
A COMMENT ON BRIANÇON-SPEDER POLYNOMIAL

MUTSUO OKA

Abstract. Briançon and Speder gave an example of a µ-constant fam-
ily of weighted homogeneous polynomials for which µ∗ is not constant.
In this note we analyze this example. We study similar weighted ho-
mogeneous polynomials and determine the number of possible different
topology of curves which are obtained as generic plane sections.
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1. Introduction

The notion of µ∗ invariants of an analytic function germ was introduced
by B. Teissier [13]. He showed that a µ∗-constant family ft(z) is equiv-
alent to the Whitney regularity of the canonical stratification associated
with the family, and thus under this condition, the local links are topologi-
cally isomorphic. On the other hand, for a family of weighted homogeneous
polynomials with isolated singularities, the diffeomorphism type of the link
is constant without assuming µ∗ constancy as it has a uniform stable radius
(Theorem 3.2, Chapter 1 [10], Lemma 2 [12]).

Let f(x, y, z) =
∑

ν aνx
ν1yν2zν3 be a weighted homogeneous polynomial

of degree e under the weight vector P = t(p1, p2, p3) with isolated singularity
at the origin. We denote the space of such weighted homogeneous polyno-
mials as W(P ; e). Briançon and Speder observed that for P = t(1, 2, 3) and
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e = 15, there are polynomials f0, f1 ∈ W(P, e) which have different µ∗ invari-

ants ([1]). Recall that µ∗ invariants consist of three integers (µ(3), µ(2), µ(1))

where µ(3) is the Milnor number of f and µ(2) is the Milnor number of a
generic plane section and µ(1) is the multiplicity minus 1 (see [7] for Milnor
number). First we show that there are two more classes of polynomials in
W(P, 15) with different local embedded topology of the generic plane sec-
tion. Then generalizing this observation, we consider weighted homogeneous
polynomials in W(P, e) with weight vector P = t(1, a, a+ 1), a ≥ 2 and de-
gree e = (a + 1)(ak + 1) in §3. We show that the generic plane sections of

f ∈ W(P, e) have
∑k

i=0 |P(i)| different topological types where P(i) is the
set of partitions of the integer i and |P(i)| is the cardinality of P(i) (Theorem
2). In §4, we generalize Theorem 2 for more general weight vectors.

2. Briançon-Speder polynomials

Let us recall the Briançon-Speder family given in [1]:

ft(x, y, z) = x15 + xy7 + tzy6 + z5, t ∈ C.

This is a weighted homogeneous polynomial of degree e = 15 under the
weight vector P = t(1, 2, 3) whose Milnor number is given by µ = 364
by Orlik-Milnor formula ([8]). Briançon and Speder have observed that

µ(2)(f1) = 26 and µ(2)(f0) = 28. Actually the space W(P, 15) is quite high
dimensional. In fact, the monomials of degree 15 with respect to P are listed
as follows1:

y6z, y3z3, z5;xy7, xy4z2, xyz4;x2y5z, x2y2z3;x3y6, x3y3z2, x3z4;

x4y4z, x4yz3;x5y5, x5y2z2;x6y3z, x6z3;x7y4, x7yz2;x8y2z;x9y3, x9z2;

x10yz;x11y2;x12z;x13y;x15.

Let us consider the family

F (x, y, z, s1, s2) = x15 + xy7 + z(s2y
3 + z2)2 + s1y

6z.

It is easy to see that F|s1=1,s2=0 is f1 and F|s1=0,s2=0 = f0. We are interested
in polynomials with s1 = 0, s2 ̸= 0. Thus we consider the polynomial

f2 := F (x, y, z, 0, 1) = x15 + xy7 + z(z2 + y3)2.

Though f2 is not Newton non-degenerate, it has an isolated singularity at
the origin and its Milnor number is given by µ(f2) = 364. Take a generic

hyperplane section H : x = z + y of f2 and denote it by f̂2(y, z). Then

f̂2(y, z) = z(y3 + z2)2 + y8 + (higher terms),

where “higher terms” is in the sense of Newton boundary. Now it is easy
to see, by a direct computation or using [9], that µ(2)(f2) = µ(f2|H) = 27.

1weighted degree of a monomial xaybzc with respect to weight vector P = t(p1, p2, p3)
is defined by ap1 + bp2 + cp3
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We easily see, after one toric modification π : X → C2, using the toric
coordinates (u, v) (y = u2v, z = u3v2), that the pull-back of f2 is given by

π∗f̂2(u, v) ≡ u15((v + 1)2 + uv8) mod (u17)

and we see that f̂2 = 0 has a locally irreducible component with two Puiseux
pairs and a smooth component which corresponds to the face function y6(z+
y2).

