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Abstract. In this paper, we introduce Wick’s quantization on groups and discuss its links with
Kohn-Nirenberg’s. By quantization, we mean an operation that associates an operator to a symbol.
The notion of symbols for both quantizations is based on representation theory via the group Fourier
transform and the Plancherel theorem. As an application, we prove G̊arding inequalities for three
global symbolic pseudodifferential calculi on groups.
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1. Introduction

In this paper, we show how, as for the Kohn-Nirenberg quantization, the definition of the Wick
quantization extends naturally to groups that satisfy some hypotheses allowing for the definition of
the group Fourier transform (based on representation theory), and the associated Plancherel the-
orem. As a straightforward counterpart, we obtain the analogue of the Bargmann transform [25]
in the Euclidean case and a natural frame on graded Lie groups, based on the wave packets con-
structed in [8, 9, 11]. Although close in spirit, this frame is different from the wavelets frame

Key words and phrases. Abstract harmonic analysis, pseudodifferential calculus on compact and nilpotent Lie
groups, G̊arding inequality.
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defined on stratified Lie groups by [24], see also more generally [20]. It is the analogue of the
Gaussian frame used for constructing approximation of the Schrödinger propagator in the semi-
classical limit [26, 30], with applications in the numerical analysis of quantum dynamics [23]. We
think that our construction of the Wick quantization, though quite simple, opens the way to various
applications.

Here, as an application, we prove G̊arding inequalities for two global symbolic pseudodifferential
calculi on compact and graded nilpotent Lie groups, discussing also the semi-classical calculus in
the non-compact case. This topic, that is, G̊arding inequalities for global pseudodifferential calculi
on groups, has been the subject of many papers in recent years, see e.g. [16, 28, 3, 4].

It turns out that on Rn, the links between the Kohn-Nirenberg and Wick quantizations provide
some G̊arding inequalities; this is briefly sketched in Appendix A for the Hörmander calculus on Rn
while a reference for the semi-classical case is for instance Jean-Marc Bouclet’s lecture notes [2],
see also [25, 33]. Though weaker than what is usually meant by ‘sharp G̊arding inequality’, these
inequalities are interesting by themselves for applications and are still strong G̊arding inequalities,
in the sense that there is a gain of half a derivative or of a power of the semi-classical parameter if
any.

We extend this approach to the case of groups: we prove the G̊arding inequalities that are
summarised in the three following theorems, although their statements will use the notation for the
settings and the calculi recalled later on in the paper. The first inequality is set on compact Lie
groups and considers the global symbolic pseudodifferential calculus proposed in [27, 29], studied
in [12] and briefly recalled in Section 3.1. We will prove the (ρ, δ)-generalisation of the following
G̊arding inequality (see Theorem 3.5):

Theorem 1.1. Let G be a connected compact Lie group. Let m ∈ R. Assume that the symbol

σ ∈ Sm(G) satisfies the elliptic condition σ ≥ c0(id + L̂)
m
2 for some constant c0 > 0. Then there

exist constants c, C > 0 such that

∀f ∈ C∞(G), <
(
OpKN(σ)f, f

)
L2(G)

≥ c‖f‖2
H
m
2 (G)

− C‖f‖2
H
m−1

2 (G)
.

Above, the spaces Hm(G) denote the usual Sobolev spaces defined on any compact manifold,
here G, while the definitions of the symbol classes Sm(G) and the Laplace-Beltrami operator L as
well as its Fourier transform are recalled in Section 3.1.

The next result concerns the symbolic pseudodifferential calculus on a graded Lie group G
[8, 14], briefly recalled in Section 4.2. The Sobolev space L2

s(G) will be the ones adapted to this
setting [14, 15]. We will prove the (ρ, δ)-generalisation of the following G̊arding inequality (see
Theorem 4.5):

Theorem 1.2. Let G be a graded nilpotent Lie group. Let m ∈ R. Assume that σ ∈ Sm(G) satisfies

the elliptic condition σ ≥ c0(id + R̂)
m
ν for some constant c0 > 0 where R is a positive Rockland

operator of homogeneous degree ν. Then there exist constants c, C > 0 such that

∀f ∈ C∞c (G), <
(
OpKN(σ)f, f

)
L2(G)

≥ c‖f‖2L2
m
2
(G) − C‖f‖

2
L2
m−1

2

(G).

Still in the context of graded Lie groups, our method is particularly adapted to the semi-classical
counter-part of Theorem 1.2:

Theorem 1.3. Let σ ∈ A0, that is, the symbol σ is a smoothing symbol with x-compact support.
If σ is non-negative, then there exists a constant C > 0 such that

(1.1) ∀f ∈ L2(G), ∀ε ∈ (0, 1], < (Opε(σ)f, f)L2(G) ≥ −Cε‖f‖
2
L2(G).
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This inequality is exactly what is used in the Euclidean setting for proving the positivity of
semi-classical measures (see [21]). However, in Rn, one can prove a stronger result, known as sharp
G̊arding inequality, in which the right-hand side in (1.1) is −Cε‖f‖2

H−1/2 , under the assumptions

of Theorem 1.3 (see [33]). The proof of such an estimate requires to use other tools than the sole
Wick quantization. The semi-classical calculus in this setting [9, 10] is recalled in Section 5.1, as
well as the definitions for A0 and Opε.

On a compact Lie group G, the pseudodifferential calculus mentioned above with ρ > δ and
ρ ≥ 1− δ coincides with Hörmander’s pseudodifferential calculus defined via charts on the compact
Lie group G viewed as a compact manifold [12, 29]. However, the notion of symbols are not the
same in these two calculi: the one presented here or in [12, 27, 29] is global and based on the
representations of the group. For a graded nilpotent Lie group G, the pseudodifferential calculus
mentioned above coincides with the (global) Hörmander calculus only when G is abelian, that is,
only when G is the abelian group (Rn,+) with n = dimG. Otherwise, although a graded nilpotent
Lie group is globally diffeomorphic to Rn as a manifold, the calculi will not be comparable. At this
point, we ought to clarify what we mean by pseudodifferential calculus on a smooth manifold M
in this paper:

Definition 1.4. For each m ∈ R, let Ψm(M) be a given Fréchet space of continuous operators
D(M) → D(M). We say that the space Ψ∞(M) := ∪mΨm(M) form a pseudodifferential calculus
when it is an algebra of operators satisfying:

(1) The continuous inclusions Ψm(M) ⊂ Ψm′(M) hold for any m ≤ m′.
(2) Ψ∞(M) is an algebra of operators. Furthermore if T1 ∈ Ψm1(M), T2 ∈ Ψm2(M), then

T1T2 ∈ Ψm1+m2(M), and the composition is continuous as a map Ψm1(M) × Ψm2(M) →
Ψm1+m2(M).

(3) Ψ∞(M) is stable under taking the adjoint. Furthermore if T ∈ Ψm(M) then T ∗ ∈ Ψm(M),
and taking the adjoint is continuous as a map Ψm(M)→ Ψm(M).

The paper is organised as follows. We start with recalling the definition of the Kohn-Nirenberg
quantization on groups and introducing Wick’s (Section 2). Then we show that a link between
these two quantizations in the symbolic calculi provides a proof of G̊arding inequalities in the
cases of compact Lie groups G (Section 3), and of graded nilpotent Lie groups G (Section 4). In
the latter case, we also study the semi-classical analogue in Section 5 and discuss in that setting
the consequences of the Wick-calculus in terms of frame. In the Appendix, we develop the same
strategy of proof in the Euclidean case.

Acknowledgements. The authors warmly thank Serena Federico for interesting and useful dis-
cussions on G̊arding inequalities. CFK thanks the Erwin Schrödinger Institut for its hospitality
when writing this paper. LB and CFK benefit from the support of the Région Pays de la Loire via
the Connect Talent Project HiFrAn 2022 07750, and from the France 2030 program, Centre Henri
Lebesgue ANR-11-LABX-0020-01. CFK and VF acknowledge the support of The Leverhulme Trust
via Research Project Grant RPG 2020-037.

Notation. We use the notation f . g when there exists a constant C > 0 such that f ≤ Cg.
Moreover, when f . g and g . f , we will write f ∼ g. We will write f .G g when the constant
involved in the estimate depends on G.

2. Quantizations on groups

In this section, we discuss two quantizations procedures on groups that are based on the group
Fourier transform and the associated Plancherel theorem. These latter notions require some hy-
potheses on the group we now list. The group G is a separable locally compact group. We assume
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that it is unimodular, that is, its left (resp. right) Haar measures are also right (resp. left) invariant.
We also assume that it is of type I. The paper may be read without understanding these technical
hypotheses. It suffices to know that they ensure that the Plancherel theorem holds, and that they
are naturally satisfied on Lie groups that are compact or nilpotent.

2.1. Fourier analysis.

2.1.1. The dual set. Recall that a (unitary) representation (Hπ, π) of G is a pair consisting in a
Hilbert space Hπ and a group morphism π from G to the set of (unitary) operators on Hπ. In
this paper, the representations will always be assumed (unitary) strongly continuous, and their
associated Hilbert spaces separable. A representation is said to be irreducible if the only closed
subspaces of Hπ that are stable under π are {0} and Hπ itself. Two representations π1 and π2 are
equivalent if there exists a unitary transform U called an intertwining map that sends Hπ1 on Hπ2
with

π1 = U−1 ◦ π2 ◦ U.

The dual set Ĝ is obtained by taking the quotient of the set of irreducible representations by this

equivalence relation. We may still denote by π the elements of Ĝ and we keep in mind that different
representations of the class are equivalent through intertwining operators.

2.1.2. Fixing a Haar measure. We fix a Haar measure that we denote by dx when the variable of
integration is x ∈ G or by dy if the variable is y.

The non-commutative convolution is given via

(2.1) (f1 ∗ f2)(x) :=

∫
G
f1(y)f2(y

−1x)dy, x ∈ G,

for f1, f2 ∈ Cc(G); here Cc(G) denotes the space of continuous complex-valued functions on G with
compact support.

2.1.3. The Fourier transform. The Fourier transform of an integrable function f ∈ L1(G) at a
representation π of G is the operator acting on Hπ via

f̂(π) := F(f)(π) :=

∫
G
f(z) (π(z))∗ dz.

Note that if f1, f2 ∈ Cc(G) then

(2.2) f̂1 ∗ f2 = f̂2f̂1.

If π1, π2 are two equivalent representations of G with π1 = U−1 ◦ π2 ◦ U for some intertwining
operator U, then

F(f)(π1) = U−1 ◦ F(f)(π2) ◦ U.

Hence, this defines the measurable field of operators {F(f)(π), π ∈ Ĝ} modulo equivalence. The

unitary dual Ĝ is equipped with its natural Borel structure, and the equivalence comes from quo-
tienting the set of irreducible representations of G together with understanding the resulting fields
of operators modulo intertwiners.
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2.1.4. The Plancherel Theorem. Here, we recall the Plancherel Theorem due to Dixmier [7, Ch.
18]. Among other results, it states the existence and uniqueness of the Plancherel measure, that is,

the positive Borel measure µ on Ĝ such that the Plancherel formula

(2.3) ‖f‖2L2(G) =

∫
G
|f(x)|2dx =

∫
Ĝ
‖f̂(π)‖2HS(Hπ) dµ(π),

or equivalently

(f1, f2)L2(G) =

∫
G
f1(x)f2(x)dxdx =

∫
Ĝ

trHπ

(
f̂1(π)f̂2(π)∗)

)
dµ(π)

holds for any f ∈ Cc(G). Here ‖ · ‖HS(Hπ) denotes the Hilbert-Schmidt norm on Hπ. This implies

that the group Fourier transform is a unitary map from L1(G)∩L2(G) equipped with the norm of
L2(G) to the Hilbert space

L2(Ĝ) :=

∫
Ĝ
Hπ ⊗H∗π dµ(π).

