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Abstract. By a lot of previous work, it is known that the zeros of the period polynomial for a
newform f ∈ Sk(Γ0(N)) all lie on the circle |z| = 1/

√
N . In this paper we show that these zeros

satisfy various interlacing properties for fixed N and varying k when either k or N is large. We
also present a complete result when N = 1. Lastly, we establish the interlacing properties when k
is fixed and N varies.

1. Introduction

Let f ∈ Sk(Γ0(N)) be a normalized newform of even weight k and level N . Suppose the Fourier
expansion of f is given by f(z) =

∑∞
n=1 an(f)q

n. The associated L-function of f is defined as
L(f, s) :=

∑∞
n=1 an(f)/n

s. The completed L-function,

Λ(f, s) :=

(√
N

2π

)s

Γ(s)L(f, s),

satisfies the functional equation Λ(f, s) = ε(f)Λ(f, k − s). Here, ε(f) = ±1 is called the sign of f
[8, Section 1]. The period polynomial associated to f is the degree k − 2 polynomial

rf (z) =

∫ i∞

0
f(τ)(τ − z)k−2dτ.

Using L-functions we may rewrite the period polynomial as

rf (z) = − (k − 2)!

(2πi)k−1

k−2∑
n=0

(2πiz)n

n!
L(f, k − n− 1),

or equivalently as

rf (z) = ik−1N−(k−1)/2
k−2∑
n=0

(
k − 2

n

)(
i
√
Nz
)n

Λ(f, k − 1− n). (1.1)

The functional equation for Λ(f, s) gives the following functional equation for rf (z):

rf (z) = −ikε(f)
(√

Nz
)(k−2)/2

rf

(
− 1

Nz

)
. (1.2)

This implies that if ρ is a zero of rf (z) then so is −1/(Nρ). An analogue of the Riemann hypothesis

indicates that zeros of rf (z) should all lie on the center of symmetry: the circle |z| = 1/
√
N . When

N = 1, this was proved by El-Guindy and Raj [4]. For a general level N , Jin et. al. [8] showed that

all the zeros of rf (z) are on the circle |z| = 1/
√
N . This result was therein called as the “Riemann

hypothesis” for period polynomials of modular forms. Actually, more information was obtained in

2020 Mathematics Subject Classification. 11F67 and 11F11.
Key words and phrases. Period polynomial; zeros of polynomial; interlacing between zeros; Stieltjes interlacing.

1



[8] on the zeros of rf (z): for example, they showed that the zeros become equidistributed when
either k or N is large.

This paper is devoted to further studying properties of the zeros of period polynomials, especially
the relationship between zeros of period polynomials associated to different newforms. This work
is motivated by works of [11] and [6], in which two types of interlacing properties were established
for the zeros of Eisenstein series, respectively.

We now recall the definitions of these two interlacing properties. First, the standard or regular
interlacing is given as follows.

Definition 1.1 ([7], Definition 1.3). Let I ⊂ R be an interval. Let m,n ∈ N be such that |m− n| ≤
1. Suppose that X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are two strictly increasing ordered
sets of points in I. Then, X and Y interlace if and only if the following conditions hold:

(1) if m > n, then xi < yi < xi+1 for all 1 ≤ i ≤ n;
(2) if m < n, then yi < xi < yi+1 for all 1 ≤ i ≤ m;
(3) if m = n, then either

(a) xi < yi for all 1 ≤ i ≤ n and yi < xi+1 for all 1 ≤ i ≤ n− 1, or
(b) yi < xi for all 1 ≤ i ≤ n and xi < yi+1 for all 1 ≤ i ≤ n− 1.

Notice that Definition 1.1 is symmetric on the sets X and Y . Besides the standard interlacing
property, we also consider the Stieltjes interlacing, which we now define.

Definition 1.2. Let I ⊂ R be an interval. Let m,n ∈ N such that m ≥ n − 1. Suppose that
X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are two strictly increasing ordered sets of points in
I. Then

(1) we say X Stieltjes interlaces with Y if there lies at least one element of X strictly between
any two elements of Y ,

(2) we say X strongly Stieltjes interlaces with Y if (1) is satisfied and furthermore, x1 < y1 and
xm > yn.

We want to point out that the notions of standard interlacing and Stieltjes interlacing have their
origins in the theory of orthogonal polynomials; see Szegő [13, Theorems 3.3.2–3.3.3]. We mention
a few results that have established various interlacing properties for zeros of certain modular forms:
Nozaki [11] showed the standard interlacing between zeros of Eisenstein series Ek+12 and Ek; in [6]
the Stieltjes interlacing was established between zeros of Ek and Eℓ with k > ℓ; the strong Stieltjes
interlacing was shown in [5] for the zeros of jm and jn with m > n, where jm = mTm(j − 744)
is essentially the modular function obtained by applying the mth Hecke operator on the Klein
j-invariant. To state our results we need to fix some notation. We first introduce the following
notation of sample angles, following [8, Theorem 1.2].