There is one more class. Consider

f3(x, y, z) = x15 + z3(z2 + y3) + xy7.

Then µ(f3) = 364 and a generic plane section is given by

f̂3(y, z) = z3(z2 + y3) + y8 + (higher terms)

with µ(2) = 27 which is the same with that of f2. However the local topolo-
gies of the generic plane sections of f2 = 0 and f3 = 0 are different. Note
that f̂3 is Newton non-degenerate and has two irreducible components C1, C2

where C1 is defined by z2 + y3 + (higher terms) = 0 and C2 is defined by
z3 + y5 + (higher terms) = 0. Though the two polynomials f2 and f3 have
the same µ∗ invariant (364, 27, 4), their generic plane sections have different
local topologies. In §3, we will show that a similar property holds true for
polynomials W(t(1, a, a + 1), e) with e = (a + 1)(ak + 1) (Theorem 2). In
§4, we generalize Theorem 2 for more general weights.

3. Generalization of Briançon-Speder example

3.1. Preliminary. Consider an analytic function f(z1, . . . , zn) =
∑

ν aνz
ν

which defined by a convergent series. Here ν = (ν1, . . . , νn) and zν =
zν11 · · · zνnn . Consider the convex hull Γ+(f) defined by the union of {ν +
Rn
+ | aν ̸= 0}. The Newton boundary of f is defined by the union of compact

boundary of Γ+(f) and we denote it by Γ(f). Let P = t(p1, . . . , pn) ∈ Zn
+ be

a weight vector. Denote min{P (ν) =
∑n

i=1 piνi | ν ∈ Γ(f)} by d(P, f) and
define fP :=

∑
ν,P (ν)=d(P,f) aνz

ν . We say that f is Newton non-degenerate

if for any strictly positive P (i.e., pi > 0,∀i), the polynomial mapping
fP : C∗n → C has no critical points.

We prepare a key lemma. Let a, b be positive coprime integers with 1 <
a < b and let P = t(a, b) be a primitive integral weight vector. Consider a
weighted homogeneous polynomial of degree e with respect to P :

h(y, z) = z1+am(za − α1y
b)ν1 · · · (za − αℓy

b)νℓ , m ≥ 0

where ν1, . . . , νℓ are positive integers and α1, . . . , αℓ are mutually distinct

non-zero complex numbers. Putting m1 :=
∑ℓ

j=1 νj , we have e = m1ab+(1+

am)b. Put k = m+m1. Consider another weighted homogeneous polynomial
R(y, z) with respect to P whose degree is greater than e. Consider the
polynomial

f(y, z) = h(y, z) +R(y, z)
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and put a3 = d(P,R) − e. By the assumption, a3 is a positive integer. Here
d(P,R) is the weighted degree of R with respect to P . We assume that
β := d(P,R)/b is an integer and the following conditions are satisfied.

{(y, z) | za − αjy
b = R(y, z) = 0} = {(0, 0)}, νj ≥ 2(1)

R(y, 0) = cyβ, c ̸= 0, if m > 0.(2)

Then f(y, z) has an isolated singularity at the origin and is almost Newton
non-degenerate in the sense of [9]. Here as an exceptional case, m = 0, ν1 =
· · · = νℓ = 1 and R = 0 is also considered. Let Γ be the Newton boundary of
f(y, z). Put µ be the Newton number of Cone(Γ, 0). See [5] for the definition.
It is given as µ = (1 + ka)(m1b − 1) + βam + 1 = abk2 + (b − a)k + ma3.

Put µ(tot) =
∑ℓ

j=1(νj − 1).

Lemma 1. (a) The Milnor number of f is given as µ(f) = µ+ a3µ
(tot).

(b) If R(y, 0) ̸= 0, any polynomial S(y, z) =
∑

γ aγy
γ1zγ2 for which (γ1, γ2)

is above the Newton boundary of f can be added to f(y,z): ft(y, z) = f(y, z)+
tS(y, z), 0 ≤ t ≤ 1 without changing the local topology.
(c) If m = 0 and R(y, 0) = 0, S(y, z) as in (b) can be added without changing
the local topology. Moreover the monomial cyβ can be added to R with any
small coefficient c so that the condition (1) holds true.

