lambda+1} \epsilon_{d}^{-1-2 \lambda}(c z+d)^{\lambda+\frac{1}{2}} f(z)$.
2) If $f(z)$ is holomorphic at each cusp.

Terminology. Suppose that

$$
f(z) \text { is a modular form. }
$$

1) If $k=0$, then $f(z)$ is a modular function.
2) If $f(z)$ is a holomorphic modular form which vanishes at the cusps, then it is a cusp form.

Notation.

$$
\begin{aligned}
M_{k}(\Gamma):= & \{\text { holomorphic modular forms of } \\
& \text { weight } k \text { on } \Gamma\}, \\
S_{k}(\ulcorner):= & \{\text { cusp forms of weight } k \text { on } \Gamma\} .
\end{aligned}
$$

Fourier expansion at infinity. Modular forms have a Fourier expansion at infinity

$$
f(z)=\sum_{n \geq n_{0}}^{\infty} a(n) q^{n}
$$

where $q:=e^{2 \pi i z}$.

Nonvanishing of L-functions

Notation for the main objects

- An even weight newform:

$$
f(z)=\sum_{n=1}^{\infty} a(n) q^{n} \in S_{2 k}^{\text {new }}\left(\Gamma_{0}(M)\right)
$$

- Its L-function

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

- If D is a fundamental discriminant and $\chi_{D}=\left(\frac{D}{\bullet}\right)$, then the quadratic twists are:

$$
\begin{aligned}
f_{D}(z) & =\sum_{n=1}^{\infty} \chi_{D}(n) a(n) q^{n} \\
L\left(f_{D}, s\right) & =\sum_{n=1}^{\infty} \frac{\chi_{D}(n) a(n)}{n^{s}} .
\end{aligned}
$$

Remark. These values are related to the Birch and Swinnerton-Dyer Conjecutre.

Elliptic curves. If K / \mathbb{Q} is a field, then we shall consider elliptic curves
$E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in K$

Theorem (Poincare)

The set of points $E(K)$ togther with the the point at infinity forms an abelian group.

Group Law on $E: \quad y^{2}=x^{3}+17$

Theorem (Mordell-Weil)

Every elliptic curve $E(K)$ over a number field K is a finitely generated abelian group.

$$
E(K) \cong E_{t o r}(K) \oplus \mathbb{Z}^{\mathrm{rk}(E, K)}
$$

Example. If E is the elliptic curve

$$
E: \quad y^{2}=x^{3}+17,
$$

then we have

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{2}
$$

(i.e. $\operatorname{rk}(E, \mathbb{Q})=2$)

The Birch and Swinnerton-Dyer Conjecture.

Notation.

$$
\begin{gathered}
E / \mathbb{Q} \text { an elliptic curve } \\
L(E, s)=\sum_{n=1}^{\infty} \frac{a_{E}(n)}{n^{s}} \text { its Hasse-Weil } L \text {-function. }
\end{gathered}
$$

Remark. For primes p of good reduction

$$
N_{E}(p)=p+1-a_{E}(p),
$$

where $N_{E}(p)$ is \# points on E modulo p.

Birch and Swinnerton-Dyer Conjecture.
If $\mathrm{rk}(E)$ is the rank of $E(\mathbb{Q})$, then

$$
\operatorname{ord}_{s=1}(L(E, s))=\operatorname{rk}(E) .
$$

Remarks.

1) For E with CM, Coates and Wiles proved

$$
\text { (1977) } L(E, 1) \neq 0 \Longrightarrow \operatorname{rk}(E)=0 \text {. }
$$

2) Kolyvagin's breakthrough in the 1980s.

Subject to hypotheses on the nonvanishing of central L-values and derivatives of quadratic twists, for modular E he proved

$$
\begin{aligned}
& \operatorname{ord}_{s=1}(L(E, s)) \leq 1 \\
& \quad \Longrightarrow \quad \operatorname{ord}_{s=1}(L(E, s))=\operatorname{rk}(E)
\end{aligned}
$$

Happily we have:

Theorem.