Definition 1.3. Let k = 2m+2 with m ≥ 1. When ε(f) = 1, θk,ℓ denotes the (unique) solution in
the interval [0, 2π) to the equation

mθk,ℓ =
π

2
+ ℓπ +

2π√
N

sin θk,ℓ (1.3)

for 0 ≤ ℓ ≤ 2m− 1.
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Definition 1.4. Let k = 2m+ 2 with m ≥ 1. When ε(f) = −1, ϕk,ℓ denotes the (unique) solution
in the interval [0, 2π) to the equation

mϕk,ℓ = ℓπ +
2π√
N

sinϕk,ℓ

for 0 ≤ ℓ ≤ 2m− 1.

We will show later that these sample angles are very close to the corresponding actual angles in
Af (Definition 1.5) below as long as N or k is sufficiently large. We next introduce the notation of
angles for actual zeros of rf (z).

Definition 1.5. By the result of [8] we will write the zeros of rf (z) as

1

i
√
N

eiθ
∗
k,ℓ , or

1

i
√
N

eiϕ
∗
k,ℓ ,

depending on whether ε(f) = 1 or ε(f) = −1. Here, k = 2m+2, 0 ≤ ℓ ≤ 2m−1, 0 ≤ θ∗k,ℓ, ϕ
∗
k,ℓ < 2π,

and each θ∗k,ℓ (resp. ϕ∗
k,ℓ) denotes the angle closest to the sample angle θk,ℓ (resp. ϕk,ℓ) in Definition

1.3 (resp. Definition 1.4). Note that the angles θ∗k,ℓ or ϕ∗
k,ℓ are the angles of the actual zeros of

rf (z) plus π/2. For each newform f ∈ Sk(Γ0(N)) we define:

(1) if ε(f) = 1, then

Af := {θ∗k,ℓ}m−1
ℓ=0 ;

(2) if ε(f) = −1, then

Af := {ϕ∗
k,ℓ}m−1

ℓ=1 . (1.4)

Remark. (1) We only consider half of the actual zeros or actual angles because (1.2) implies that

if eiθ
∗
/i
√
N is a zero of rf (z) then so is ei(2π−θ∗)/i

√
N . This means that

θ∗k,2m−1−ℓ = 2π − θ∗k,ℓ for 0 ≤ ℓ ≤ m− 1 and ϕ∗
k,2m−ℓ = 2π − ϕ∗

k,ℓ for 1 ≤ ℓ ≤ m− 1.

(2) When ε(f) = −1, it follows from (1.1) and the functional equation that ±1/i
√
N are always

zeros of rf (z). This is the reason why, in (1.4), we have removed the angles ϕ∗
k,0 = 0 because they

are always the same as the sample angle ϕk,0 = 0.
(3) We shall show later (Lemma 3.10) that, as long as k or N is reasonably large, these actual angles
θ∗k,ℓ or ϕ∗

k,ℓ are well-defined, i.e. they are uniquely determined and are ordered by their indices ℓ.

(4) Strictly speaking, we should include f in the above definitions of various angles because both
sample and actual angles are related to the specific newform f . However, to lighten the burden of
notation we simply drop f throughout the paper.

We shall establish the interlacing properties of zeros of period polynomials in various scenarios.
First, we consider the case when either k or N is large.

Theorem 1.6. Suppose either k′ > k ≥ 78, or N ≥ 335464 and k′ > k ≥ 6. Let f, h ∈ Sk(Γ0(N)),
g ∈ Sk+2(Γ0(N)) and f ′ ∈ Sk′(Γ0(N)) be newforms. Then

(1) If ε(g) = ε(f), the set Ag interlaces with the set Af .
(2) If ε(f ′) = ε(f), the set Af ′ strongly Stieltjes interlaces with the set Af .
(3) If ε(h) ̸= ε(f), the set Ah interlaces with the set Af .
(4) If ε(f ′) = −1, ε(f) = 1, then the set Af ′ Stieltjes interlaces with Af .
(5) If ε(f ′) = 1, ε(f) = −1, then the set Af ′ strongly Stieltjes interlaces with Af .
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Remark. (1) The conditions in parts (1) and (3) are not satisfied for N = 1, as ε(f) = 1 when
k ≡ 0 (mod 4), and ε(f) = −1 when k ≡ 2 (mod 4), but could be satisfied for some other values of
N .
(2) It is not hard to see from definitions of interlacing that Theorem 1.6 part (2) implies part (1)
by taking k′ = k + 2.

Next, we consider the case when k = 4.

Theorem 1.7. Let f ∈ S4(Γ0(N)), g ∈ S6(Γ0(N)), and f ′ ∈ Sk′(Γ0(N)) be newforms with k′ ≥ 6.
When N ≥ ⌈3354644.41⌉,

(1) If ε(g) = ε(f), the set Ag interlaces with the set Af .
(2) If ε(f ′) = ε(f), the set Af ′ strongly Stieltjes interlaces with the set Af .
(3) If ε(f ′) ̸= ε(f) and k′ ≥ 10, then the set Af ′ strongly Stieltjes interlaces with Af .