Proof. Consider an admissible toric modification2 π : X → C2. Take a
simplex σ = Cone(P,Q) with Q = t(c, d) with ad− bc = 1. Let (u, v) be the
toric coordinates. Put ft(y, z) = f(y, z)+tS(y, z). Then y = uavc, z = ubvd

and

π∗f(u, v) = ueve
′

{
ℓ∏

i=1

(v − αi)
νi + c1u

a3R(vc, vd)v−e′

}
and π∗ft(u, v) ≡ π∗f(u, v) modulo (ue+a3+1) as d(P, S) > d(P,R), e′ =
d(Q,h), a3 := d(P,R) − d(P, h) are positive integer. Thus taking (u, vi)
with vi = v − αi as coordinates, the Newton principal part of π∗f at ρi :
(u, v) = (0, αi) is given as c′ue(vνii +c′1u

a3) where c′, c′1 are non-zero constants
by (1). Thus π∗f is Newton non-degenerate at ρi. Other face corresponds

to c2z
1+amym1b + c′2y

β with c2 = (−1)ℓ
∏ℓ

j=1 αj , c
′
2 ̸= 0 which is Newton

non-degenerate. Here we are assuming R(y, 0) ̸= 0. Let ζi(t) be the zeta
function of π∗f at ρi. Then deg ζi(t) = (e+a3)(νi−1) by Varchenko formula
[14]. By Theorem 3.7 of [9], we get

µ(f) = µ− eµ(tot) +
ℓ∑

j=1

deg ζj(t) = µ+ a3µ
(tot).

Now we consider the case R(y, 0) = 0 and m = 0. (This includes the case
∀νj = 1 and m = R = 0.) Γ(f) has one face corresponding to h(y, z) and it

2An admissible toric modification is a toric modification with respect to a regular
simplicial cone subdivision Σ∗ of the dual Newton digram Γ∗(f) [10].
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has one smooth component z = 0. The Newton number does not change. By
adding small τyβ to R and putting fτ (y, z) = f(y, z)+τyβ, Γ(fτ ) gets a new
face Ξ corresponding to czym1b+τyβ. However fτ is Newton non-degenerate
and as Cone(Ξ, 0) has Newton number 1, it does not change the Newton
number ν(Cone(Γ, 0)). The change is that the component z = 0 changes to
the smooth component corresponding to (topologically) cz + τyβ−m1b = 0.
The assertion for the local topology follows from the constancy of µ(ft) or
µ(fτ ) ([6]). □
3.2. Main result. Let a ≥ 2 and k be positive integers. Consider the weight
vector P = t(1, a, a + 1), put e = (a + 1)(ak + 1) and consider the space
W(P, e) of weighted homogeneous polynomials of degree e with respect to P
having an isolated singularity at the origin3. There is a canonical subdivision
of W(P, e) by µ∗ or equivalently by µ(2). Consider the equivalence relation
c∼ in W(P, e) defined by f

c∼ f ′ if and only if f and f ′ are in the same
connected component of the µ∗-constant strata in W(P, e). See [2] for the
description of µ∗ constant strata. Let Wc(P, e) be the quotient space, i.e.,
the set of connected components in the usual topology and for f ∈ W(P, e),
let [f ] be the connected component which contains f . For any polynomial
f ∈ W(P, e), the Milnor number µ(f) is given by (e−1)(e/a−1)(e/(a+1)−1)
by Orlik-Milnor [8]. Thus in our case, µ = ak(ak+k+ 1)(a2k+ak+ 1). We
consider the following monomials of degree e: xe and

S0 = {zak+1, za(k−1)+1ya+1, . . . , zy(a+1)k}, and

S1 := {xy(a+1)k+1, xy(a+1)(k−1)+1za, . . . , xyzak}.

Put s = za, t = ya+1. Note that monomials in S0 are expressed as zsitk−i, 0 ≤
i ≤ k. Similarly the monomials in S1 are xysjtk−j , 0 ≤ j ≤ k. There are
two typical Newton non-degenerate polynomials in W(P, e):

f1 = xe + zy(a+1)k + zak+1 and f0 = xe + xy(a+1)k+1 + zak+1

whose µ(2) are given as

µ(2)(f1) = (e/a−1)(e/(a+1)−1) = a2k2+ak2+k, µ(2)(f0) = a2k2+ak2+ak.