We identify L2(Ĝ) with the space of µ-square integrable Hilbert-Schmidt fields on Ĝ; its Hilbert
norm and scalar products are then given by

‖τ‖2
L2(Ĝ)

=

∫
Ĝ
‖τ(π)‖2HS(Hπ) dµ(π), τ ∈ L2(Ĝ),

(τ1, τ2)L2(Ĝ)
=

∫
Ĝ

trHπ(τ1(π) τ2(π)∗) dµ(π), τ1, τ2 ∈ L2(Ĝ).

Here trHπ denotes the trace of operators on the Hilbert space Hπ. The group Fourier transform F
extends unitarily from L2(G) onto L2(Ĝ).

We denote by L∞(Ĝ) the space of measurable fields (modulo equivalence) of bounded operators

σ = {σ(π) ∈ L (Hπ) : π ∈ Ĝ} on Ĝ such that

‖σ‖
L∞(Ĝ)

:= sup
π∈Ĝ
‖σ(π)‖L (Hπ)

is finite; here the supremum refers to the essential supremum with respect to the Plancherel measure

µ of Ĝ. In fact, L∞(Ĝ) is naturally a Banach space and moreover a von Neumann algebra, sometimes

called the von Neumann algebra of the group G. It acts naturally on L2(Ĝ) by composition on the
left:

(στ)(π) = σ(π) τ(π), π ∈ Ĝ, σ ∈ L∞(Ĝ) and τ ∈ L2(Ĝ),

(it also acts on the right) and this action is continuous

‖στ‖
L2(Ĝ)

≤ ‖σ‖
L∞(Ĝ)

‖τ‖
L2(Ĝ)

.

Dixmier’s Plancherel theorem implies that L∞(Ĝ) is isomorphic to the von Neumann algebra
L (L2(G))G of linear bounded operators on G that are invariant under left translations. The
isomorphism is given by the fact that the Fourier multiplier with symbol σ, i.e. the operator

f 7→ F−1(σf̂), is an operator in L (L2(G))G.

Note that FL1(G) ⊆ L∞(Ĝ) with

∀f ∈ L1(G), ‖f̂‖
L∞(Ĝ)

≤ ‖f‖L1(G).

2.2. The Kohn-Nirenberg quantization. In this section, we recall some results related to the
symbolic quantization on groups introduced by Michael Taylor [31]. When G is the abelian
group Rn, this is the quantization often used in the field of Partial Differential Equations and
called the Kohn-Nirenberg quantization or classical quantization [22, 1]. We keep this vocabulary
in the group case.
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2.2.1. The space L2(G × Ĝ). We may identify the tensor product L2(G) ⊗ L2(Ĝ) with the space

denoted by L2(G× Ĝ) of measurable fields τ = {τ(x, π) ∈ HS(Hπ) : (x, π) ∈ G× Ĝ} of Hilbert-
Schmidt operators (up to equivalence) such that the quantities

‖τ‖2
L2(G×Ĝ)

:=

∫
G×Ĝ

‖τ(x, π)‖2HS(Hπ)dxdµ(π)

are finite. It is naturally a separable Hilbert space with norm ‖ · ‖
L2(G×Ĝ)

and scalar product given

by

(τ1, τ2)L2(G×Ĝ)
=

∫
G×Ĝ

trHπ (τ1(x, π) τ2(x, π)∗) dxdµ(π), τ1, τ2 ∈ L2(G× Ĝ).

By the Plancherel theorem, the Hilbert space L2(G× Ĝ) and L2(G×G) are isomorphic via the
Fourier transform in the second variable:

L2(G×G) −→ L2(G× Ĝ), κ 7−→ (id⊗F)κ.

In other words, any τ ∈ L2(G× Ĝ) may be written as

τ(x, π) = κ̂τ,x(π),

for a unique function κτ : (x, y) 7→ κτ,x(y) = κτ (x, y) in L2(G×G).

2.2.2. The quantization OpKN on L2(G× Ĝ). For any f ∈ Cc(G) and τ ∈ L2(G× Ĝ), the symbol

τ f̂ := {τ(x, π)π(f) : (x, π) ∈ G× Ĝ}

is measurable on G× Ĝ and satisfies

‖τ f̂‖
L2(G×Ĝ)

≤ ‖τ‖
L2(G×Ĝ)

‖f̂‖
L∞(Ĝ)

≤ ‖τ‖
L2(G×Ĝ)

‖f‖L1(G).

Hence τ f̂ ∈ L2(G× Ĝ) and we can define (id⊗F−1)(τ f̂) ∈ L2(G×G). By (2.2), we have:

(id⊗F−1)(τ f̂)(x, z) = f ∗ κτ,x(z) =

∫
G
f(y)κτ,x(y−1z)dy, (x, z) ∈ G×G.

As f ∈ Cc(G), (id⊗F−1)(τ f̂)(x, z) is in fact continuous in z and it makes sense to define:

(2.4) OpKN(τ)f(x) := (id⊗F−1)(τ f̂)(x, x) = f ∗ κτ,x(x), f ∈ Cc(G), x ∈ G.

It follows from the formula above that the integral kernel of OpKN(τ) is given by

G×G 3 (x, y) 7−→ κτ,x(y−1x).

Hence, the operator OpKN(τ) extends uniquely into a Hilbert-Schmidt operator on L2(G) with
norm

‖OpKN(τ)‖HS(L2(G)) = ‖κτ‖L2(G×G) = ‖τ‖
L2(G×Ĝ)

.

Consequently, OpKN is an isometry from L2(G× Ĝ) onto HS(L2(G)).

2.2.3. Extension of OpKN to C(G,FL1(G)). We can extend naturally OpKN via (2.4) to the space
C(G,FL1(G)), that is, to the symbols σ of the form σ(x, π) = κ̂x(π) with convolution kernel
κ ∈ C(G,L1(G)). By injectivity of the Fourier transform, the two possible definitions of OpKN on

symbols in L2(G× Ĝ) and C(G,FL1(G)) coincide. Note that OpKN(σ) with σ ∈ C(G,FL1(G)) will
act on Cc(G) and the Young convolution inequality implies the following estimate for the operator
norm as operators on L2(G).

Lemma 2.1. If σ ∈ C(G,FL1(G)) then

‖OpKN(σ)‖L (L2(G)) ≤
∫
G

sup
x∈G
|κx(y)|dy.
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Proof. Let κ ∈ C(G,L1(G)) and f ∈ Cc(G). We have

|f ∗ κx(x)| ≤ |f | ∗ sup
x′∈G
|κx′ |(x),

so the Young convolution inequality yields√∫
G
|f ∗ κx(x)|2dx ≤

∥∥∥∥|f | ∗ sup
x′∈G
|κx′ |

∥∥∥∥
L2(G)

≤ ‖f‖L2(G)

∥∥∥∥ sup
x′∈G
|κx′ |

∥∥∥∥
L1(G)

.

�

If σ ∈ C(G,FL1(G)), we define

(2.5) ‖σ‖A0 :=

∫
G

sup
x∈G
|κx(y)|dy, σ(x, π) = Fκx(π).

We denote by Cb(G,FL1(G)) the subspace of those σ ∈ C(G,FL1(G)) such that ‖σ‖A0 is finite. We
also denote by Cb(G,L1(G)) the space of κ ∈ C(G,L1(G)) such that

∫
G supx∈G |κx(y)|dy is finite.

2.2.4. Extension of OpKN via the inversion formula. We can extend OpKN to a larger space of
symbols than C(G,FL1(G)) but acting on a smaller space of functions than Cc(G) under some

further technical assumptions. Indeed, let us consider the space C(G,L∞(Ĝ)) of symbols σ that

are continuous maps from G to L∞(Ĝ). A symbol σ in C(G,L∞(Ĝ)) is naturally identified with

a measurable field (up to equivalence) of operators σ = {σ(x, π) ∈ L (Hπ) : (x, π) ∈ G × Ĝ}
satisfying conditions of continuity in x and boundedness in π. We also consider, when it exists, a
space S of bounded, continuous and integrable functions satisfying:

(i) the space S ∩ Cc(G) is dense in L2(G),

(ii) for any f ∈ S, the operators f̂(π), π ∈ Ĝ, are trace-class and the following quantity is finite:∫
Ĝ

trHπ |f̂(π)|dµ(π) <∞.

As a consequence of the Plancherel formula, the following inversion formula holds:

f(x) =

∫
Ĝ

trHπ

(
π(x)f̂(π)

)
dµ(π), f ∈ S, x ∈ G,

provided that G is amenable. We will not discuss here these technical assumptions (existence of S
and amenability of G), but just comment on the fact that they are naturally satisfied for compact
or nilpotent Lie groups with S being the space of smooth functions with compact support; in the
nilpotent case, we can take S to be the space of Schwartz functions. With the inversion formula,

OpKN extends to the quantization given for symbols σ in C(G,L∞(Ĝ)) by:

OpKN(σ)f(x) =

∫
Ĝ

trHπ

(
π(x)σ(x, π)f̂(π)

)
dµ(π), f ∈ S, x ∈ G.

Naturally, this coincides with the quantization defined above for σ ∈ L2(G × Ĝ) and for σ ∈
C(G,FL1(G)).

At least formally, the integral kernel of OpKN is made explicit when writing

(2.6) OpKN(σ)f(x) =

∫
G×Ĝ

trHπ
(
σ(x, π)π(y−1x)

)
f(y)dydµ(π).
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2.3. The Wick quantization. Another natural symbolic quantization appears on the (locally
compact, unimodular, type I) group G, in the same flavour as Wick’s quantization (see [25]). For
this, we start by defining the transformation B = Ba associated with a continuous, square-integrable
and bounded function a satisfying ‖a‖L2(G) = 1.

On Rn, the natural choice for such a function a is a Gaussian, or a family of Gaussian re-scaled
with a small parameter (see [5]). In the examples we treat in the next sections, a similar choice will
be to consider a family of functions a = at which are the heat kernels at time t when the group is
equipped with a Laplace-like operator, as in Section 3, or the t-rescaling of a given function when
the group is equipped with dilations (see Sections 4 and 5 below).

2.3.1. The transformation B. First, for each (x, π) ∈ G×Ĝ, we define the operator onHπ depending
on y ∈ G,

Fx,π(y) = a(x−1y)π(y)∗.

We check readily that Fx,· ∈ C(G,L∞(Ĝ)) with

sup
y∈G
‖Fx,·(y)‖

L∞(Ĝ)
≤ ‖a‖L∞(G).

We can now define the operator B = Ba on Cc(G) via

B[f ](x, π) =

∫
G
f(y) Fx,π(y)dy, f ∈ Cc(G), (x, π) ∈ G× Ĝ.

We observe that B[f ] is the field of operators on G× Ĝ given by

(2.7) B[f ](x, π) = F
(
f a(x−1 ·)

)
(π), (x, π) ∈ G× Ĝ.

Remark 2.2. In the case of G = Rn, we have Ĝ = Rn and Hπ = C. Therefore, for all a ∈ L2(Rn),
the function Fx,π(y) is scalar-valued. It coincides with the wave packets defined in [5]. Moreover,
if a is chosen as a Gaussian function, we recognize B as the Bargmann transform [19, 25, 5]. This
explains the notation.

The map B has frame’s properties:

Proposition 2.3. (1) For any f ∈ Cc(G), B[f ] defines an element of L2(G× Ĝ) with norm

‖B[f ]‖
L2(G×Ĝ)

= ‖f‖L2(G),

and the map B extends uniquely to an isometry from L2(G) to L2(G× Ĝ) for which we keep
the same notation.