If E / \mathbb{Q} has conductor $N(E)$, then there is a newform $f_{E}(z) \in S_{2}^{\text {new }}\left(\Gamma_{0}(N(E))\right.$ for which

$$
L(E, s)=L\left(f_{E}, s\right)
$$

Hence, we have:

Theorem (Kolyvagin)

If E / \mathbb{Q} is an elliptic curve, then

$$
\begin{aligned}
& \operatorname{ord}_{s=1}(L(E, s)) \leq 1 \\
& \qquad \Longrightarrow \operatorname{ord}_{s=1}(L(E, s))=\operatorname{rk}(E) \\
& \text { and }|\amalg(E)|<+\infty .
\end{aligned}
$$

Quadratic twists of elliptic curves.

If E / \mathbb{Q} is an elliptic curve given

$$
E: \quad y^{2}=x^{3}+a x^{2}+b x+c
$$

then its D-quadratic twist of E is given by

$$
E(D): \quad D y^{2}=x^{3}+a x^{2}+b x+c .
$$

Lemma. Suppose that E / \mathbb{Q} is an elliptic curve and that $f=f_{E}(z)$ has the property that

$$
L(E, s)=L(f, s) .
$$

If D is coprime to the conductor of E, then

$$
L(E(D), s)=L\left(f_{D}, s\right)
$$

Main Problem. Given E, we wish to estimate

$$
\#\{|D| \leq X: \operatorname{rk}(E(D))=0\}
$$

Congruent Numbers. A positive integer D is a "congruent number" if it is the area of a right triangle with rational sidelengths.

Remark. This problem remains open, and is a special case of the Main Problem above since

$$
D \text { is congruent } \Longleftrightarrow \mathrm{rk}(E(D))>0,
$$

where $E: y^{2}=x^{3}-x$.

"Conjecture" (Goldfield).

If E / \mathbb{Q} is an elliptic curve, then

$$
\sum_{|D| \leq X} \operatorname{rk}(E(D)) \sim \frac{1}{2} \#\{D:|D|<X\} .
$$

Theorem 1 ('98 Invent. Math., O-Skinner).

$$
\begin{aligned}
& \text { If } f(z) \in S_{2 k}^{\text {new }}\left(\Gamma_{0}(M)\right) \text { is a newform, then } \\
& \qquad \#\left\{|D| \leq X: L\left(f_{D}, k\right) \neq 0\right\} \gg \frac{X}{\log X} .
\end{aligned}
$$

Corollary. If E / \mathbb{Q} is an elliptic curve, then

$$
\#\{|D| \leq X: \operatorname{rk}(E(D))=0\} \gg \frac{X}{\log X} .
$$

For most newforms, more is true:
"Theorem 2." ['01 Crelle, O] If there is a prime $p \nmid 2 M$ with

$$
a(p) \equiv 1 \quad(\bmod 2),
$$

then $\exists D_{f}$ and a set of primes S_{f}, with positive density, such that for every j

$$
L\left(f_{p_{1} p_{2} \cdots p_{2 j} D_{f}}, k\right) \neq 0,
$$

whenever $p_{1}, p_{2}, \ldots, p_{2 j} \in S_{f}$ are distinct.

Corollary. If $2 \nmid \# E_{\text {tor }}$, then $\exists D_{E}$ and a set of primes S_{E}, with positive density, such that for every $j \geq 1$ we have

$$
\operatorname{rk}\left(E\left(D_{E} p_{1} p_{2} \cdots p_{2 j}\right)\right)=0,
$$

whenever $p_{1}, p_{2}, \ldots p_{2 j} \in S_{E}$ are distinct.