For an integer n, let P(n) be the set of partitions of n. A partition
A ∈ P(m1) corresponds to a collection of positive integers A := {ν1, . . . , νℓ}
with ν1 + · · · + νℓ = m1 and νj ≥ 1,∀j. For a given a partition A =
{ν1, . . . , νℓ} ∈ P(m1), 0 ≤ m1 ≤ k and mutually distinct non-zero complex
numbers {α1, . . . , αℓ}, we associate a weighted homogeneous polynomial of
degree e with respect to P :

hA(y, z) = z1+ma
ℓ∏

j=1

(za − αjy
a+1)νj , m = k −m1.(3)

3The space of weighted homogeneous polynomials of degree e is isomorphic to Cn

where n is the number of monomials with weighted degree e and W(P, e) is a Zariski open
subspace.
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If m1 = 0, P(0) = {∅} and we define h∅ = z1+ka. We consider also polyno-
mials

h′A(x, y, z) = hA(y, z) + xR(y, z)

fA(x, y, z) = λxe + h′A(x, y, z).

where R(y, z) is a weighted homogeneous polynomial of degree e − 1 with
respect to the weight vector P ′ := t(a, a+ 1) such that

(⋆)

{
{(y, z) | za − αjy

a+1 = R(y, z) = 0} = {(0, 0)}, if νj ≥ 2

R(y, 0) ̸= 0, ifm ̸= 0.

Note that fA is a weighted homogeneous polynomial of degree e and ifm > 0,
(⋆) says that fA has monomial xy(a+1)k+1. This implies, with a generic λ,
that fA has an isolated singularity at the origin by Bertini theorem (see for
example [4]). Thus fA ∈ W(P, e). The topology of the generic plane section
of fA does not depend on the choice of α1, . . . , αℓ and R. This is easily
shown using an admissible toric modification and Lemma 1. In fact, generic
plane sections are given by substituting x = ay+ bz in fA, which is nothing
but hA(y, z) + (ay + bz)R(y, z) for a fixed non-zero a, b. They are family of
almost Newton non-degenerate family in the se sense of [9] and thus their
Milnor numbers are constant and do not depend on {α1, . . . , αℓ} or on the
choice of R(y, z). This implies fA is µ∗-constant family and their topology
is constant by [13].

Thus the class [fA] ∈ Wc(P, e) does not depend on the choice of α1, . . . , νℓ
or R(y, z). Let P(tot)(k) = ∪k

i=0P(i). In this way, we get a correspondence

ψ : P(tot)(k) → Wc(P, e). For ∅ ∈ P(0), ψ(∅) = [λxe + z1+ak + xy(a+1)k+1]
by definition. Now we are ready to state our main result.

Theorem 2. (a) The correspondence ψ : P(tot)(k) → Wc(P, e) is bijec-
tive. Namely for any f ∈ W(P, e), there are unique m1 and A with 0 ≤
m1 ≤ k, A ∈ P(m1), so that [f ] = [fA]. In particular, the number of
connected components of µ∗-constant strata which intersect with W(P, e) is∑k

m1=0 |P(m1)|.
(b) For fA described by (6), µ(2)(fA) is given as

µ(f̂A) = a2k2 + a2k + k +m(a− 1) + (a− 1)µ(tot)

= a2k2 + a2k + ak − (a− 1)ℓ.

Thus µ(2)(f1) ≤ µ(2)(fA) ≤ µ(2)(f0) and the set of values of µ(2) on W(P, e)
is given by {a2k2 + a2k + k + (a− 1)ξ | ξ = 0, 1, . . . , k}.

Proof. To see the surjectivity of ψ, take any f ∈ W(P, e).
First we observe that zak+1 has a non-zero coefficient in f(0, y, z). Oth-
erwise, f is singular on x = y = 0. This follows also by the result of J.
Fernandez de Bobadilla and T. Pe lka [3] (which says that µ-constant im-
plies equi-multiplicity) as ak + 1 is the multiplicity of f .
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Consider the factorization

f(0, y, z) = cz1+ma
ℓ∏

j=1

(za − αjy
a+1)νj .(4)

Putting m1 =
∑ℓ

j=1 νj , we have k = m + m1. Put hA(y, z) = f(0, y, z).

The decomposition A ∈ P(m1) is uniquely determined by the factorization

of f(0, y, z). Put Jf (y, z) := ∂f
∂x |x=0 be the partial sum of f over monomials

which are divisible by x but not by x2. We take R(y, z) = Jf (y, z). Note
that R = Jf is a weighted homogeneous polynomial of variables y, z having
degree e− 1 with respect to P ′. Then f is expressed as as

f(x, y, z) = xJf (y, z) + hA(y, z) + λ0x
e + x2S(x, y, z)

where S is a weighted homogeneous polynomial of degree e−2 with S(x, 0, 0) =
0. Let λ0 be the coefficient of xe in f . Using Bertini theorem and the open-
ness of W(P, e), we may choose a λ sufficiently near λ0 so that f ′(x, y, z) :=
f(x, y, z)+(λ−λ0)xe is in W(P, e) and [f ] = [f ′]. We assume also fA(x, y, z) :=
λxe + hA(y, z) + xR(y, z) has an isolated singularity at the origin choosing
|λ− λ0| sufficiently small. We assert [fA] = [f ′].