(2) The adjoint map B∗ : L2(G× Ĝ)→ L2(G) is given by

B∗[τ ](y) =

∫
G×Ĝ

trHπ (τ(x, π)(Fx,π(y))∗) dxdµ(π), τ ∈ L2(G× Ĝ), y ∈ G,

in the sense that for any f ∈ L2(G),

(B∗[τ ], f)L2(G) =

∫
G×Ĝ

trHπ

(
τ(x, π)

(
F
(
fa(x−1 ·)

)
(π)
)∗)

dxdµ(π).

If τ = (id⊗F)κ, κ ∈ L2(G×G), then

(2.8) B∗[τ ](y) =

∫
G
κx(y)ā(x−1y)dx = (κ ·(y) ∗ ā)(y).

(3) We have B∗B = idL2(G) while BB∗ is a projection on a closed subspace of L2(G× Ĝ).
8



Proof. From (2.7) and the Plancherel formula (2.3), we obtain∫
Ĝ
‖B[f ](x, π)‖2HS(Hπ)dµ(π) = ‖f a(x−1 ·)‖2L2(G), x ∈ G.

Integrating against dx yields Part (1).

Part (2) follows from∫
G×Ĝ

trHπ

(
τ(x, π)

(
F
(
fa(x−1 ·)

)
(π)
)∗)

dxdµ(π) =

∫
G×Ĝ

trHπ (τ(x, π) (B[f ](x, π))∗) dxdµ(π),

by (2.7).
Part 3 follows from Part (1) since it implies for any f, g ∈ L2(G)

(f, g)L2(G) = (B[f ],B[g])
L2(G×Ĝ)

= (B∗B[f ], g)L2(G).

�

As a corollary, considering in each space Hπ an orthonormal basis (ϕk(π))k∈Iπ , where Iπ ⊂ N, we
obtain an integral representation of square integrable functions as a superposition of wave packets

(see [9, 11]). Set for (x, π) ∈ G× Ĝ and k, ` ∈ Iπ,

gx,π,k,`(y) := (Fx,π(y)∗ϕk(π), ϕ`(π))Hπ , y ∈ G,
where (·, ·)Hπ denotes the inner product of Hπ. The frame properties in Proposition 2.3 (3) implies
the following decomposition.

Corollary 2.4. A function f ∈ L2(G) decomposes in L2(G) as

f =

∫
G×Ĝ

∑
k,`∈Iπ

(f, gx,π,k,`)L2(G) gx,π,k,` dxdµ(π),

in the sense that

‖f‖2L2(G) =

∫
G×Ĝ

∑
k,`∈Iπ

| (f, gx,π,k,`)L2(G) |
2dxdµ(π),

or equivalently for any f1, f2 ∈ L2(G)

(f1, f2)L2(G) =

∫
G×Ĝ

∑
k,`∈Iπ

(f1, gx,π,k,`)L2(G) (f2, gx,π,k,`)L2(G) dxdµ(π).

Proof. By Proposition 2.3, we have for any f ∈ L2(G)

‖f‖2L2(G) = ‖B[f ]‖2
L2(G×Ĝ)

=

∫
G×Ĝ

‖B[f ](x, π)‖2HS(Hπ)dxdµ(π).

The Hilbert-Schmidt norms may be written in the basis (ϕk) as

‖B[f ](x, π)‖2HS(Hπ) =
∑
k,`

|(B[f ](x, π)ϕk, ϕ`)Hπ |2

with

(B[f ](x, π)ϕk, ϕ`)Hπ =

∫
G
f(y)(Fx,π(y)ϕk, ϕ`)Hπdy

=

∫
G
f(y)(ϕ`,Fx,π(y)ϕk)Hπdy

=

∫
G
f(y)(Fx,π(y)∗ϕ`, ϕk)Hπdy = (f, gx,π,`,k)L2(G).

We then conclude on (f1, f2)L2(G) by considering ‖f1 ± f2‖2 and ‖f1 ± if2‖2. �
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2.3.2. The quantization OpWick. We can now define the Wick quantization OpWick = OpWick,a. It
depends on the function a fixed at the beginning of the Section 2.3 with ‖a‖L2(G) = 1. We set

OpWick(σ)f = B∗σB[f ], f ∈ L2(G), σ ∈ L∞(G× Ĝ).

Here, L∞(G× Ĝ) denotes the space of symbols σ = {σ(x, π) : (x, π) ∈ G× Ĝ} which are bounded

in (x, π) ∈ G× Ĝ, i.e. a measurable field of operators in (x, π) ∈ G× Ĝ such that

‖σ‖
L∞(G×Ĝ)

:= sup
(x,π)∈G×Ĝ

‖σ(x, π)‖L (Hπ)

is finite, the supremum referring to the essential supremum for the measure dxdµ on G× Ĝ. This is
naturally a Banach space (even a von Neumann algebra). Moreover, it acts naturally continuously

on L2(G× Ĝ) by left composition (and also right composition) with

‖στ‖
L2(G×Ĝ)

≤ ‖σ‖
L∞(G×Ĝ)

‖τ‖
L2(G×Ĝ)

, σ ∈ L∞(G× Ĝ), τ ∈ L2(G× Ĝ).

This implies that the quantization OpWick is well defined:

Proposition 2.5. The symbolic quantization OpWick is well defined on L∞(G× Ĝ) and satisfies

∀σ ∈ L∞(G× Ĝ), ‖OpWick(σ)‖L (L2(G)) ≤ ‖σ‖L∞(G×Ĝ)
.

Proof. We have for any f ∈ L2(G):

‖OpWick(σ)f‖L2(G) = ‖B∗σB[f ]‖L2(G)

≤ ‖B∗‖L (L2(G×Ĝ),L2(G))
‖σ‖

L∞(G×Ĝ)
‖B‖L (L2(G),L2(G×Ĝ))

‖f‖L2(G).

Since B is an isometry, the operator norms of B and B∗ are equal to 1. �

Remark 2.6. In the case of G = Rn as in Remark 2.2, and for a being a Gaussian function, we
recognize OpWick as the Wick quantization [19, 25, 5].

As an example, we observe that Proposition 2.3 (3) may be rephrased as OpWick(id) = idL2(G)

where id is the symbol id = {idHπ , (x, π) ∈ G× Ĝ)}.

The following computation will allow for the comparison between the Wick and Kohn-Nirenberg

quantizations on Cb(G,FL1(G)); note that a symbol in Cb(G,FL1(G)) is in L∞(G× Ĝ).

Lemma 2.7. If a symbol σ is in Cb(G,FL1(G)), then

OpWick(σ)f(x) = f ∗ κWick
x (x), f ∈ Cc(G), x ∈ G,

where κWick ∈ Cb(G,L1(G)) is given by:

κWick
x (w) =

∫
G
a(z−1xw−1)ā(z−1x)κz(w)dz

=

∫
G
a(z′w−1)ā(z′)κxz′−1(w)dz′,

and κ ∈ Cb(G,L1(G)) is the convolution kernel of σ in the sense that σ(x, π) = Fκx(π).

We will call κWick the Wick convolution kernel of σ. Let us denote by σWick the symbol associated
with κWick, i.e. σWick = FκWick. Lemma 2.7 can be rephrased as

OpWick(σ) = OpKN(σWick).
10



Proof. We first check readily that κWick ∈ Cb(G,L1(G)) with∫
G

sup
x∈G
|κWick
x (w)|dw ≤

∫
G

sup
x′∈G
|κx′(w)|

(∫
G
|a|(z′w−1)|a|(z′)dz′

)
dw ≤

∫
G

sup
x′∈G
|κx′(w)|dw,

by the Cauchy-Schwartz inequality since ‖a‖L2(G) = 1.

Let us now prove the core of the statement. Let f ∈ Cc(G). Properties (2.2) and (2.7) yield for

(x, π) ∈ G× Ĝ
σB[f ](x, π) = (κ̂xF(fa(x−1 ·)))(π) = F

(
(f a(x−1·)) ∗ κx

)
(π),

so by equation (2.8) of Part 2 of Proposition 2.3, we obtain for x ∈ G

OpWick(σ)f(x) =

∫
G

(f a(z−1 ·)) ∗ κz(x) ā(z−1x)dz

=

∫
G×G

f(y)a(z−1y)κz(y
−1x) ā(z−1x)dydz,

and we recognise f ∗ κWick
x (x). �

2.3.3. Some properties of OpKN and OpWick. In our definitions of the quantizations, we choose to
act on the left by τ in (2.4) or equivalently to place κx on the right of the convolution product
in (2.4) while we made choices in the writing of Fx,π. These choices imply that our quantization
interact well with the left translations Lx0 by x0 on functions, i.e. Lx0f(x) = f(x0x) for any
function f defined on G, and also on symbols: Lx0σ(x, π) = σ(x0x, π). Indeed, we check readily
that

OpWick(Lx0σ) = Lx0OpWick(σ)L−1x0 and OpKN(Lx0σ) = Lx0OpKN(σ)L−1x0 .

The Wick quantization OpWick has the advantage of preserving formal self-adjointness and of

being naturally positive. Indeed, for any σ ∈ L∞(G× Ĝ), we have

(OpWick(σ))∗ = B∗σ∗B = OpWick(σ∗),

so if σ is formally self-adjoint in the sense that σ(x, π) = σ(x, π)∗ for almost all (x, π) ∈ G × Ĝ,
then OpWick(σ) is formally self-adjoint. Moreover, if σ is a non-negative symbol in the sense that

the operator σ(x, π) is bounded below by 0 for almost every (x, π) ∈ G× Ĝ, then the corresponding

operator acting on L2(G× Ĝ) is also non-negative so

(2.9) (OpWick(σ)f, f)L2(G) = (σB[f ],B[f ])
L2(G×Ĝ)

≥ 0, σ ∈ L∞(G× Ĝ), f ∈ Cc(G),

and OpWick(σ) is a non-negative operator on L2(G).

In general, the Kohn-Nirenberg quantization OpKN will not be positive. However, weaker prop-
erties of positivity may be recovered in certain cases via G̊arding inequalities in pseudodifferential
calculi. The rest of this paper is devoted to showing G̊arding inequalities in the case of graded
nilpotent Lie groups and compact Lie groups.

3. Gårding inequality on compact Lie groups

Here, G is a connected compact Lie group. Automatically, all the technical assumptions men-
tioned in Section 2 (locally compact, unimodular, type I, amenable) are satisfied. In this case,

every irreducible representation is finite dimensional, the dual set Ĝ is discrete and the Plancherel

measure is known explicitly: µ({π}) = dπ is the dimension of π ∈ Ĝ, so that we have the Plancherel
formula:

‖f‖2L2(G) =
∑
π∈Ĝ

dπ‖f̂(π)‖2HS(Hπ).
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A symbol is a family σ = {σ(x, π) ∈ L (Hπ) : (x, π) ∈ G × Ĝ} of finite dimensional linear maps
parametrised by (x, π), each acting on the (finite dimensional) space of the representation. We can
define the Fourier transform not only of integrable functions, but also of any distributions in this
context.

3.1. The pseudodifferential calculus. In this section, we set some notation and recall briefly the
global symbol classes defined on G together with some properties of the pseudodifferential calculus.
We refer to [12] for more details.

3.1.1. Definitions. We start with general definitions. We fix a basis X1, . . . , Xn for the Lie algebra
g of the group G. We keep the same notation for the associated left-invariant vector fields on G.
For a multi-index α = (α1, . . . , αn) ∈ Nn0 , we set Xα = Xα1

1 . . . Xαn
n . For s ∈ N0, the Sobolev space

Hs(G) is the space of the functions f ∈ L2(G) such that

‖f‖Hs(G) = sup
|α|=s

‖Xαf‖L2(G) < +∞.

The Sobolev spaces Hs(G) with s > 0 are then defined by interpolation and those with s < 0 by
duality.

We fix a scalar product on g that is invariant under the adjoint action. The Laplace-Beltrami
operator is the differential operator L = −X2

1 − . . .−X2
n for any orthonormal basis X1, . . . , Xn of g.