Remark. (1) In Theorem 1.7 one has |Af | = 1 when ε(f) = 1, and |Af | = 0 when ε(f) = −1.
(2) We have numerically verified Theorems 1.6 and 1.7 in small cases for k′ ≤ 104 and N =
1, 2, 3, 10 using Pari/GP [9, checking pari.sage]. Thus, it is natural to conjecture that Theorems 1.6
and 1.7 hold true in general; see the following Theorem 1.8 for a complete result when N = 1.

Theorem 1.8. Suppose k′ > k ≥ 12, k, k′ ̸= 14, and N = 1. Let f ∈ Sk(Γ0(1)), f
′ ∈ Sk′(Γ0(1)) be

newforms. Then

(1) If ε(f ′) = ε(f), the set Af ′ strongly Stieltjes interlaces with the set Af .
(2) If ε(f ′) = −1, ε(f) = 1, then the set Af ′ Stieltjes interlaces with Af .
(3) If ε(f ′) = 1, ε(f) = −1, then the set Af ′ strongly Stieltjes interlaces with Af .

Lastly, we also establish some interlacing results between Af ′ and Af when k′ = k and N ′ ̸= N
(that is in the level aspect); see Propositions 9.3, 9.6 and 9.9 for the precise statements.

An argument similar to that of [5, Corollary 6.1] or [6, Proposition 7.2], by counting the number
of elements in Af , reveals the following corollary on indivisibility between period polynomials. For
brevity we only state it for N = 1.

Corollary 1.9. Suppose k′ > k ≥ 12, k, k′ ̸= 14, and N = 1. Let f ∈ Sk(Γ0(1)), f
′ ∈ Sk′(Γ0(1)) be

newforms. Then

(1) if ε(f ′) = ε(f) = 1 and 2k > k′ + 4 then rf (z) ∤ rf ′(z);
(2) if ε(f ′) = ε(f) = −1 and 2k > k′ + 6 then rf (z) ∤ rf ′(z);
(3) if ε(f ′) = −ε(f) = −1 and 2k > k′ + 8, then rf (z) ∤ rf ′(z);
(4) if ε(f ′) = −ε(f) = 1, then rf (z) ∤ rf ′(z).

Proof. Proofs of (1)-(3) are similar, so we only present the proof of (1) here. Suppose on the contrary
that rf (z) | rf ′(z). Then we have Af ⊆ Af ′ . On the other hand, by the Stieltjes interlacing between
Af ′ and Af established in Theorem 1.8, we know that Af ′ must have at least another |Af | − 1
elements strictly between elements of Af . Therefore, |Af ′ | ≥ |Af |+ |Af |−1. Since ε(f ′) = ε(f) = 1,
we obtain m′ ≥ 2m− 1, or equivalently (k′ − 2)/2 ≥ k − 3, or k′ ≥ 2k − 4, a contradiction.

(4) In this case, since i/
√
N (corresponding to the actual angle 0) is a zero of rf (z), by Lemma

3.11 (2) for k′ ≥ 78 and computer check for k′ < 78 it is never a zero of rf ′(z), so rf (z) ∤ rf ′(z). □

The main idea of proving various interlacing properties is as follows. The first step is to show
these interlacing properties for the sets of sample angles. Then, we need to show that the distances
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between sample angles and actual angles are small enough for the sets Af ′ and Af of actual angles
to retain these properties. Lastly, there are two key ingredients in establishing the strong Stieltjes
interlacing between Af ′ and Af : one is to show that the distance between any two adjacent elements
in Af ′ is always smaller than those of Af , and the other is to make sure that the two extreme elements
of Af ′ are outside the range of Af .

We now give an outline of the paper. In Section 2, we will make explicit and strengthen the
estimates in [8] on the distances between angles of the actual zeros of rf (z) in Definition 1.5 and
the sample angles in Definitions 1.3 and 1.4. In Section 3 we will establish various bounds for the
distance between sample angles and the distance between actual angles to be used throughout the
paper. We will prove parts (1) and (2) of Theorem 1.6 when either N or k is large enough in
Sections 4 and 5, respectively. Section 6 will treat the remaining parts of Theorem 1.6. Next, we
will prove Theorem 1.7 in Section 7, and will show Theorem 1.8 in Section 8. Finally, we shall
establish interlacing properties in the level aspect in Section 9.

2. Distances between actual and sample angles

Following [8], we will make explicit the constants involved in [8, Theorem 1.2], thus provide
explicit bounds for the distances between the sample angles (Definitions 1.3-1.4) and actual angles
(Definition 1.5). Let us first treat the case when m ≥ 2, or equivalently k = 2m + 2 ≥ 6. By the
functional equation, we see that [8, (1.6)]

rf

(
z

i
√
N

)
= ik−1N−(k−1)/2ε(f)zm

(
Pf (z) + ε(f)Pf

(
1

z

))
,

where

Pf (z) = (2m)!

(√
N

2π

)2m+1

L(f, 2m+ 1)Qf (z),

and [8, (6.1)]

Qf (z) = zm exp

(
2π

z
√
N

)
+ S1(z) + S2(z) + S3(z),

with

S1(z) = zm
m−1∑
j=1

1

j!