To see this assertion, we take a generic plane x = δz+γy. Then the plane
section f̂A of fA is described as

f̂A(y, z) = hA(y, z) + γy(a+1)k+2 + yJf (y, z) + (higher terms)

= z
ℓ∏

j=1

(za − αjy
a+1)νj + y(a+1)k+2 + yJf (y, z) + (higher terms)

Note that x2S(x, y, z) does not give any effect on the generic plane section

and f̂ ′(y, z) ≡ f̂A(y, z) modulo (higher terms) which are above the Newton

boundary of f̂A. Let M1, . . . ,Mq be the monomials in x2S(x, y, z). Let M be
the space of polynomials g(x, y, z) = λxe + hA(y, z) + xR(y, z) +

∑q
i=1 tiMi

which have an isolated singularity at the origin. We identify M with an
open subset of Cq by g 7→ (t1, . . . , tq). Let (τ1, . . . , τq) be the coefficient of
f ′(x, y, z) i.e., x2S(x, y, z) =

∑q
i=1 τiMi. Note that (0, . . . , 0), (τ1, . . . , τq) ∈

M.

Assertion 3. There is a piecewise analytic path ρ(s), 0 ≤ s ≤ 1 from
(0, . . . , 0) to (τ1, . . . , τq) in M. (This corresponds to a family of polynomials
in W(P, e) from fA to f ′.)

The existence assertion follows from the fact that M is a Zariski open
subset of Cq. See for example Theorem 6.1, [5] for Zariski openness. As∑q

i=1 tiMi does not effect to the generic plane section, µ(2) is constant along
generic plane sections of this path and the assertion ψ(fA) = ψ(f ′) follows

by Lemma 1. Figure 1 shows the Newton boundary of f̂A. We now show
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1 + am

(a+ 1)m1

∆

(a+ 1)k + 2
y

z

ak + 1

Ξ

Figure 1. Newton boundary of f̂A

the assertion (b). By Lemma 1 and Theorem 3.7 of [9], we get

µ(f̂A) = (ν(Cone(Γ(f̂A), 0)) − eµ(tot)) +
ℓ∑

j=1

deg ζj(t).

Here ν(Ξ) is the Newton number of a cone Ξ ([5]). Note that

ν(Cone(Γ(f̂A), 0) = (ak + 1)((a+ 1)m1 − 1) + am((a+ 1)k + 2) + 1

= µ(2)(f1) + (a− 1)m, and

ℓ∑
j=1

deg ζj(t) =
ℓ∑

j=1

(e+ a− 1)(νj − 1) = (e+ a− 1)µ(tot)

Here recall f1 = xe + zy(a+1)k + zak+1. Thus µ(2)(f), f ∈ W(P, e) takes

minimal value a2k2 + a2k + k for f1 and µ(f̂A) = µ(2)(f1) + (a − 1)m +

(a − 1)µ(tot). Note that we can also write this as µ(f̂A) = µ(2)(f0) − (a −
1)m1 + (a− 1)µ(tot) = µ(2)(f0) − (a− 1)ℓ where µ(2)(f0) = a2k2 + ak2 + ak.

This expression says µ(2)(f) takes its maximal value for f0. The assertion

of the possible values of µ(2) is also obvious from the above expression. For
example, we can take m = 0, . . . , k with µ(tot) = 0. This completes the proof
of assertion (b).

Now we consider the injectivity of ψ. Recall that two plane curve germs
C,C ′ are topologically equivalent if and only if they have same number
of irreducible components C = C1 + · · · + Cr and C ′ = C ′

1 + · · · + C ′
r

and under the obvious correspondence Cj 7→ C ′
j , 1 ≤ j ≤ r, Cj and C ′

j

have the same Puiseux pairs and the intersection numbers coincide, that
is, Ci · Cj = C ′

i · C ′
j for any i ̸= j. See [6] and Theorem 5.5.8 of [15].