Identified with an element of the universal enveloping algebra and keeping the same notation for a
representation π of G and its infinitesimal counterpart for g, π(L) is scalar when π is irreducible,

L̂(π) := π(L) = λπidHπ ,

with λπ ≥ 0. In fact, λ1 = 0 when π is the trivial representation 1, while λπ > 0 when π 6= 1.

Let us now define symbol classes. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0. A symbol σ is in Smρ,δ(G) when

for any multi-indices α, β, there exists C = C(α, β) ≥ 0 such that

‖Xβ∆ασ(x, π)‖L (Hπ) ≤ C(1 + λπ)
m−ρ|α|+δ|β|

2 , (x, π) ∈ G× Ĝ.

Above, ∆α denotes the intrinsic difference operators (see [12, 13] for more details) or the RT-
difference operators (see (3.1) below). This yields the following semi-norm

‖σ‖Smρ,δ ,a,b := max
|α|≤a,|β|≤b

sup
(x,π)∈G×Ĝ

(1 + λπ)−
m−ρ|α|+δ|β|

2 ‖Xβ∆ασ(x, π)‖L (Hπ).

If (ρ, δ) = (1, 0), we simply write Sm(G) = Sm1,0(G).

The following theorem summarises the main property of the classes of operators obtained by the
OpKN-quantization of the classes Smρ,δ(G). As mentioned at the beginning of the section, the reader

can refer to [12] where proofs are detailed.

Theorem 3.1. For each m ∈ R, and 1 ≥ ρ ≥ δ ≥ 0, equipped with the semi-norms ‖ · ‖Smρ,δ,a,b,
Smρ,δ(G) becomes a Fréchet space. The space of operators Ψm

ρ,δ(G) := OpKN(Smρ,δ(G)) inherits this

structure of Fréchet space. If δ 6= 1, the classes of operators Ψ∞ρ,δ(G) = ∪m∈RΨm
ρ,δ(G) is a pseudo-

differential calculus in the sense of Definition 1.4. Moreover, we have the following properties:

(1) The calculus Ψ∞ρ,δ(G) acts continuously on the Sobolev spaces Hs(G) in the following sense:

if σ ∈ Smρ,δ(G) then OpKN(σ) maps Hs(G) to Hs−m(G) for any s ∈ R. Furthermore, the

map σ 7→ OpKN(σ) is continuous Smρ,δ(G)→ L (Hs(G), Hs−m(G)).

(2) For any σ1 ∈ Sm1
ρ,δ and σ2 ∈ Sm2

ρ,δ , we have

OpKN(σ1)OpKN(σ2)−OpKN(σ1σ2) ∈ Ψ
m1+m2−(ρ−δ)
ρ,δ (G).
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Furthermore, the map (σ1, σ2) 7→ OpKN(σ1)OpKN(σ2) − OpKN(σ1σ2) is continuous Sm1
ρ,δ ×

Sm2
ρ,δ → Ψ

m1+m2−(ρ−δ)
ρ,δ (G).

(3) For any σ ∈ Smρ,δ, we have

OpKN(σ)∗ −OpKN(σ∗) ∈ Ψ
m−(ρ−δ)
ρ,δ (G).

Furthermore, the map σ 7→ OpKN(σ)∗ −OpKN(σ∗) is continuous Smρ,δ → Ψ
m−(ρ−δ)
ρ,δ (G).

When ρ > δ and ρ ≥ 1−δ, this calculus coincides with the Hörmander pseudodifferential calculus
defined locally via charts.

3.1.2. Properties of pseudodifferential operators. Any σ ∈ Smρ,δ(G) admits a distributional convolu-

tion kernel κ : x 7→ (z 7→ κx(z)) ∈ C∞(G,D′(G)), i.e. σ(x, π) = κ̂x(π), and

OpKN(σ)f(x) = f ∗ κx(x), f ∈ D(G), x ∈ G.
In the following, we will use properties of symbols with respect to the RT-difference operators.

Let us recall that the RT-difference operator ∆q associated to q ∈ C∞(G) is defined via:

(3.1) ∆qκ̂ = F(qκ), κ ∈ D′(G).

The following property of RT-difference operators follows readily from [12, Section 5]:

Lemma 3.2. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0.

(1) If q ∈ D(G), then the map σ 7→ ∆qσ is continuous Smρ,δ(G) → Smρ,δ(G). Moreover, q 7→ ∆q

is continuous D(G)→ L (Smρ,δ(G)).

(2) The map σ 7→ ∆q−q(eG)σ is continuous Smρ,δ(G)→ S
m−(ρ−δ)
ρ,δ (G) for any m ∈ R. Moreover,

q 7→ ∆q−q(eG) is continuous D(G)→ L (Smρ,δ(G), S
m−(ρ−δ)
ρ,δ (G)).

Secondly, we will use the following property of right translations:

Lemma 3.3. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0. If x0 ∈ G, then for any σ ∈ Smρ,δ(G), the symbol

Rx0σ = {σ(xx0, π) : (x, π) ∈ G×Ĝ} is in Smρ,δ(G). Moreover, the map (x0, σ) 7→ Rx0σ is continuous

G× Smρ,δ(G)→ Smρ,δ(G).

Proof. We consider the semi-norms

‖σ‖′Smρ,δ,a,b := max
|α|≤a,|β|≤b

sup
(x,π)∈G×Ĝ

(1 + λπ)−
m−ρ|α|+δ|β|

2 ‖X̃β∆ασ(x, π)‖L (Hπ),

where we have used the right-invariant derivatives X̃β instead of the left-invariant ones Xβ.
As G is compact, the semi-norms ‖ · ‖′Smρ,δ,a,b generate the topology of Smρ,δ(G). We observe that

‖Rx0σ‖′Smρ,δ,a,b = ‖σ‖′Smρ,δ ,a,b. This implies the statement. �

Finally, we will need some properties of convolution in the x-variable of a symbol. They are
summarised in the next statement, but first let us define what we mean by convolution of a symbol.
If σ ∈ Smρ,δ(G) and ϕ ∈ C∞(G), then we denote by σ ∗ ϕ the symbol

σ ∗ ϕ = {σ ∗ ϕ (x, π) : (x, π) ∈ G× Ĝ},
with

σ ∗ ϕ (x, π) =

∫
G
σ(z, π)ϕ(z−1x)dz =

∫
G
σ(x(z′)−1, π)ϕ(z′)dz′, (x, π) ∈ G× Ĝ.

Lemma 3.4. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0.
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(1) If σ ∈ Smρ,δ(G) and ϕ ∈ C∞(G), then σ ∗ ϕ ∈ Smρ,δ(G) and we have for any semi-norm

‖ · ‖Smρ,δ ,a,b
‖σ ∗ ϕ‖Smρ,δ,a,b ≤ C‖σ‖Smρ,δ ,a,0,

where C is a constant depending on ϕ and b. This implies that σ 7→ σ ∗ϕ is continuous on
Smρ,δ(G).

(2) Furthermore, if
∫
G ϕ(y)dy = 1 then we have for any semi-norm ‖ · ‖Sm+δ

ρ,δ ,a,b

‖σ ∗ ϕ− σ‖Sm+δ
ρ,δ ,a,b ≤ C

′
(∫

G
|y−1||ϕ(y)|dy

)
‖σ‖Smρ,δ,a,b+1,

where C ′ is a constant depending on b, and where |z| denotes the Riemann distance of z ∈ G
to the neutral element eG. (The invariant Riemannian distance is induced by our choice of
scalar product on g.)

Proof. We observe that

∆αXβ(σ ∗ ϕ)(x, π) = ∆ασ ∗Xβϕ (x, π), and ‖σ ∗ ϕ(x, π)‖L (Hπ) ≤ ‖ϕ‖L1(G)‖σ‖L∞(G×Ĝ)
.

This readily implies Part (1).
Assume

∫
G ϕ(y)dy = 1. Part (2) will follow from the Taylor estimate:

∀f ∈ C1(G), |f(z)− f(0)| .G |z| max
j=1,...,n

sup
z′∈G
|Xjf(z′)|,

Indeed, we may write:

∆αXβ(σ ∗ ϕ− σ)(x, π) =

∫
G

(∆αXβ
xσ(xy−1, π)−∆αXβσ(x, π))ϕ(y)dy,

so

‖∆αXβ(σ ∗ ϕ− σ)(x, π)‖Hπ ≤
∫
G
‖∆αXβ

xσ(xy−1, π)−∆αXβσ(x, π))‖Hπ |ϕ(y)|dy

.G max
j=1,...,n

sup
z∈G
‖∆αXj,zX

β
xσ(xz, π))‖Hπ

∫
G
|y−1| |ϕ(y)|dy.

We conclude with

max
j=1,...,n

sup
z∈G
‖∆αXj,zX

β
xσ(xz, π))‖Hπ .G,|β| max

|β′|=|β|+1
sup
x′∈G
‖∆αXβ′σ(x′, π))‖Hπ .

�

3.2. Proof of the G̊arding inequality. Here, we prove the following (ρ, δ)-generalisation of
Theorem 1.1:

Theorem 3.5. Let G be a connected compact Lie group. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Assume
that the symbol σ ∈ Smρ,δ(G) satisfies the positivity condition σ ≥ 0. Then, for all η > 0, there exists
a constant Cη > 0 such that

(3.2) ∀f ∈ C∞(G), <
(
OpKN(σ)f, f

)
L2(G)

≥ −η ‖f‖2
H
m+δ

2 (G)
− Cη‖f‖2

H
m−(ρ−δ)

2 (G)
.

Moreover, if δ = 0 and σ ∈ Smρ,δ(G) satisfies the ellipticity condition σ ≥ c0(id + L̂)m/2, that is,

σ(x, π) ≥ c0(1 + λπ)
m
2 idHπ , (x, π) ∈ G× Ĝ,

for some constant c0 > 0, then there exist constants c, C > 0 such that

∀f ∈ C∞(G), <
(
OpKN(σ)f, f

)
L2(G)

≥ c‖f‖2
H
m
2 (G)

− C‖f‖2
H
m−ρ

2 (G)
.
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Remark 3.6. (1) When δ = 0 and ρ = 1, the second part of Theorem 3.5 is Theorem 1.1.
(2) When δ 6= 0, the inequality (3.2) differs from the usual sharp G̊arding inequality in which

the term with coefficient η does not appear. The inequality (3.2) also differs from the
straightforward estimate

<
(
OpKN(σ)f, f

)
L2(G)

≥ −C1‖f‖2
H
m
2 (G)

,

by the fact that η can be chosen as small as possible. The presence of this term in η shows
the limit of our approach in the (ρ, δ)-calculus when δ 6= 0.

3.2.1. The main ingredients of the proof. The main ingredients for our proof of Theorem 3.5 are
firstly an analysis of the Wick quantization in the Ψ∞ρ,δ-calculus, and secondly the choice of a in the
Wick quantization.

We observe that if σ ∈ Smρ,δ(G) with m ≤ 0, then σ ∈ L∞(G×Ĝ) and we can consider OpWick(σ).
It therefore makes sense to study it in the Ψ∞ρ,δ-calculus:

Lemma 3.7. Here, we consider the Wick quantization OpWick,a with a smooth function a : G→ C.
Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0 with δ 6= 1.

(1) If σ ∈ Smρ,δ(G) with m ≤ 0, then σ ∈ L∞(G× Ĝ) and OpWick(σ) ∈ Ψm
ρ,δ(G). Moreover, the

map σ 7→ OpWick(σ) is continuous Smρ,δ(G)→ Ψm
ρ,δ(G).

(2) If σ ∈ Smρ,δ(G) with m ≤ 0, then we have

OpWick(σ)−OpKN(σ ∗ |a|2) ∈ Ψ
m−(ρ−δ)
ρ,δ (G).