(
2π

z
√
N

)j (L(f, 2m+ 1− j)

L(f, 2m+ 1)
− 1

)
,

S2(z) = −zm
∞∑

j=m

1

j!

(
2π

z
√
N

)j

,

and

S3(z) =
1

2(m!)2

(
2π√
N

)2m+1 Λ
(
f, k2

)
L(f, 2m+ 1)

.

When ε(f) = 1, the zeros of the period polynomial rf (z) are located at 1/i
√
N times the zeros

of Re(Qf (z)); when ε(f) = −1 the zeros of rf (z) are 1/i
√
N times the zeros of Im(Qf (z)), see [8,

Section 7]. For z = eiθ on the unit circle,∣∣∣∣Qf (z)− exp

(
imθ +

2π√
N

e−iθ

)∣∣∣∣ ≤ |S1(z)|+ |S2(z)|+ |S3(z)|.
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By [8, (6.3)], (2.6), and the fact that [8, Section 6]

Λ

(
k

2

)
≤

(√
N

2π

)m+2

(m+ 1)!ζ

(
3

2

)2

,

we obtain

|S1(z)|+ |S2(z)|+ |S3(z)|

≤16

5

1

2m

(
exp

(
4π√
N

)
− 1

)
+

17

4

1

(m− 1)!

(
2π√
N

)m−1

+
m+ 1

2(m!)

(
2π√
N

)m−1
(
ζ(32)ζ(

5
2)

ζ(5)

)2

,

for all m ≥ 2 and N ≥ 1. For later application we define

Bk,N :=
16

5

1

2m

(
exp

(
4π√
N

)
− 1

)
+

(
2π√
N

)m−1
17

4

1

(m− 1)!
+

m+ 1

2(m!)

(
ζ(32)ζ(

5
2)

ζ(5)

)2
 .(2.1)

Thus, for all z = eiθ

∣∣∣∣Qf (z)− zm exp

(
2π

z
√
N

)∣∣∣∣ = |E(z)| < Bk,N ,

where E(z) = S1(z)+S2(z)+S3(z). Recall that, for each 0 ≤ ℓ ≤ m− 1, θk,ℓ < π denotes a sample

angle in (1.3) and θ∗k,ℓ denotes the angle of the closest actual zero (Definition 1.5). Note that eiθ
∗
k,ℓ

is also a zero of the real part of Qf (z) ([8, Section 7]):

Re(Qf (z)) = Re

(
exp

(
imθ +

2π√
N

(cos θ − i sin θ)

))
+Re(E(z))

= exp

(
2π√
N

cos θ

)
·
(
cos

(
mθ − 2π√

N
sin θ

))
+Re(E(z)). (2.2)

Define

δk,N :=
exp

(
2π√
N

)
· π
2 ·Bk,N

m− 2π√
N

. (2.3)

Then, under the assumptions of Theorem 1.6, that is either N ≥ 335464 and k′ > k ≥ 6, or
k′ > k ≥ 78, we have

0 < δk,N <
289.596

2m
√
N

, or 0 < δk,N <
2.434× 107

2m
√
N

,

respectively, by [9, zgap.sage, 4bigO.sage]. Also, note that under these assumptions

0 <
4π√
N

cos

(
2θk,ℓ + δk,N

2

)
sin

(
−
δk,N
2

)
+mδk,N <

π

2
. (2.4)

Now, we want to show that for each 0 ≤ ℓ ≤ 2m− 1∣∣θk,ℓ − θ∗k,ℓ
∣∣ < δk,N . (2.5)
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It suffices to show that if we plug θk,ℓ ± δk,N into (2.2) then there is a sign change. We first do this
for θk,ℓ + δk,N :

cos

(
m (θk,ℓ + δk,N )− 2π√

N
sin(θk,ℓ + δk,N )

)
=cos

((
mθk,ℓ −

2π√
N

sin θk,ℓ

)
+

2π√
N

(sin θk,ℓ − sin(θk,ℓ + δk,N )) +mδk,N

)
=cos

(
π

2
+ ℓπ +

2π√
N

(sin θk,ℓ − sin(θk,ℓ + δk,N )) +mδk,N

)
(by (1.3) )

=± sin

(
4π√
N

cos

(
2θk,ℓ + δk,N

2

)
sin

(
−
δk,N
2

)
+mδk,N

)
.

As sin(−δk,N/2) ≥ −δk,N/2, we get

4π√
N

cos

(
2θk,ℓ + δk,N

2

)
sin

(
−
δk,N
2

)
+mδk,N ≥

(
m− 2π√

N

)
δk,N .

As for 0 ≤ x ≤ π
2 , sinx ≥ 2x/π, by (2.3) and (2.4), we have

exp

(
2π√
N

cos θk,ℓ

)
sin

(
4π√
N

cos

(
2θk,ℓ + δk,N

2

)
sin

(
−
δk,N
2

)
+mδk,N

)
≥ exp

(
2π√
N

cos θk,ℓ

)
sin

((
m− 2π√

N

)
δk,N

)
≥ exp

(
2π√
N

cos θk,ℓ

)
exp

(
2π√
N

)
·Bk,N

> |E(z)| ≥ |Re(E(z))| .