Consider fA which is described by (4). We consider an admissible toric

modification for f̂A. The Newton boundary Γ(fA) has two faces ∆ and Ξ
as in Figure 1 and there are two weight vectors P,Q associated with ∆

and Ξ respectively. Namely P = t(1, a, a + 1) and Q = t( (a+1)m+2
s , 1+am

s )
where s = gcd(1 +am, (a+ 1)m+ 2). After an admissible toric modification

π : X → C2, f̂A(y, z) = 0 splits into several components which divide into
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two groups. The components in the first group are intersecting with the
exceptional divisor Ê(P ) at one of ρj , j = 1, . . . , ℓ: they are topologically

equivalent to the curve Cj : v
νj
j − cjua−1 = 0. See the argument in the proof

of Lemma 1. If rj := gcd(νj , a−1) > 1, Cj has rj irreducible components of

type v
νj/rj
j −u(a−1)/rj = 0 at ρj . They have two Puiseux pairs determined by

the weights if νj/rj > 1. Two Puiseux pairs are uniquely described by two
weight vectors P and Pj := t((a− 1)/rj , νj/rj). See Remark 7.3, [11]. First
Puiseux pair is always (a, a+ 1). If νj = 1, the corresponding component is
smooth at X and they have only one Puiseux pair (a, a+ 1). If νj > 1 and
νj = rj , rj components at ρj are smooth and transversal to the exceptional

divisor Ê(P ) but these components are tangent each other. All of them
have also one Puiseux pair (a, a+ 1). If νj/rj > 1, rj components have two
Puiseux pairs where the first pair is always (a, a + 1). The second group

of components of f̂A(y, z) = 0 corresponds to the curve (f̂A)Ξ(u, v) = 0. It

has s components with one Puiseux pair (1+am
s , (a+1)m+2

s ). Obviously this
weight vector is different from (a, a+ 1). Recall that the weight vectors are
normal primitive vectors orthogonal to the faces. If m = 0, there is only one
component which is already smooth.
Now we are ready to show the injectivity. Suppose that f̂A and f̂B are
topologically equivalent. We denote the corresponding factorization of fA
and fB as

fA(0, y, z) = cz1+mA

ℓA∏
j=1

(za − αjy
a+1)νA,j ,

mA,1 =

ℓA∑
j=1

νA,j , mA = k −mA,1,

fB(0, y, z) = cz1+mB

ℓB∏
j=1

(za − α′
jy

a+1)νB,j ,

mB,1 =

ℓB∑
j=1

νB,j , mB = k −mB,1.

We need mA = mB for the second group to be isomorphic by the above
consideration. Then also by the above discussion, we can easily conclude
ℓA = ℓB, mA,1 = mB,1 and A,B ∈ P(m1) and their partitions coincide (i.e.,
A = B, νA,j = νB,j , 1 ≤ j ≤ ℓA). This completes the proof of assertion
(a). □
Remark 4. Let M(µ∗), µ∗ = (µ(3), µ(2), µ(1)) be the set of strata i.e., space
of polynomials of a given µ∗ invariants with degree ≤ N withN large enough.
(µ(3) is given by Orlik-Milnor formula.) If fA and fB are connected by a
µ∗-constant path gt with g0 = fA, g1 = fB in the space of (not necessarily
weighted homogeneous) polynomials, then the family ĝt given by generic
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plane sections of the original family gt is also a µ∗-constant family of plane
curves from f̂A to f̂B. Then the local topologies of f̂A and f̂B do not
change ([6, 13]). Thus A = B by Theorem 2. Thus the number of connected
components of M(µ∗) which intersect with W(P, e) is equal to the number of
connected components of M(µ∗)∩W(P, e). We propose here one conjecture.

Conjecture. Every f ∈ M(µ∗) can be written as fA + (higher terms) for
some A ∈ P(m1), 0 ≤ m1 ≤ k, after a change of coordinates.

3.3. Examples. 1. k = 1. In this case, W(P, e) has only two components f1
and f0. For example, in the case a = 2, f1 = x9+z3+zy3, f0 = x9+z3+xy4.
µ = 56 and µ(2) are 10, 11 respectively.

2. k = 2. As |P(tot)(2)| = |P(0)| + |P(1)| + |P(2)| = 1 + 1 + 2 = 4. This
is exactly the same situation as in Briançon-Speder’s example.