Moreover, the map σ 7→ OpWick(σ)−OpKN(σ ∗ |a|2) is continuous Smρ,δ(G)→ Ψ
m−(ρ−δ)
ρ,δ (G).

Proof of Lemma 3.7. We may rephrase Lemma 2.7 as OpWick(σ) = OpKN(σWick) with

σWick(x, π) =

∫
G

∆qzσ(xz−1, π)dz,

where qz(w) = a(zw−1)ā(z). By Lemmata 3.3 and 3.2 (1), this implies Part 1.
We observe that∫

G
∆qz(eG)σ(xz−1, π) dz =

∫
G
|a|2(z)σ(xz−1, π) dz = σ ∗ |a|2(x, π).

Hence, Lemma 3.2 (2) implies Part 2. �

The choice of the functions a for the Wick quantization is at the core of our proof of the G̊arding
inequality. We do it in relation to an approximation of the identity. By an approximation of
the identity on a compact Lie group G, we mean here a family of functions ϕt ∈ D(G), t > 0,
satisfying

∫
G ϕt(z)dz = 1 for any t > 0 and for any neighbourhood V of the neutral element eG,

limt→0

∫
z /∈V |ϕt(z)|dz = 0 and supt∈(0,1]

∫
z∈V |ϕt(z)|dz <∞. We then have

(3.3) ∀ψ ∈ C(G,C), lim
t→0

max
x∈G
|ψ(x)− ψ ∗ ϕt(x)| = 0.

The properties regarding the approximation of the identity that we will use in our proof of G̊arding
inequalities below are summarised in the following lemma:

Lemma 3.8. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0. Let ϕt, t > 0, be an approximation of the identity on
the compact Lie group G (as defined above). We assume that it satisfies ϕt(z) ≥ 0 for any z ∈ G
and t ∈ (0, 1). Then for any σ ∈ Smρ,δ(G), as t→ 0, σ ∗ ϕt converges to σ in Sm+δ

ρ,δ (G), that is, for

any semi-norm ‖ · ‖Sm+δ
ρ,δ (G),a0,b0

we have

lim
t→0
‖σ − σ ∗ ϕt‖Sm+δ

ρ,δ (G),a0,b0
= 0.
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Proof of Lemma 3.8. We observe that for any ϕ ∈ C∞(G), we have

‖σ ∗ ϕ− σ‖Sm+δ
ρ,δ ,a0,b0

.G

∫
G
|y−1||ϕ(y)|dy ‖σ‖Smρ,δ ,a0,b0+1,

by Lemma 3.4 (2). By (3.3) and because ϕt ≥ 0, we have

lim
t→0

∫
G
|y−1||ϕt(y)|dy = lim

t→0

∫
G
|y−1|ϕt(y)dy = lim

t→0
(| · | ∗ ϕt)(0) = |0| = 0.

Therefore limt→0 ‖σ − σ ∗ ϕt‖Sm+δ
ρ,δ (G),a0,b0

= 0. �

In the proof of the G̊arding inequality for symbol of order 0 below, we will choose an approxi-
mation of the identity ϕt, t > 0, that never vanishes, i.e. ϕt(x) > 0 for any x ∈ G and t > 0, and
then take a :=

√
ϕt. Such an approximation of the identity ϕt is obtained by considering the heat

kernel pt [32, 12], that is, the convolution kernel of e−tL.

3.2.2. Proof of Theorem 3.5. We start by proving the result for m = 0, then we extend the result
to any m ∈ R.

Proof of Theorem 3.5 for m = 0. Let σ ∈ S0
ρ,δ(G) satisfying σ(x, π) = σ(x, π)∗ ≥ 0 for any (x, π) ∈

G × Ĝ. The link between the Wick and Kohn-Nirenberg quantizations (Lemma 3.7) and the
properties of the pseudodifferential calculus (Theorem 3.1) imply

1

2
(OpKN(σ) + OpKN(σ)∗) = OpWick(σ) + OpKN(σ − σ ∗ |a|2) + OpKN(τ),

with τ ∈ S−(ρ−δ)ρ,δ (G). Hence, we obtain:

<(OpKN(σ)f, f)L2(G) ≥ (OpWick(σ)f, f)L2(G) −
∣∣∣(OpKN(σ − σ ∗ |a|2)f, f

)
L2(G)

∣∣∣(3.4)

− ‖OpKN(τ)‖
L (H−

ρ−δ
2 (G),H

ρ−δ
2 (G))

‖f‖2
H−

ρ−δ
2 (G)

.

The property in (2.9) for the Wick quantization and the hypothesis σ(x, π) ≥ 0 for any (x, π) ∈
G× Ĝ yield

(OpWick(σ)f, f)L2(G) ≥ 0.

We then choose a :=
√
ϕt with ϕt(x) > 0 an approximation of the identity. By Theorem 3.1 (1),

we have∣∣∣(OpKN(σ − σ ∗ |a|2)f, f
)
L2(G)

∣∣∣ ≤ ‖OpKN(σ − σ ∗ |a|2)‖
L (H

δ
2 ,H−

δ
2 )
‖f‖2

H
δ
2 (G)

≤ η‖f‖2
H
δ
2 (G)

by Lemma 3.8 for some t = t(η). Finally, the properties of the pseudodifferential calculus (The-
orem 3.1) imply that the operator norm ‖OpKN(τ)‖

L (H−
ρ−δ
2 (G)),H

ρ−δ
2 (G))

is finite. Therefore, col-

lecting in these facts, we deduce from (3.4)

<(OpKN(σ)f, f)L2(G) ≥ (OpWick(σ)f, f)L2(G) − η‖f‖2
H
δ
2 (G)
− Cη‖f‖2

H−
ρ−δ
2 (G)

,

for some constant Cη = ‖OpKN(τ)‖
L (H−

ρ−δ
2 (G),H

ρ−δ
2 (G))

(note that τ depends on a =
√
ϕt, or,

equivalently on t, and thus, on η). This concludes the first part of the Theorem, in the case
σ ∈ S0

ρ,δ(G).

The second part of the Theorem, with δ = 0, is obtained in a similar manner by observing that

the property (2.9) of the Wick quantization and the hypothesis σ(x, π) ≥ c0 for any (x, π) ∈ G× Ĝ
yield

(OpWick(σ)f, f)L2(G) ≥ c0‖f‖2L2(G).
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One then choose η < c0 so that the term η‖f‖2
H
δ
2 (G)

= η‖f‖2L2(G) is absorbed by c0‖f‖2L2(G). �

Proof of Theorem 3.5 for any m ∈ R. Let σ ∈ Smρ,δ(G) be such that σ ≥ 0. By the properties of
the pseudodifferential calculus, we may write

(id + L)−m/4OpKN(σ) (id + L)−m/4 = OpKN(σ1) + OpKN(τ1),

with σ1 ∈ S0
ρ,δ(G) given by σ1(x, π) := (1 + λπ)−m/2σ(x, π), and τ1 ∈ S

−(ρ−δ)
ρ,δ (G). We observe

that σ1 satisfies the hypothesis of Theorem 3.5 with m = 0. Therefore for any f ∈ C∞(G), setting

f1 = (id + L)m/4f , we have

<(OpKN(σ)f, f)L2(G) = <((id + L)−
m
4 OpKN(σ) (id + L)−

m
4 f1, f1)L2(G)

= <(OpKN(σ1)f1, f1)L2(G) + <(OpKN(τ1)f1, f1)L2(G)

≥ −η‖f1‖2
H
δ
2 (G)
− Cη‖f1‖2

H−
ρ−δ
2 (G)

,

by Theorem 3.5 with m = 0 applied to σ1 and the properties of the pseudodifferential calculus
applied to τ1. The conclusion follows from ‖f1‖

H−
ρ−δ
2 (G)

∼ ‖f‖
H
m−(ρ−δ)

2 (G)
. �

4. Gårding inequality on graded nilpotent Lie groups

Here, we prove the G̊arding inequality on a graded nilpotent Lie group G. Before this, we
recall some definitions and notation about this class of groups and the associated pseudodifferential
calculus. We refer to [14] for more details.

4.1. Preliminaries on graded nilpotent groups. A graded group G is a connected simply
connected nilpotent Lie group whose (finite dimensional, real) Lie algebra g admits an N-gradation
into linear subspaces,

g = ⊕∞j=1gj with [gi, gj ] ⊆ gi+j , 1 ≤ i ≤ j,
where all but a finite number of subspaces gj are trivial. We denote by r = rG the smallest integer j
such that all the subspaces gj , j > r, are trivial. If the first stratum g1 generates the whole Lie
algebra, then gj+1 = [g1, gj ] for all j ∈ N0 and r is the step of the group; the group G is then said
to be stratified, and also (after a choice of basis or inner product for g1) Carnot.

4.1.1. The exponential map and functional spaces. The product law on G is derived from the
exponential map expG : g → G which is a global diffeomorphism from g onto G. Once a basis
X1, . . . , Xn for g has been chosen, we may identify the points (x1, . . . , xn) ∈ Rn with the points
x = exp(x1X1 + · · ·+ xnXn) in G, n = dim g. It allows us to define the (topological vector) spaces
C∞(G), D(G) and S(G) of smooth, continuous and compactly supported, and Schwartz functions
on G identified with Rn; note that the resulting spaces are intrinsically defined as spaces of functions
on G and do not depend on a choice of basis.

The exponential map induces a Haar measure dx on G which is invariant under left and right
translations and defines Lebesgue spaces on G.

Finally, it is worth mentioning that in the present case of a graded group G, the dual set Ĝ and
the Plancherel measure µ can be explicitly described via Kirillov’s orbit method [6].

4.1.2. Adapted basis and dilations. We now construct a basis adapted to the gradation. Set dj =
dim gj for 1 ≤ j ≤ r. We choose a basis {X1, . . . , Xd1} of g1 (this basis is possibly reduced to ∅), then
{Xd1+1, . . . , Xd1+d2} a basis of g2 (possibly {0}) and so on. Such a basis B = (X1, · · · , Xd1+···+dr)
of g is said to be adapted to the gradation; and we have n = d1 + · · ·+ dr.

The Lie algebra g is a homogeneous Lie algebra equipped with the family of dilations {δr, r > 0},
δr : g→ g, defined by δrX = r`X for every X ∈ g`, ` ∈ N [18, 14]. We re-write the set of integers
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` ∈ N such that g` 6= {0} into the increasing sequence of positive integers υ1, . . . , υn counted with
multiplicity, the multiplicity of g` being its dimension. In this way, the integers υ1, . . . , υn become
the weights of the dilations and we have δrXj = rυjXj , j = 1, . . . , n, on the chosen basis of g. The
associated group dilations are defined by

δr(x) = rx := (rυ1x1, r
υ2x2, . . . , r

υnxn), x = (x1, . . . , xn) ∈ G, r > 0.

In a canonical way, this leads to the notions of homogeneity for functions and operators. For
instance, the Haar measure is homogeneous of degree

Q :=
n∑
`=1

υ`,

which is called the homogeneous dimension of the group. Another example is the vector field
corresponding to an element X ∈ g`: it is `-homogeneous.

An important class of homogeneous map are the homogeneneous quasi-norms, that is, a 1-
homogeneous non-negative map G 3 x 7→ |x| which is symmetric and definite in the sense that
|x−1| = |x| and |x| = 0⇐⇒ x = 0. In fact, all the homogeneous quasi-norms are equivalent in the
sense that if | · |1 and | · |2 are two of them, then

∃C > 0, ∀x ∈ G, C−1|x|1 ≤ |x|2 ≤ C|x|1.