In conjunction with (2.2), this means that Re(Qf (z)) for z = ei(θk,ℓ+δk,N )/i
√
N has the same

sign as cos
(
m(θk,ℓ + δk,N )− 2π√

N
sin(θk,ℓ + δk,N )

)
. Similarly, repeating the above calculations for

θk,ℓ − δk,N , we get

cos

(
m(θk,ℓ − δk,N )− 2π√

N
sin(θk,ℓ − δk,N )

)
=± sin

(
4π√
N

cos

(
2θk,ℓ − δk,N

2

)
sin

(
δk,N
2

)
−mδk,N

)
=∓ sin

(
4π√
N

cos

(
2θk,ℓ − δk,N

2

)
sin

(
−
δk,N
2

)
+mδk,N

)
,

which has the opposite sign as cos
(
m(θk,ℓ + δk,N )− 2π√

N
sin(θk,ℓ + δk,N )

)
. Thus, following the

same argument as above we find that Re(Qf (z)) for z = ei(θk,ℓ−δk,N )/i
√
N has a sign opposite

to cos
(
m(θk,ℓ + δk,N )− 2π√

N
sin(θk,ℓ + δk,N )

)
. Therefore, we have established a sign change and

thus have completed the proof of (2.5).

When ε(f) = −1, since eiϕ
∗
k,ℓ is a zero of the imaginary part of Qf (z) ([8, Section 7]), we obtain

a similar bound for 0 ≤ ℓ ≤ 2m− 1 ∣∣ϕk,ℓ − ϕ∗
k,ℓ

∣∣ < δk,N .
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Thus, we have established explicit bounds for
∣∣∣θk,ℓ − θ∗k,ℓ

∣∣∣ and ∣∣∣ϕk,ℓ − ϕ∗
k,ℓ

∣∣∣ when k ≥ 6. To get a

meaningful bound when k = 4, or equivalently when m = 1, we need to take a different approach, by
making explicit the constants in [8, Section 3]. When ε(f) = −1, we already know that the only two

zeros of rf (z) are given by ±1/i
√
N . On the other hand, when ε(f) = 1, from [8, Section 3] we know

that the two zeros of rf (z) are located at ±eiθ
∗
4,0/i

√
N , where 0 < θ∗4,0 < π and cos θ∗4,0 = −Λ(f,2)

Λ(f,3) .

Now, we need to give some explicit estimates on the values of Λ(f, 2) and Λ(f, 3).

First, we give a lower bound of Λ(f, 3). More generally, we have the following lower bound for
Λ(f, k/2 + 1).

Lemma 2.1. Suppose f ∈ Sk(Γ0(N)) is a normalized newform for k ≥ 4. Then

Λ

(
f,

k

2
+ 1

)
>

(√
N

2π

)k/2+1

Γ

(
k

2
+ 1

)
ζ(3)2

ζ
(
3
2

)2 , and L(f, k − 1) >
ζ(k − 1)2

ζ
(
k−1
2

)2 . (2.6)

Proof. Since k/2+1 > (k+1)/2 is within the region of convergence of the Euler product of L(f, s),
we can write

L(f, s) =
∏
p∤N

(
1− ap(f)p

−s + pk−1−2s
)−1∏

p|N

(
1− ap(f)p

−s
)−1

=
∏
p∤N

(
1− αp(f)p

−s
)−1 (

1− βp(f)p
−s
)−1

∏
p|N

(
1− ap(f)p

−s
)−1

,

where |αp(f)| = |βp(f)| = p(k−1)/2 by Deligne’s Theorem if p ∤ N and Li [10, Theorem 3] |ap(f)| ≤
p(k−1)/2 if p | N . Therefore,

Λ

(
f,

k

2
+ 1

)
=

(√
N

2π

)k/2+1

Γ(k/2 + 1)L

(
f,

k

2
+ 1

)

≥

(√
N

2π

)k/2+1

Γ(k/2 + 1)
∏
p∤N

(1 + p(k−1)/2p−k/2−1)−2
∏
p|N

(1 + p(k−1)/2p−k/2−1)−1

>

(√
N

2π

)k/2+1

Γ(k/2 + 1)
∏
p∤N

(1 + p−3/2)−2
∏
p|N

(1 + p−3/2)−2

=

(√
N

2π

)k/2+1

Γ(k/2 + 1)
∏
p

(1 + p−3/2)−2

=

(√
N

2π

)k/2+1

Γ(k/2 + 1)
ζ(3)2

ζ
(
3
2

)2 .
A similar argument gives

L(f, k − 1) >
ζ(k − 1)2

ζ
(
k−1
2

)2 .
This completes the proof. □
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Next, we give an upper bound of Λ(f, 2). The original bound Λ(f, 2) ≪ N5/4+ε in [8, Section
3] which utilizes the Phrágmen-Lindelöf principle is inexplicit. Following [2, Lemma 2.4] we shall
provide an explicit albeit weaker bound.