Remark. In Thm 2 and the corollary above, $\exists 0<\alpha<1$ for which

$$
\begin{aligned}
& \#\left\{|D| \leq X: L\left(f_{D}, k\right) \neq 0\right\} \gg \frac{X}{(\log X)^{1-\alpha}} \\
& \#\{-X<D<X: \operatorname{rk}(E(D))=0\} \gg \frac{X}{\log ^{1-\alpha} X} .
\end{aligned}
$$

Example. Let E / \mathbb{Q} be the elliptic curve

$$
E: \quad y^{2}=x^{3}-432
$$

Then $D_{E}:=1$ and
$S_{E}:=\left\{p>3: 2\right.$ is not a cubic residue in $\left.\mathbb{F}_{p}\right\}$.

Sketch of the proof of Theorem 2

Kohnen and Zagier, and Waldspurger proved

"arithmetic formulas" for $L\left(f_{D}, k\right)$.

Notation. For every fundamental discriminant D let

$$
D_{0}:= \begin{cases}|D| & \text { if } D \text { is odd } \\ |D| / 4 & \text { if } D \text { if even }\end{cases}
$$

Theorem (Waldspurger).

If $f(z) \in S_{2 k}^{\text {new }}\left(\Gamma_{0}(M)\right)$ is a newform, then there is a $\delta \in\{ \pm\}$ and a

$$
g(z)=\sum_{n=1}^{\infty} b(n) q^{n} \in S_{k+\frac{1}{2}}\left(\Gamma_{0}(4 N), \chi\right)
$$

with the property that if $\delta D>0$, then
$b\left(D_{0}\right)^{2}= \begin{cases}\epsilon_{D} \cdot \frac{L\left(f_{D}, k\right) D_{0}^{k-\frac{1}{2}}}{\Omega_{f}} & \text { if } \operatorname{gcd}\left(D_{0}, 4 N\right)=1 \\ 0 & \text { otherwise }\end{cases}$

Remark. By Kolyvagin, we need to show that

$$
b\left(D_{0}\right) \neq 0
$$

for the D we have identified.

Using Galois representations, one can show:
"Theorem". Let $f_{1}(z), f_{2}(z), \ldots, f_{y}(z)$ be integer weight cusp forms

$$
f_{i}(z)=\sum_{n=1}^{\infty} a_{i}(n) q^{n} \in S_{k_{i}}\left(\Gamma_{0}\left(M_{i}\right)\right) .
$$

If $p_{0} \nmid \ell M_{1} M_{2} \cdots M_{y}$ is prime and $j \geq 1$, then there is a set of primes p with positive density such that for every $1 \leq i \leq y$ we have

$$
f_{i}(z)\left|T_{p_{0}, k_{i}} \equiv f_{i}(z)\right| T_{p, k_{i}}\left(\bmod \ell^{j+1}\right)
$$

Here $T_{p, k}$ is the weight k Hecke operator for p.

1) Let $g(z)=\sum_{n=1}^{\infty} b(n) q^{n}$ satisfy

$$
b\left(D_{0}\right)^{2}=\operatorname{stuff} \times L\left(f_{D}, k\right)
$$

2) If $p \nmid 4 N$ is a prime, then $\exists \lambda(p)$ with

$$
\begin{aligned}
b\left(n p^{2}\right)=(\lambda(p) & \left.-\chi^{\star}(p) p^{\lambda-1}\left(\frac{n}{p}\right)\right) b(n) \\
& -\chi^{\star}\left(p^{2}\right) p^{2 \lambda-1} b\left(n / p^{2}\right) .
\end{aligned}
$$

3) Define the integer weight form $G(z)$ by

$$
\begin{aligned}
G(z) & =\sum_{n=1}^{\infty} b_{g}(n) q^{n}=g(z) \cdot\left(1+2 \sum_{n=1}^{\infty} q^{n^{2}}\right) \\
& \equiv g(z) \quad(\bmod 2) .
\end{aligned}
$$

4) By hypothesis, $\exists p_{0} \nmid 4 N$ for which

$$
\lambda\left(p_{0}\right) \equiv 1 \quad(\bmod 2)
$$

5) By "Theorem" for $G(z)$ and $f(z)$, we have:

For $j \geq 1$, there is a set of odd primes $S_{p_{0}, j}$ with positive density satisfying:

- If $p \in S_{p_{0}, j}$, then

$$
\lambda(p) \equiv \lambda\left(p_{0}\right) \equiv 1 \quad(\bmod 2) .
$$

- If $p \in S_{p_{0}, j}$ then

$$
G(z)\left|T_{p, \lambda+1} \equiv G(z)\right| T_{p_{0}, \lambda+1} \quad\left(\bmod 2^{j+1}\right) .
$$

6) If $\operatorname{ord}_{2}(b(m))=s_{0}$, and $q_{1} \in S_{p_{0}, s_{0}}$ is coprime to m, then Hecke operators give
(Coeff. of $q^{m q_{1}}$ in $G(z) \mid T_{q_{1}}$)

$$
=b_{g}\left(m q_{1}^{2}\right) \pm \chi\left(q_{1}\right) q_{1}^{k} b_{g}(m) .
$$

7) Replacing $b_{g}\left(m q_{1}^{2}\right)$, using 2), this is

$$
\begin{aligned}
& \equiv \lambda\left(q_{1}\right) b_{g}(m) \\
& +b_{g}(m) \chi^{\star}\left(q_{1}\right) q_{1}^{k-1}\left(\pm q_{1} \pm 1\right) \quad\left(\bmod 2^{s_{0}+1}\right)
\end{aligned}
$$

8) Since $\pm q_{1} \pm 1 \equiv 0(\bmod 2)$, we get $\operatorname{ord}_{2}\left(\right.$ Coeff. of $q^{m q_{1}}$ in $\left.G(z) \mid T_{q_{1}}\right)=s_{0}$.
9) Now 5) implies that if $q_{2} \in S_{p_{0}, s_{0}}$, then

$$
G\left|T_{q_{1}} \equiv G\right| T_{q_{2}} \quad\left(\bmod 2^{s_{0}+1}\right)
$$

$\Longrightarrow \operatorname{ord}_{2}\left(\right.$ Coeff. of $q^{m q_{1}}$ in $\left.G(z) \mid T_{q_{2}}\right)=s_{0}$
$\underset{\text { heck }}{\Longrightarrow} \operatorname{ord}_{2}\left(b_{g}\left(m q_{1} q_{2}\right) \pm \chi\left(q_{2}\right) q_{2}^{k} b_{g}\left(m q_{1} / q_{2}\right)\right)=s_{0}$
$\Longrightarrow \operatorname{ord}_{2}\left(b_{g}\left(m q_{1} q_{2}\right)\right)=s_{0}$
$\underset{\text { def. } G}{\Longrightarrow} \operatorname{ord}_{2}\left(b\left(m q_{1} q_{2}\right)\right)=s_{0}$
$\underset{\text { Wald }}{\Longrightarrow} L\left(f_{\delta m q_{1} q_{2}}, k\right) \neq 0$.
12) Iterate 6)-9) with pairs q_{3}, q_{4}, etc...

Summary

Works of Kolyvagin, Shimura, and Waldspurger, and "congruence properties" of modular form coefficients imply:

1) For generic f and E / \mathbb{Q}, we have

$$
\begin{aligned}
& \#\left\{|D| \leq X: L\left(f_{D}, k\right) \neq 0\right\} \gg \frac{X}{\log X} \\
& \#\{|D| \leq X: \operatorname{rk}(E(D))=0\} \gg \frac{X}{\log X} .
\end{aligned}
$$

2) For E with $2 \nmid \# E_{\text {tor }}$, we have

$$
\operatorname{rk}\left(E\left(D_{E} p_{1} p_{2} \cdots p_{2 j}\right)\right)=0
$$

whenever $p_{1}, \ldots, p_{2 j} \in S_{E}$.