Examples may be constructed easily, such as

|x| = (

n∑
j=1

|xj |N/υj )1/N for any N > 0,

with the convention above.
In the rest of the paper, we assume that we have fixed a basis X1, . . . , Xn of g adapted to

the gradation. We keep the same notation for the associated left-invariant vector fields on G,
and we denote the corresponding right invariant vector fields by X̃1, . . . , X̃n. For a multi-index
α = (α1, . . . , αn) ∈ Nn0 , we set Xα = Xα1

1 . . . Xαn
n and X̃α = X̃α1

1 . . . X̃αn
n . The differential operators

Xα and X̃α are homogeneous of degree

[α] = υ1α1 + . . .+ υnαn.

Left and right vector fields and translations have many relations. For instance, for any function
f ∈ C∞(G) and x, x0 ∈ G, we have Xj,xf(xx0) = X̃j,x0f(xx0). Since the left and right differential
operators are related by polynomial relations (see [14, Corollary 3.1.30]), this implies

(4.1) Xα
x f(xx0) = X̃α

x0f(xx0) =
∑

[β]=[α]

Pα,β(x0)X
βf(xx0),

where the Pα,β’s are ([β]− [α])-homogeneous polynomials.
The Sobolev spaces L2

s(G) adapted to the graded nilpotent Lie group G were studied in [14, 15]
generalising slightly the stratified case [17]. A possible definition is as follows. For each s ∈ N0 a
common multiple of the dilation’s weights υ1, . . . , υn, the Sobolev space L2

s(G) is defined as the set
of functions f ∈ L2(G) for which

‖f‖L2
s(G) = sup

[α]=s
‖Xαf‖L2(G) < +∞.

For other values of s > 0, they are obtained by interpolation, and by duality for s < 0. These are
well defined Hilbert spaces, [14, Section 4.4].
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4.1.3. Approximation of identity. Below, we will use approximations of the identity built using
dilations in the following sense:

Lemma 4.1. [18, 14] Let ϕ1 ∈ S(G) with
∫
G ϕ1 = 1. Consider the family of integrable functions

ϕt = t−Qϕ1 ◦ δt−1, t > 0. The family of functions ϕt, t > 0, form an approximation of identity on
Lp(G), p ∈ [1,∞) and on the space C0(G) of continuous functions vanishing at infinity in the sense
that

lim
t→0
‖ψ − ψ ∗ ϕt‖Lp(G) = 0,

for ψ ∈ Lp(G) (resp. C0(G)) for p ∈ [1,∞) (resp. p =∞).

This is more convenient than considering only heat kernels pt of a positive Rockland operators R,
i.e. the convolution kernels of e−tR, t > 0, although the latter do provide approximations of the
identity [14, 18]. WhenG is stratified andR is a sub-Laplacian, the heat kernels will be non-negative
and never vanishing. However, these properties of the heat kernel for a general positive Rockland
operator are not guaranteed in the graded case, and we observe that the heat kernel being positive
and never vanishing was used in the proof of the compact case in Section 3.2. Furthermore, in our
proof in the nilpotent case below, considering approximations of the identity built using dilations
is, in fact, more practical.

We discuss in the next section the pseudodifferential calculus on nilpotent graded groups and its
properties.

4.2. The pseudodifferential calculus. In this section, we set some notations and recall briefly
the global symbol classes defined on G together with some properties of the pseudodifferential
calculus. We refer to [14] for more details.

4.2.1. The symbol classes and the calculus. A symbol σ is in Smρ,δ(G) when for any multi-indices

α, β ∈ Nn0 and γ ∈ R, there exists C = C(α, β) such that we have for almost (x, π) ∈ G× Ĝ,

(4.2) ‖π(id +R)−
m−ρ[α]+δ[β]+γ

ν Xβ∆ασ(x, π)π(id +R)
γ
ν ‖L (Hπ) ≤ Cα,β,γ ,

where R is a (and then any) positive Rockland operator of homogeneous degree ν; we may assume
γ ∈ Z.

In (4.2), the difference operator ∆α is the difference operator ∆xα for the monomial xα in the
coordinates xj , j = 1, . . . , n. Generalising the definition in the compact setting, the difference
operator ∆q associated to q ∈ C∞(G) is defined via ∆qκ̂ = F(qκ) for any κ ∈ S ′(G) for which κ
and qκ admits a Fourier transform (see [14]).

We set
‖σ‖Smρ,δ,a,b,c := max

|α|≤a,|β|≤b,|γ|≤c
Cα,β,γ ,

for the best constants Cα,β,γ in (4.2) and a, b, c ∈ N0. If (ρ, δ) = (1, 0), we simply write Sm(G) =
Sm1,0(G).

The following theorem summarises the main properties of the classes of operators obtained by
the OpKN-quantization of the classes Smρ,δ(G):

Theorem 4.2. Theorem 3.1 holds for G a graded nilpotent Lie group when replacing the symbol
classes with the ones defined above and the Sobolev spaces with L2

s(G).

Any σ ∈ Smρ,δ(G) admits a distributional convolution kernel κ : z 7→ κx(z) ∈ C∞(G,S ′(G)), i.e.

σ(x, π) = κ̂x(π) and OpKN(σ)f(x) = f ∗ κx(x), f ∈ S(G).

In the next subsections, we discuss the properties of the pseudodifferential calculus with respect
to the application of a difference operator ∆q for q ∈ S(G) and with the convolution by a Schwartz
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function. Those properties were the main ingredients of the proof of G̊arding inequality in the case
of compact groups.

4.2.2. Stability of the symbol classes with respect to difference operators. The statement of Lemma 3.2
holds in the context of graded Lie groups if a ∈ D(G) is replaced with a ∈ S(G).

Sketch of the proof for Lemma 3.2 for G graded and a Schwartz. The properties of the convolution
kernels of symbols in Smρ,δ(G), for instance being Schwartz away from the origin, implies that we

may assume q ∈ D(G) with compact support near the origin. Let χ ∈ D(G) be such that χ ≡ 1
on the support of q. Let P qN (z) be the Taylor polynomial at order N in the sense of Folland-Stein
[18, 14] for q. The estimates of the convolution kernel κ of σ imply that

sup
x,y∈G

|χ(q − P qN )κx|(y)

will be finite for N large enough, with a constant given by semi-norms in σ, and similarly for

X
β′2
y X̃

β′2
y yαχ(q − P qN )Xβ

xκx. This implies the statement. �

4.2.3. Stability of the symbol classes with respect to convolution. The analysis of the convolution of
a symbol requires first to consider the properties relatively with right-translation. The situation is
more involved because the group G is not compact. The analogue of Lemma 3.3 is the following.

Lemma 4.3. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0. If x0 ∈ G, then for any σ ∈ Smρ,δ(G), the symbol

Rx0σ = {σ(xx0, π) : (x, π) ∈ G × Ĝ} is in Smρ,δ(G) and the map (x0, σ) 7→ Rx0σ is continuous

G × Smρ,δ(G) → Smρ,δ(G). Moreover, if we fix a homogeneous quasi-norm | · | on G, then for any

semi-norm ‖ · ‖Smρ,δ ,a,b,c, there exists N ∈ N and C > 0 such that

∀x0 ∈ G, ∀σ ∈ Smρ,δ(G), ‖Rx0σ‖Smρ,δ,a,b,c, ≤ C(1 + |x0|)N‖σ‖Smρ,δ,a,b,c.

Proof. The proof follows the lines of the proof of Lemma 3.3 using (4.1). �

We define the convolution of a symbol with a (suitable) function formally as in the compact case.
As we will see below, certain properties of convoluting a symbol will be more involved in the graded
case because derivatives of higher weights start appearing in the Taylor estimates on graded Lie
groups, although on stratified Lie groups, only the derivatives of weight one occur (see the proof
of Lemma 4.4 below). More precisely, the analogue of Lemma 3.4 is the next Lemma 4.3 and uses
the notation:

(4.3) υ :=

{
υn if G is graded,
1 if G is stratified.

Lemma 4.4. Let m ∈ R and 1 ≥ ρ ≥ δ ≥ 0.

(1) If σ ∈ Smρ,δ(G) and ϕ ∈ S(G), then we have σ ∗ ϕ ∈ Smρ,δ(G). Moreover, for any semi-norm

‖ · ‖Smρ,δ ,a,b,c and ϕ ∈ S(G), there exists C = C(ϕ, b) > 0 such that

∀σ ∈ Smρ,δ(G), ‖σ ∗ ϕ‖Smρ,δ,a,b,c ≤ C‖σ‖Smρ,δ,a,0,c.

This implies that σ 7→ σ ∗ ϕ is continuous on Smρ,δ(G).

(2) Furthermore, if we fix a homogeneous quasi-norm | · | on G and if
∫
G ϕ(y)dy = 1 then for

any semi-norm ‖ · ‖Sm+υδ
ρ,δ ,a,b,c, there exists N ∈ N0 and C ′ = C ′(b) > 0 such that for any

σ ∈ Smρ,δ(G), we have:

‖σ ∗ ϕ− σ‖Sm+δυ
ρ,δ ,a,b,c ≤ C

′
∫
G
|y|υ1(1 + |y|)N |ϕ(y)|dy ‖σ‖Smρ,δ ,a,b+υ,c.

Recall that υ1 = 1 in the stratified case.
20



Proof. Adapting the proof of the compact case, we observe that

∆αXβσ ∗ ϕ(x, π) =

∫
G
Ry−1∆ασ(x, π)Xβϕ(y)dy.

Therefore, ϕ being Schwartz class and Lemma 4.3 together with [14, Corollary 3.1.32] readily imply
Part (1).

Assume now
∫
G ϕ(y)dy = 1. Then,

(σ ∗ ϕ− σ)(x, π) =

∫
G

(
σ(xy−1, π)− σ(x, π)

)
ϕ(y)dy,

By the Taylor estimates due to Folland and Stein [14, Section 3.1.8], we have

‖Xβ
x (σ ∗ ϕ− σ)(x, π)‖L (Hπ) ≤

∫
G

∥∥∥Xβ
x (σ(xy−1, π)− σ(x, π))

∥∥∥
L (Hπ)

|ϕ(y)|dy

.
n∑
j=1

∫
G
|y|υj sup

|y′|.|y|

∥∥∥Xj,y′X
β
xσ(xy′, π)

∥∥∥
L (Hπ)

|ϕ(y)|dy

.
n∑
j=1

∫
G
|y|υj (1 + |y|)N |ϕ(y)|dy max

[β′]=[β]+υn
sup
x′∈G

∥∥∥Xβ′
x σ(x′, π)

∥∥∥
L (Hπ)

,

for some N ∈ N0, by (4.1) and [14, Corollary 3.1.32]. This implies Part (2) when m = 0, a = 0,
δ = 0 and c = 0. The same arguments imply Part (2) for any semi-norm ‖ · ‖

Sm+υnδ
ρ,δ ,a,b,c

.

In the stratified case, the Taylor estimates due to Folland and Stein [18, (1.41)] involve only the
left-invariant derivatives of weight υ1 = 1, yielding Part (2) in this case. �

4.3. Proof of the G̊arding inequality. Here, we prove the following (ρ, δ)-generalisation of
Theorem 1.2:

Theorem 4.5. Let G be a graded nilpotent Lie group. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Assume that
the symbol σ ∈ Smρ,δ(G) satisfies the positivity condition σ ≥ 0. Then, for all η > 0, there exists a
constant Cη > 0 such that

∀f ∈ S(G), <
(
OpKN(σ)f, f

)
L2(G)

≥ −η‖f‖2L2
m+υδ

2

(G) − Cη‖f‖
2
L2
m−(ρ−δ)

2

(G),

where υ is defined in (4.3) (recall υ = 1 if G is stratified).

Moreover, if δ = 0 and σ ∈ Smρ,δ(G) satisfies the elliptic condition σ0 ≥ c(id + R̂)
m
ν , for some

constant c0 > 0 where R is a positive Rockland operator of homogeneous degree ν. Then there exist
constants c, C > 0 such that

∀f ∈ S(G), <
(
OpKN(σ)f, f

)
L2(G)

≥ c‖f‖2L2
m
2
(G) − C‖f‖

2
L2
m−ρ

2

(G).