Lemma 2.2. Let f ∈ Sk(Γ0(N)) be a normalized newform, such that ε(f) = 1. Then

Λ

(
f,

k

2

)
≤ 2

(√
N

2π

)k/2

Γ

(
k

2

)

×

2
√
k ln(ek) + 9 · 2k/2Γ

(
k

2

)(√
N

π

)3/4

Γ

(
3

4

) . (2.7)

Proof. Following the proof of [12, Theorem 3.66] or [3, Theorem 5.10.2], we obtain

Λ

(
f,

k

2

)
= (ε(f) + 1)Nk/4

∫ ∞

1√
N

f(iy)yk/2−1 dy

= (ε(f) + 1)Nk/4
∞∑
n=1

an(f)

∫ ∞

1√
N

e−2πnyyk/2−1 dy

= (ε(f) + 1)Nk/4(2π)−k/2
∞∑
n=1

an(f)

nk/2

∫
2πn√

N

e−xxk/2−1 dx (x = 2πny)

≤ 2

(√
N

2π

)k/2

·
∞∑
n=1

|an(f)|
nk/2

∫ ∞

2πn√
N

e−xxk/2−1 dx

≤ 2

(√
N

2π

)k/2

·
∞∑
n=1

d(n)

n1/2

∫ ∞

2πn√
N

e−xxk/2−1 dx (|an(f)| ≤ d(n)n(k−1)/2).

Now, splitting the sum into n ≤ k and n ≥ k + 1 we get

∞∑
n=1

d(n)

n1/2

∫ ∞

2πn√
N

e−xxk/2−1 dx

=

k∑
n=1

d(n)

n1/2

∫ ∞

2πn√
N

e−xxk/2−1 dx+

∞∑
n=k+1

d(n)

n1/2

∫ ∞

2πn√
N

e−xxk/2−1 dx

≤
k∑

n=1

d(n)

n1/2

∫ ∞

0
e−xxk/2−1 dx+

∞∑
n=k+1

d(n)

n1/2

∫ ∞

2πn√
N

e−xxk/2−1 dx

≤Γ

(
k

2

) k∑
n=1

d(n)

n1/2
+

∞∑
n=k+1

d(n)

n1/2
e
− πn√

N

∫ ∞

2πn√
N

e−x/2xk/2−1 dx.

Now,

k∑
n=1

d(n)

n1/2
=
∑

mn≤k

1

(mn)1/2
≤
∑
m≤k

1

m1/2

∫ k/m

0
u−1/2 du = 2k1/2

∑
m≤k

1

m
≤ 2k1/2 ln(ek),
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and ∫ ∞

2πn√
N

e−x/2xk/2−1 dx = 2k/2
∫ ∞

πn√
N

e−ttk/2−1 dt ≤ 2k/2Γ

(
k

2

)
.

As d(n) ≤ 9n1/4 for n ≥ 1 ([1, Lemma 4.2]), we get
∞∑

n=k+1

d(n)

n1/2
e
− πn√

N

∫ ∞

2πn√
N

e−x/2xk/2−1 dx <9 · 2k/2Γ(k/2)
∞∑

n=k+1

n−1/4e−πn/
√
N

<9 · 2k/2Γ(k/2)
∫ ∞

0
x−1/4e−πx/

√
N dx

=9 · 2k/2Γ(k/2)

(√
N

π

)3/4

Γ(3/4).

The desired upper bound (2.7) is obtained by combining the above calculations. □

We summarize the above calculations and make explicit [8, Theorem 1.2] in the next result.

Proposition 2.3. Retain the notation and assumptions of Definition 1.5 and Theorem 1.6. Then
the following hold.

(1) Suppose that k = 4, or equivalently m = 1. If ε(f) = −1, then Af is empty and the zeros

of rf (z) are given by ±i/
√
N , or equivalently ϕ∗

4,0 = 0 and ϕ∗
4,1 = π. If ε(f) = 1, then the

unique element of Af satisfies ∣∣∣θ∗4,0 − π

2

∣∣∣ < C(4, N)

N1/8
,

for

C(4, N) :=

(
π · ζ

(
3
2

)
ζ(3)

)2(
4 ln(4e)

N3/8
+

36 · Γ
(
3
4

)
π3/4

)
.

(2) If k, k′ ≥ 6, then for all 0 ≤ ℓ ≤ m− 1 and 0 ≤ ℓ′ ≤ m′ − 1∣∣θ∗k,ℓ − θk,ℓ
∣∣ , ∣∣ϕ∗

k′,ℓ′ − ϕk′,ℓ′
∣∣ < C(k,N)

2m
√
N

, (2.8)

where

C(k,N) :=
2m−1π

√
N

m− 2π√
N

exp

(
2π√
N

)
Bk,N ,

and Bk,N is defined in (2.1).

We also have the following decreasing properties for the constants C(k,N) introduced in Propo-
sition 2.3. Their proofs are by a straightforward induction and are omitted.