3. k = 3. As |P(tot)(3)| =
∑3

i=0 |P(i)| = 7, we have 7 cases. For a = 2,
we can take

m = 0 :


A = {1 + 1 + 1}, f1(x, y, z) = x21 + z7 + zy9

A = {2 + 1}, f2(x, y, z) = x21 + z(z2 + y3)2(z2 + 2y3) + xy10

A = {3}, f3(x, y, z) = x21 + z(z2 + y3)3 + xy10

m = 1 :

{
A = {1 + 1}, f4(x, y, z) = x21 + z7 + z5y3 + z3y6 + xy10

A = {2}, f5(x, y, z) = x21 + z3(z2 + y3)2 + xy10

m = 2 : A = {1}, f6(x, y, z) = x21 + z7 + z5y3 + xy10

m = 3 : A = {∅}, f7(x, y, z) = x21 + z7 + xy10

µ = 1140 and µ(2) are 57, 58, 59, 58, 59, 59, 60 respectively.

4. Some more generalization

In the previous section, we have considered a certain restricted weight
vector P = t(1, a, a+1). This is not so essential and we generalize this part.
Consider weighted homogeneous polynomial of degree e with respect to a
weight vector P = t(p1, p2, p3). We denote the space of such polynomials

by W̃(P, e). Then W(P, e) is the subspace of W̃(P, e) whose polynomials
have an isolated singularity at the origin. We are interested in the case
W(P, e) ̸= ∅. We assume the following condition throughout this section.

p1 < p2 < p3, p1|e, p3|e, p2 ̸ |e, gcd(p2, p3) = 1.(5)

Let N be the set of monomials wa = xa1ya2za3 , w = (x, y, z), with weighted
degree e, that is d(P,wa) = P (a) = p1a1 + p2a2 + p3a3 = e. By (5),

monomials xe/p1 , ze/p3 ∈ N . In fact, they are maximal and minimal degree

monomials in N in the ordinary degree. A general polynomial f in W̃(P, e)
is written as f =

∑
N caw

a where the sum is taken for wa ∈ N . Let
N0 := {wa ∈ N|a1 = 0} and N1 = {wa ∈ N|a1 = 1}. Consider two
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polynomials:

h0(y, z) =
∑
N0

cay
a2za3

h1(x, y, z) =
∑
N1

caxy
a2za3 .

In the previous section, h1 is denoted as xJf (y, z). Note that h0, h1 are
weighted homogeneous polynomials of degree e with respect to the weight
vector P . Put t = yp3 , s = zp2 . Then h0 and h1 can be written as

h0(y, z) = zm0
∑

i+j=k

c0,i,jt
isj ,

(kp2 +m0)p3 = e, m0 < p2

h1(y, z) = xyn2zn3
∑

ℓ+m=k′

c1,ℓ,mt
ℓsm

n2 < p3, n3 < p2, p1 + p2n2 + p3n3 + k′p2p3 = e.

We divide the situation into two cases.

(i) n3 = 0
(ii) n3 > 0 and m0 = 1

Remark 5. If m0 > 1 and n3 > 0, z = x = 0 is a singular locus of

the any polynomial f ∈ W̃(P, e). This follows from the fact that partial

derivatives ∂f
∂x ,

∂f
∂y ,

∂f
∂z do not contain any monomials of type yν . In the case

P = t(1, a, a+ 1) and e = (1 + ka)(a+ 1), m0 = 1 and z1+ka, xy3k+1 ∈ N ,
that is m0 = 1 and n3 = 0.

4.1. Case (i). If n3 = 0, a generic polynomial in W̃(P, e) contains the

monomial xyn2+p3k′ ∈ N . For f ∈ W(P, e), h0(y, z) = f(0, y, z) is factorized
as

h0(y, z) = zm0+mp2

ℓ∏
j=1

(zp2 − αjy
p3)νj , ∃m, k ≥ m ≥ 0(6)

m1 =
ℓ∑

j=1

νj , m = k −m1(7)

and it gives a partition A = {ν1, . . . , νℓ} ∈ P(m1). If m0 > 1 or m0 = 1

and m > 0, the coefficient of xyn2+p3k′ in f is non-zero as f has an isolated
singularity at the origin. Here p1 + (n2 + p3k

′)p2 = e. Put β = n2 + p3k
′.

Then (1 + β)p2 = e + p2 − p1. In the case n3 = 0, we can consider the

correspondence ψ : P(tot)(k) → Wc(P, e) in exactly the same way as in the
previous section and Theorem 2 is sharpened as follows.

Theorem 6. Assume n3 = 0.
(a) The correspondence ψ : P(tot)(k) → Wc(P, e) is bijective. Namely for
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any f ∈ W(P, e), there are unique m1 and A with 0 ≤ m1 ≤ k, A ∈ P(m1),
so that [f ] = [fA]. In particular, the number of connected components of

µ∗-constant strata which intersect with W(P, e) is
∑k

m1=0 |P(m1)|.
(b) For fA(x, y, z) = hA(y, z) + xyβ + λxe/p1 where hA is defined by h0 (6),

the Milnor number of any generic plane section f̂A is given as

µ(f̂A) = (m0 + p2k)(p3m1 − 1) + (β + 1)(m0 +mp2 − 1) + 1 + (p2 − p1)µ
(tot)

where m = k −m1.