The analogue of Remark 3.6 is true in the case of nilpotent Lie groups.
The proof of Theorem 4.5 is an adaptation of the case of compact groups given in Section 3.2. We

first need to replace the Sobolev spaces Hs(G) with the Sobolev space L2
s(G) adapted to the graded

nilpotent case. Moreover, in the final argument showing that the case of a symbol σ ∈ Smρ,δ(G)
follows from the case of a symbol of order 0, we need to replace σ1 with

σ1 = (id + R̂)−
m
2ν σ(id + R̂)−

m
2ν .

Before detailing the proof for a symbol σ ∈ S0
ρ,δ(G) of order 0, we discuss the two main ingre-

dients: the use of an approximation of the identity and the comparison of the Kohn-Niremberg
approximation with the Wick’s one. We shall use the approximation of identity from Lemma 4.1
and the following corollary of Lemma 4.4:
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Corollary 4.6. We continue with the setting of Lemma 4.1. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. For
any semi-norm ‖ · ‖Sm+υδ

ρ,δ (G),a0,b0,c0
and any ϕ1 ∈ S(G), there exists C > 0 such that

∀t ∈ (0, 1], ∀σ ∈ Smρ,δ(G), ‖σ − σ ∗ ϕt‖Sm+υδ
ρ,δ (G),a0,b0,c0

≤ C t‖σ‖Smρ,δ(G),a0,b0+υ,c0 ,

where υ is defined by (4.3).

Proof. By Lemma 4.4 (2),

‖σ − σ ∗ ϕt‖Sm+υδ
ρ,δ (G),a0,b0,c0

≤ C ′‖σ‖Smρ,δ(G),a0,b0+υ,c0

∫
G
|y|υ1(1 + |y|)N |ϕt(y)|dy

≤ C ′‖σ‖Smρ,δ(G),a0,b0+υ,c0

∫
G
|δty′|υ1(1 + |δty′|)N |ϕ1(y

′)|dy′,

after the change of variable y = δty
′. Since

|δty′| = t|y′| and (1 + |δty′|) ≤ (1 + t)(1 + |y′|),

the conclusion follows for t ∈ (0, 1]. �

As in compact groups, the main step in our proof will be the analysis of the Wick quantization

in the Ψ∞ρ,δ-calculus. Indeed, if σ ∈ Smρ,δ(G) with m ≤ 0, then σ ∈ L∞(G× Ĝ) and we can consider

OpWick(σ) and its membership in the Ψ∞ρ,δ-calculus:

Lemma 4.7. Let a ∈ S(G) and consider the Wick quantization OpWick,a with a. Let m ∈ R and
1 ≥ ρ ≥ δ ≥ 0 with δ 6= 1.

(1) If σ ∈ Smρ,δ(G) with m ≤ 0, then σ ∈ L∞(G× Ĝ) and OpWick(σ) ∈ Ψm
ρ,δ(G). Moreover, the

map σ 7→ OpWick(σ) is continuous Smρ,δ(G)→ Ψm
ρ,δ(G).

(2) If σ ∈ Smρ,δ(G) with m ≤ 0, then we have

OpWick(σ)−OpKN(σ ∗ |a|2) ∈ Ψ
m−(ρ−δ)
ρ,δ (G).

Moreover, the map σ 7→ OpWick(σ)−OpKN(σ ∗ |a|2) is continuous Smρ,δ(G)→ Ψ
m−(ρ−δ)
ρ,δ (G).

Proof. We adapt the proof of Lemma 3.7 and start by rephrasing Lemma 2.7 as OpWick(σ) =
OpKN(σWick) with

σWick(x, π) =

∫
G

∆qzσ(xz−1, π) ā(z) dz =

∫
G
Rz−1∆qzσ(x, π) ā(z) dz,

where qz(w) := a(zw−1). Since Lemma 3.2 (1) also holds on graded nilpotent Lie groups G for
Schwartz functions, using Lemma 4.3 and the fact that a ∈ S(G), we obtain Point (1).

For Point (2), we observe that∫
G

∆qz(eG)σ(xz−1, π) ā(z) dz =

∫
G
|a|2(z)σ(xz−1, π) dz = σ ∗ |a|2(x, π).

Hence,

σWick(x, π)− σ ∗ |a|2(x, π) =

∫
G
Rz−1∆qz−qz(eG)σ(x, π) ā(z) dz,

and we conclude using Lemma 3.2 (2) for graded groups, the estimate of Lemma 4.3 and the fact
that a ∈ S(G). �

We can now prove Theorem 4.5.
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Proof of Theorem 4.5. As explained above, it suffices to show the statement for σ ∈ S0
ρ,δ(G) satis-

fying σ(x, π) ≥ 0. We fix a function a1 ∈ S(G) with ‖a1‖L2(G) = 1, and set at(x) := t−Q/2a1(δ
−1
t x),

x ∈ G, t > 0. We observe that |at|2 = t−Q|a1|2 ◦ δ−1t , t > 0, is an approximation of the identity in
the sense of Lemma 4.1.

We now consider the Wick quantization OpWick,a with a = at to be chosen at the end of the
proof. The properties of the Wick quantization (see (2.9)) imply that for all f ∈ S(G),

<(OpKN(σ)f, f)L2(G) ≥ −
∣∣∣(OpKN(σ − σ ∗ |a|2)f, f

)
L2(G)

∣∣∣− C‖f‖2L2

− ρ−δ2
(G),

for some constant C > 0. We now choose a = at with t > 0 small enough so that, by Corollary 4.6,∣∣∣(OpKN(σ − σ ∗ |a|2)f, f
)
L2(G)

∣∣∣ ≤ η‖f‖2L2
υδ
2

(G).

This shows the case of σ ∈ S0
ρ,δ(G) and we can conclude the proof of Theorem 4.5 in a similar

manner as for Theorem 3.5. �

5. Semi-classical Gårding inequality on graded nilpotent Lie groups

In this section, we show the semi-classical inequality stated in Theorem 1.3. The proof is inspired
by Lemma 1.2 in [21]. Before this, we recall the definition of the semi-classical calculus and we
introduce the Wick quantization adapted to the semi-classical setting.

5.1. Semi-classical pseudodifferential calculus. The set A0 is the space of symbols σ =

{σ(x, π) : (x, π) ∈ G× Ĝ} of the form

σ(x, π) = Fκx(π) =

∫
G
κx(y)(π(y))∗dy,

where (x, y) 7→ κx(y) is a function of the topological vector space C∞c (G,S(G)) of smooth and
compactly supported functions in the variable x ∈ G valued in the set of Schwartz class functions.
As before, x 7→ κx is called the convolution kernel of σ.

With the symbol σ ∈ A0, we associate the (family of) semi-classical pseudodifferential operators

Opε(σ) = OpKN (σ(·, δε ·)) , ε ∈ (0, 1],

where the Kohn-Nirenberg quantization OpKN was defined in Section 2.2.2 and δr denotes the

action of R+ on Ĝ given via

δrπ(x) = π(δrx), x ∈ G, π ∈ Ĝ, r > 0.

By Plancherel’s theorem, in particular the uniqueness of the Plancherel measure dµ, the latter is

Q-homogeneous on Ĝ for these dilations.
In other words, we have

Opε(σ)f(x) =

∫
π∈Ĝ

TrHπ (π(x)σ(x, δεπ)Ff(π)) dµ(π), f ∈ S(G), x ∈ G.

In terms of the convolution kernel κx = F−1σ(x, ·), we have

Opε(σ)f(x) = f ∗ κ(ε)x (x), f ∈ S(G), x ∈ G.

Above, κ
(ε)
x is the convolution kernel of σ(·, δε ·) and is given by a rescaling of the convolution kernel

of σ:

κ(ε)x (y) := ε−Qκx(δ−1ε y).
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5.2. The semi-classical Wick quantization. Let a ∈ S(G) such that ‖a‖L2(G) = 1. We set

aε := ε−
Q
4 a ◦ δ

ε−
1
2
, ε > 0,

so that aε ∈ S(G) with ‖aε‖L2(G) = 1. Moreover, for each (x, π) ∈ G × Ĝ, we define the operator
on Hπ depending on y ∈ G,

F ε
x,π(y) = aε(x

−1y)δ−1ε π(y)∗,

and define the operator Bε on S(G) via

Bε[f ](x, π) = ε−
Q
2

∫
G
f(y)F ε

x,π(y)dy, f ∈ S(G), (x, π) ∈ G× Ĝ.

Note that, with respect to the operator Ba defined in Section 2.3.1, we have

Bε[f ](x, π) = ε−
Q
2 Baε [f ](x, δ−1ε π).

Hence, by Proposition 2.3, the map Bε extends uniquely to an isometry from L2(G) to L2(G× Ĝ)

for which we keep the same notation. Denoting by Bε,∗ : L2(G× Ĝ)→ L2(G) its adjoint map, we

have Bε,∗Bε = idL2(G) while BεBε,∗ is a projection on a closed subspace of L2(G× Ĝ).

Set for (x, π) ∈ G× Ĝ,

g`x,π,k,`(y) :=
(
F ε
x,π(y)∗ϕk(π), ϕ`(π)

)
Hπ

, y ∈ G,

where (·, ·)Hπ denotes the inner product of Hπ and (ϕk(π))k∈Iπ , Iπ ⊂ N is an orthonormal basis
of Hπ. Then, arguing as in Corollary 2.4, we obtain the semi-classical frame decomposition:

f =

∫
G×Ĝ

∑
k,`∈Iπ

(
f, gεx,π,k,`

)
L2(G)

gεx,π,k,` dxdµ(π), f ∈ L2(G).

We define the semi-classical Wick quantization for σ ∈ L∞(Ĝ)

OpWick
ε (σ) := Bε,∗σ Bε.

Here again, it is a positive quantization and we can compute the convolution kernel of OpWick
ε (σ)

as in Lemma 2.7:

Lemma 5.1. If σ ∈ A0, then
OpWick

ε (σ) = Opε(σ
ε,Wick),

where σε,Wick ∈ A0 has the convolution kernel

κε,Wick
x (w) =

∫
G
a(z′δ√εw

−1)ā(z′)κxδ√εz′−1(w)dz′.

Proof. Arguing as in Lemma 2.7, we obtain (using changes of variables)

κε,Wick
x (w) =

∫
G
aε(z

−1xδεw
−1)āε(z

−1x)κz(w)dz

=

∫
G
aε(z

′δεw
−1)āε(z

′)κxz′−1(w)dz′

=

∫
G
a(z′δ√εw

−1)ā(z′)κxδ√εz′−1(w)dz′.

�

Corollary 5.2. We choose a function a ∈ D(G) that is even, i.e. a(x−1) = a(x), and real valued.
Then for any σ ∈ A0, there exists C > 0 such that for all ε ∈ (0, 1],

‖Opε(σ)−OpWick
ε (σ)‖L (L2(G)) ≤ Cε.
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Proof. By Lemma 2.1, using the A0-norm defined in (2.5), we have

‖Opε(σ)−OpWick
ε (σ)‖L (L2(G)) ≤ ‖σ − σε,Wick‖A0 ≤ I1(ε) + I2(ε),

where

I1(ε) :=

∫
G

sup
x∈G

∣∣∣∣∫
G
|a(z)|2

(
κx(w)− κxδ√εz−1(w)

)
dz

∣∣∣∣ dw,
I2(ε) :=

∫
G

sup
x∈G

∣∣∣∣∫
G

(a(z)− a(zδ√εw
−1))ā(z)κxδ√εz−1(w)dz

∣∣∣∣ dw.
By the Taylor estimates due to Folland and Stein [18, 14], if υ1 = 1, we have:

I1(ε) =
√
ε

∫
G

sup
x∈G

∣∣∣∣∣∣
n1∑
j=1

∫
G

(−zj)|a(z)|2dz Xj,xκx(w)

∣∣∣∣∣∣ dw +O(ε),

I2(ε) =
√
ε

∫
G

sup
x∈G

∣∣∣∣∣∣
n1∑
j=1

∫
G

(−wj)ā(z)Xja(z)κx(w)dz

∣∣∣∣∣∣ dw +O(ε)

≤
√
ε

n1∑
j=1

∣∣∣∣∫
G
ā(z)Xja(z)dz

∣∣∣∣ ∫
G
|wj | sup

x′∈G
|κx′(w)| dw +O(ε).