Lemma 2.4. If N > N0 ≥ 1, then C(4, N) < C(4, N0). Thus, for k = 4 and N > N0 ≥ 1∣∣∣θ∗4,0 − π

2

∣∣∣ < C(4, N0)

N
1/8
0

.

Lemma 2.5. If either N ≥ 79 > 8π2 and k ≥ 6, or k ≥ 54 > 16π + 2, then

(1) C(k,N) > C(k + 2, N),
10



(2) C(k,N) > C(k,N + 1).

Therefore, for k ≥ 6, N ≥ 335464, and 0 ≤ ℓ ≤ m− 1∣∣θ∗k,ℓ − θk,ℓ
∣∣ , ∣∣ϕ∗

k,ℓ − ϕk,ℓ

∣∣ < C(6, 335464)

2m
√
N

<
289.596

2m
√
N

, (2.9)

and for k ≥ 78, N ≥ 1, and 0 ≤ ℓ ≤ m− 1∣∣θ∗k,ℓ − θk,ℓ
∣∣ , ∣∣ϕ∗

k,ℓ − ϕk,ℓ

∣∣ < C(78, 1)

2m
√
N

<
2.434 · 10−7

2m
√
N

.

3. Bounds for the Sample and Actual Angles

In this section, we first present a few preparatory lemmas that will be used in this section.
Then, we establish interlacing and bounds for the sample angles and actual angles that will be used
throughout the paper.

3.1. Preparatory Lemmas. The first two lemmas establish some bounds on the difference be-
tween sines and cosines.

Lemma 3.1. For any two angles θ1 and θ2, |sin θ1 − sin θ2| ≤ |θ1 − θ2| and |cos θ1 − cos θ2| ≤
|θ1 − θ2|.

Proof. It follows immediately from the identity of difference of sines or cosines and the well known
fact |sin(x)| ≤ |x|. □

Lemma 3.2. Suppose 0 ≤ θ1 < θ2 ≤ π. Then

(θ2 − θ1) cos θ2 < sin θ2 − sin θ1 < (θ2 − θ1) cos θ1.

Proof. As

sin θ2 − sin θ1 =

∫ θ2

θ1

cos θdθ,

and cos θ is a monotonically decreasing function on [0, π], we get

(θ2 − θ1) cos θ1 =

∫ θ2

θ1

cos θ1dθ >

∫ θ2

θ1

cos θdθ >

∫ θ2

θ1

cos θ2dθ = (θ2 − θ1) cos θ2,

as desired. □

The next simple observation will be used in Section 5.

Lemma 3.3. Suppose M ∈ N. Let f(m,m′) : N× N → R be a function satisfying:

(1) f(M,M + 1) > 0 for M ≥ 1,
(2) f(m+ 1,m+ 2) > f(m,m+ 1) for all m ≥ M ,
(3) f(m,m′ + 1) > f(m,m′), m′ ≥ m+ 1 for all m′ ≥ m+ 1 ≥ M + 1.

Then, f(m,m′) > 0 for all m′ ≥ m+ 1 ≥ M + 1.

Proof. Suppose the above conditions hold. Then by induction, for all m ≥ M , f(m,m + 1) > 0
by conditions (1) and (2). On the other hand, again by induction and conditions (2) and (3), for
a fixed m, we have that for all n ∈ N, f(m,m + n) > 0, that is for all m ≥ M , m′ ≥ m + 1,
f(m,m′) > 0. □
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3.2. Interlacing and Bounds for the Sample Angles. The next few lemmas will collect some
facts about sample angles. Observe that the sample angles split into m angles in the interval [0, π)
and m angles in [π, 2π) in either case of ε(f).

Lemma 3.4. We have θk,m, ϕk,m ≥ π and θk,m−1, ϕk,m−1 < π. Additionally, θk,0 > 0 and ϕk,0 = 0.

Lemma 3.5. Suppose m > 2π/
√
N .

(1) For 0 ≤ ℓ ≤ m− 2,
θk,ℓ < θk,ℓ+1 and ϕk,ℓ < ϕk,ℓ+1.

(2) Furthermore, for 0 ≤ ℓ ≤ m−2, we may bound the difference of consecutive sample angles by
π

m− 2π√
N
cos θk,ℓ+1

< θk,ℓ+1 − θk,ℓ <
π

m− 2π√
N
cos θk,ℓ

, (3.1)

π

m− 2π√
N
cosϕk,ℓ+1

< ϕk,ℓ+1 − ϕk,ℓ <
π

m− 2π√
N
cosϕk,ℓ

.

Proof. (1) First suppose ε(f) = 1 and suppose θk,ℓ ≥ θk,ℓ+1 instead. Taking the difference of (1.3)
for ℓ and ℓ+ 1 gives

m(θk,ℓ − θk,ℓ+1) = −π +
2π√
N

(sin θk,ℓ − sin θk,ℓ+1) . (3.2)

Using Lemma 3.1,

m(θk,ℓ − θk,ℓ+1) ≤ −π +
2π√
N

(θk,ℓ − θk,ℓ+1)

which contradicts the assumption that m > 2π/
√
N . The argument for the case when ε(f) = −1 is

identical.