Proof. The assertion (a) is proved by exactly the same argument as that of
Theorem 2. For the calculation of Milnor number, we use a suitable toric
modification π : X → C2 as in the proof of Theorem 2. In a suitable toric
coordinates chart Cone (P,Q), the pull back of the generic plane section f̂A
is described as

f̂A(y, z) = (δy + γz)yβ + fA(y, z) + (δy + γz)e/p1

π∗f̂A(u, v) ≡ ue

 ℓ∏
j=1

(v − αj)
νj + cup2−p1

 mod (ue+p2−p1+1), c ̸= 0.

On the exceptional divisor Ê(P ), there are ℓ points {ρj := (0, αj) | j =
1, . . . , ℓ} in the toric coordinates which are the intersection of strict trans-

form of f = 0 and Ê(P ) and the local defining equation at ρj takes the form:

ue(v
νj
j + cup2−p1) + (higher terms) = 0 with vj = v−αj . Thus putting ζj(t)

be the local zeta function of π∗f̂A at ρj ,

ν(Cone(Γ(f̂A))) = m0 + p2k)(p3m1 − 1) + (β + 1)(m0 +mp2 − 1) + 1

deg ζj(t) = (e+ p2 − p1)(νj − 1)

and the calculation goes in the same way as that of Theorem 2. □

4.2. Case (ii). If n3 ̸= 0, f ∈ W̃(P, e) has an isolated singularity only if
z = 0 is a simple root of f(0, y, z) = 0 and it is factored as

f(0, y, z) = z

ℓ∏
j=1

(zp2 − αjy
p3)νj .

Otherwise, x = z = 0 is non-isolated critical locus of f . Thus we can only
consider ψ : P(k) → Wc(P, e). By the same argument, we have

Theorem 7. Assume that n3 > 0 and m0 = 1. Then ψ : P(k) → Wc(P, e)
is a bijective correspondence.

4.3. Examples. We give some examples for each case of §4.1 Case (i) and
§4.2 Case (ii) described above.
Example of (i-1). Assuming first m0 = 1, to have a monomial xyβ ∈ N ,

we need a monomial xyβ
′

with β′ < p3 with d(P, xyβ
′
) = p3. That is

p3 = p1 + β′p2. We have two typical polynomials as in the subsection 3.2:
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f1(x, y, z) = xe/p1 +z(ykp3 +zkp2) and f0(x, y, z) = xe/p1 +zp2k+1+xyβ
′+kp3 .

Here k is an arbitrary positive integer. Assume p1 = 1 for simplicity. Then
we have P = (1, p2, jp2+1), j = 1, 2, . . . . The case p2 = a, j = 1 corresponds
to P = t(1, a, a+1). If p1 > 1, we need p1|e = p3(1+kp2) and p3 = p1+β′p2.
For example, p1 = 2 and take p2, k to be odd integers. As a simple example,
we take, P = t(2, 3, 5), k = 3, e = 50. As typical polynomials, we have
f1(x, y, z) = x25 + z(y15 + z9) and f0(x, y, z) = x25 + z10 +xy16 and µ(f1) =
µ(f0) = 3384.
Example of (i-2). Assume that m0 > 1 and there exists β′ < p3 such that
p1 + β′p2 = m0p3. For example, P = t(1, 3, 5), k = 2, e = 40, m0 = 2. A
typical one is f(x, y, z) = x40 + z2(y10 + z6) + xy13, µ = 3367.
Example of (ii). In this case, we have one typical polynomial f1(x, y, z) =

xe/p1 + z(ykp3 + zkp2) + xh1(y, z) with h1(y, 0) = 0. For example, P =
t(1, 3, 5), k = 2 and e = 35. f1 can be x35 + z(y10 + z6) + xy3z5 and
µ(f1) = 2176.

Acknowledgement: We thank Professor Christophe Eyral for careful check-
ing of the draft and valuable suggestions.
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[5] A.G. Kouchnirenko. Polyèdres de Newton et nombres de Milnor. Invent. Math., 32,
No.1, (1976), 1-31.

[6] Lê Dũng Tráng, Sur un critère d’équisingularité, C. R. Acad. Sci. Paris Sér. A-B 272
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