We recall that n1 denotes the dimension of the first strata (see paragraph 4.1.2 where the basis
(Xj)1≤j≤n has been introduced). As a is even, for any polynomial q satisfying q(z−1) = −q(z) such
as the coordinate polynomials zj , we have

∫
G |a(z)|2q(z)dz = 0. As a is real valued, for any left or

right invariant vector field X, an integration by parts shows
∫
GXja(z)ā(z)dz = 0. Consequently,

I1(ε) = O(ε) and I2(ε) = O(ε) if υ1 = 1. Moreover, if υ1 > 1, then the Taylor estimate gives

I1(ε) + I2(ε) = O(ε
υ1
2 ) = O(ε). �

5.3. Proof of the semi-classical G̊arding inequality. Let σ ∈ A0 with σ ≥ 0. By the properties
of the semi-classical Wick quantisation, then(

OpWick
ε (σ)f, f

)
L2(G)

= (σBεf,Bεf)
L2(G×Ĝ)

≥ 0.

We write

< (Opε(σ)f, f)L2(G) ≥
(

OpWick
ε (σ)f, f

)
L2(G)

− ‖Opε(σ)−OpWick
ε (σ)‖L (L2(G))‖f‖2L2(G)

≥ −‖Opε(σ)−OpWick
ε (σ)‖L (L2(G))‖f‖2L2(G).

By Corollary 5.2, ‖OpKNε (σ) − OpWick
ε (σ)‖L (L2(G)) = O(ε). This concludes the proof of Theo-

rem 1.3.

We point out that the semi-classical case is more straightforward because we restrict ourselves
to the use of L2-norm and to a gain in the semi-classical parameter ε. Moreover, we do not need
a strong ellipticity assumption on the symbol σ and its positivity is enough to conclude. This is
specific to the semi-classical setting.

Appendix A. The Euclidean case

In this section, we recall the definitions and some properties of the Kohn-Nirenberg and Wick
quantizations in the Euclidean case Rn. We develop the same chain of arguments that show the
G̊arding inequality for the Hörmander calculus on Rn as in the core of the paper. This leads to a
proof which is close to the one of [19, Chapter 2, section 6], while leading to a weaker result when
δ 6= 0.
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A.1. Kohn-Nirenberg and Wick quantizations. On Rn, the Kohn-Nirenberg quantization
may be defined for any symbols σ ∈ S ′(Rn × Rn) via the formula

OpKN(σ)f(x) =

∫
Rn
e2iπxξσ(x, ξ) f̂(ξ) dξ, x ∈ Rn, f ∈ S(Rn),

where f̂ = Ff denotes the Euclidean Fourier transform of f :

Ff(ξ) = f̂(ξ) =

∫
Rn
e−2iπxξf(x)dx, ξ ∈ Rn.

With the convolution kernel κx := F−1σ(x, · ) of σ, this may be rewritten as

OpKN(σ)f(x) = f ∗ κx(x), x ∈ Rn, f ∈ S(Rn).

Fixing a continuous, bounded and square-integrable function a with ‖a‖L2(Rn) = 1, we set for

any f ∈ L2(Rn) and (x, ξ) ∈ Rn

Ba[f ](x, ξ) := F(f a(· − x))(ξ) =

∫
Rn
f(y) a(y − x) e−2iπyξdy.

This defines the generalised Bargmann transform Ba = B. The function a is usually chosen as the

Gaussian function a(x) = π−
d
4 e−

|x|2
2 [5]. It is an isometry L2(Rn)→ L2(Rn×Rn). Denoting by B∗

its adjoint, we define the Wick quantization OpWick = OpWick,a, for any symbol σ ∈ L∞(Rn ×Rn)
via:

OpWick(σ)f = B∗σB[f ], f ∈ L2(Rn).

This quantization has the advantage of yielding bounded operators on L2, of preserving formal
self-adjointness:

‖OpWick(σ)‖L (L2(Rn) ≤ ‖σ‖L∞(Rn×Rn), OpWick(σ)∗ = OpWick(σ̄),

and positivity:

σ(x, ξ) ≥ 0 for all (x, ξ) ∈ Rn × Rn =⇒ (OpWick(σ)f, f)L2(Rn) ≥ 0.

The link between the Kohn-Nirenberg and Wick quantization for a bounded symbol is the fol-
lowing:

Lemma A.1. Let a ∈ S(Rn) with ‖a‖L2(Rn) = 1, and consider the associated Wick quantization.
For any symbol σ ∈ L∞(Rn × Rn), we have:

OpWick(σ)f(x) = f ∗ κWick
x (x), f ∈ S(Rn), x ∈ Rn,

where κWick ∈ S ′(Rn × Rn) is given by

κWick
x (y) =

∫
Rn
a(z − y)ā(z)κx−z(y)dz,

where κx = F−1σ(x, ·) denotes the convolution kernel of σ. Hence, OpWick(σ) = OpKN(σWick)
where σWick ∈ S ′(Rn × Rn) is the symbol given by σWick(x, ξ) = FκWick

x (ξ).

A.2. G̊arding inequalities for Hörmander symbols. First, let us recall the definition of the
Hörmander classes of symbols.

Definition A.2. A function σ ∈ C∞(Rn × Rn) is a Hörmander symbol of order m ∈ R and index
(ρ, δ) when

∀α, β ∈ Nn0 , ∃Cα,β > 0, ∀(x, ξ) ∈ Rn × Rn, |∂βx∂αξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|2)
m−ρ|α|+δ|β|

2 .

The space of Hörmander symbols of order m and index (ρ, δ) is denoted by Smρ,δ(Rn).
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The space Smρ,δ(Rn) is naturally equipped with a structure of Fréchet space, inherited by the

resulting class of operators Ψm
ρ,δ(Rn) := OpKN(Smρ,δ(Rn)). Moreover, the Hörmander calculus

∪m∈RΨm
ρ,δ(Rn) is a calculus in the sense of Definition 1.4. In this context, the link between the

Kohn-Nirenberg and Wick quantizations is given in Part (2) of the following statement.

Proposition A.3. Let 1 ≥ ρ ≥ δ ≥ 0 with δ 6= 1.

(1) Let m ∈ R. If ϕ ∈ S(Rn) and σ ∈ Smρ,δ(Rn) then

σ ∗ ϕ : (x, ξ) 7−→
∫
Rn
ϕ(z)σ(x− z, ξ) = σ ∗ ϕ( · , ξ) (x),

defines a symbol in Smρ,δ(Rn).

(2) We assume that a ∈ S(Rn) with ‖a‖L2(Rn) = 1. If σ ∈ S0
ρ,δ(Rn), then

OpWick(σ)−OpKN(σ ∗ |a|2) ∈ Ψ
−(ρ−δ)
ρ,δ (Rn).

(3) Let at defined by at(x) := t−n/2a1(t
−1x), with t > 0 and a1 ∈ S(Rn), ‖a1‖L2 = 1. Then for

any σ ∈ Smρ,δ(Rn), as t→ 0, σ ∗ |at|2 converges to σ in Sm+δ
ρ,δ (Rn).

Sketch of the proof of Proposition A.3. Part (1) is easily checked. For Part (2), we may rephrase
Lemma A.1 using the notion of difference operators ∆q (which coincide with i

2π∂ξj when q = xj)
defined formally via:

(∆qσ)(x, ξ) = F
(
qF−1σ(x, ·)

)
(ξ) = F(qκx)(ξ) = σ(x, · ) ∗ q̂(ξ),

with κx = F−1σ(x, ·) the convolution kernel of σ. We have:

OpWick(σ) = OpKN(σWick), with σWick(x, ξ) =

∫
Rn

∆qzσ(x− z, ξ)dz,

where qz(w) = a(z − w)ā(z). We then conclude with the following asymptotic expansion in any
symbol class Smρ,δ(Rn) for a difference operator associated with q ∈ S(Rn)

∆qσ ∼ q(0)σ +
∑
α>0

cα∂
α
x q(0)∂αξ σ,

with explicit coefficients cα.
For Part (3), we observe that the convolution in σ ∗ |a|2 is in the variable x only, so that denoting

σα,β := (1 + |ξ|2)−
δ|β|−ρ|α|

2 ∂αξ ∂
β
xσ, we have:

(1 + |ξ|2)−
δ|β|−ρ|α|

2 ∂αξ ∂
β
x (σ − σ ∗ |a|2) = σα,β − σα,β ∗ |a|2.

Using this relation for a = at, we estimate the semi-norm via a Taylor expansion of σ, which
involves derivatives of order 1 in x, and a loss of δ in the symbol class. This gives Part (3). �

The properties of the Kohn-Nirenberg and Wick quantizations imply the following G̊arding
inequality:

Theorem A.4. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Assume that the symbol σ ∈ Smρ,δ(Rn) satisfies the

elliptic condition σ(x, ξ) ≥ c0(1 + |ξ|2)m/2, for some constant c0 > 0. Then, for all η > 0, there
exists a constant Cη > 0 such that

(A.1) ∀f ∈ S(Rn), <
(
OpKN(σ)f, f

)
L2(Rn) ≥ −η‖f‖

2

H
m+δ

2 (Rn)
− Cη‖f‖2

H
m−(ρ−δ)

2 (Rn)
.

Moreover, if δ = 0, then there exists C > 0 such that

(A.2) ∀f ∈ S(Rn), <
(
OpKN(σ)f, f

)
L2(Rn) ≥ −C‖f‖

2

H
m−ρ

2 (Rn)
.
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Note that the so-called sharp G̊arding inequality states that (A.1) holds under the weaker as-
sumption σ ≥ 0 [19]. The inequality of Theorem A.4 is weaker, though useful and easy to prove.

Sketch of the proof of Theorem A.4. It suffices to show the case m = 0. Let σ ∈ S0
ρ,δ(Rn) satisfying

σ(x, ξ) ≥ c0. Because the Wick quantization preserves positivity, Part (2) of Proposition A.3)
implies

<(OpKN(σ)f, f)L2(Rn) ≥ c0‖f‖2L2(Rn) −
∣∣∣(OpKN(σ − σ ∗ |a|2)f, f

)
L2(Rn)

∣∣∣− C‖f‖2
H
ρ−δ
2 (Rn)

,(A.3)

for some constant C > 0 that depends on the choice of the function a. We fix a function a1 ∈ S(Rn)

with ‖a1‖L2(Rn) = 1 and set at(x) := t−n/2a1(t
−1x). We use Part (3) of Proposition A.3 with t

small enough so that ∣∣∣(OpKN(σ − σ ∗ |a|2)f, f
)
L (L2(Rn))

∣∣∣ ≤ η‖f‖2
H
δ
2 (Rn)

,

for some η that has been fixed first. It follows that (A.3) writes

<(OpKN(σ)f, f)L2(Rn) ≥ c0‖f‖2L2(Rn) − η‖f‖
2

H
δ
2 (Rn)

− C‖f‖2
H
ρ−δ
2 (Rn)

,

where C = Cη depends on η via the choice of t. This gives (A.1). Equation (A.2) comes from
choosing η = c0/2 in the latter equation. �
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