(2) When ε(f) = 1, by Lemma 3.4 and (1), we have 0 ≤ θk,ℓ < θk,ℓ+1 ≤ θk,m−1 < π. We may
immediately apply Lemma 3.2 to (3.2) to see that

π +
2π√
N

(θk,ℓ+1 − θk,ℓ) cos θk,ℓ+1 < m(θk,ℓ+1 − θk,ℓ) < π +
2π√
N

(θk,ℓ+1 − θk,ℓ) cos θk,ℓ

which implies the desired statement. The argument for the ε(f) = −1 case is the same. □

Lemma 3.5 leads to the following simpler bounds.

Lemma 3.6. Suppose m > 2π/
√
N . Then for all 0 ≤ ℓ ≤ m− 2,
π

m+ 2π√
N

< θk,ℓ+1 − θk,ℓ <
π

m− 2π√
N

and
π

m+ 2π√
N

< ϕk,ℓ+1 − ϕk,ℓ <
π

m− 2π√
N

.

Lemma 3.7. Let k′ = 2m′ + 2 > k = 2m+ 2, and suppose m > 2π/
√
N . Then

(1) θk′,0 < θk,0, and furthermore, θk,0 − θk′,0 ≥ (m′−m)π

2(m+2π/
√
N)(m′+2π/

√
N)

;

(2) ϕk′,1 < ϕk,1, and furthermore, ϕk,1 − ϕk′,1 ≥ (m′−m)π

2(m+2π/
√
N)(m′+2π/

√
N)

;

(3) θk,m−1 < θk′,m′−1, and furthermore, θk′,m′−1 − θk,m−1 ≥ (m′−m)π

2(m+2π/
√
N)(m′+2π/

√
N)

;
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(4) ϕk,m−1 < ϕk′,m′−1, and furthermore, ϕk′,m′−1 − ϕk,m−1 ≥ (m′−m)π

(m+2π/
√
N)(m′+2π/

√
N)

.

Proof. By Definition 1.3,

mθk,0 =
π

2
+

2π√
N

sin θk,0, and m′θk′,0 =
π

2
+

2π√
N

sin θk′,0, (3.3)

from which we obtain

m(θk′,0 − θk,0) + (m′ −m)θk′,0 =
2π√
N

(sin θk′,0 − sin θk,0). (3.4)

For the sake of contradiction, suppose θk′,0 ≥ θk,0. Then, Lemma 3.1 and Lemma 3.4 gives

m(θk′,0 − θk,0) < m(θk′,0 − θk,0) + (m′ −m)θk′,0 ≤
2π√
N

(θk′,0 − θk,0).

Now, the assumption θk′,0 ≥ θk,0 leads to a contradiction when m > 2π/
√
N .

Then since θk,0 > θk′,0, by (3.4) and Lemma 3.1,

m(θk,0 − θk′,0)− (m′ −m)θk′,0 ≥ − 2π√
N

(θk,0 − θk′,0),

which shows

θk,0 − θk′,0 ≥
(m′ −m)θk′,0

m+ 2π√
N

.

Applying (3.3) yields

θk′,0 ≥
π

2m′ >
π

2
(
m′ + 2π√

N

) . (3.5)

Combining these two equations yields

θk,0 − θk′,0 ≥
(m′ −m)π

2
(
m+ 2π√

N

)(
m′ + 2π√

N

) .
For part (3), recall the following equations:

mθk,m−1 =
π

2
+ (m− 1)π +

2π√
N

sin θk,m−1, and m′θk′,m′−1 =
π

2
+ (m′ − 1)π +

2π√
N

sin θk′,m′−1.

Taking their difference yields

m(θk,m−1 − θk′,m′−1)− (m′ −m)θk′,m′−1 = −(m′ −m)π +
2π√
N

(sin θk,m−1 − sin θk′,m′−1). (3.6)

Suppose on the contrary that θk,m−1 ≥ θk′,m′−1. Then by Lemma 3.1,

m(θk,m−1 − θk′,m′−1)− (m′ −m)θk′,m′−1 ≤ −(m′ −m)π +
2π√
N

(θk,m−1 − θk′,m′−1),

or (
m′ −m

) (
π − θk′,m′−1

)
≤
(

2π√
N

−m

)(
θk,m−1 − θk′,m′−1

)
.

By Lemma 3.4, θk′,m′−1 < π, thus we get a contradiction since m > 2π/
√
N .
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As we have shown θk′,m′−1 > θk,m−1, by (3.6) and Lemma 3.1,

m(θk′,m′−1 − θk,m−1) + (m′ −m)θk′,m′−1 ≥ (m′ −m)π − 2π√
N

(
θk′,m′−1 − θk,m−1

)
,

which implies

θk′,m′−1 − θk,m−1 ≥
(m′ −m)(π − θk′,m′−1)

m+ 2π√
N

. (3.7)

On the other hand by (1.3),

π − θk′,m′−1 = π − 1

m′

(
π

2
+ (m′ − 1)π +

2π√
N

sin θk′,m′−1

)
=

πm′ − π
2 + π −m′π

m′ − 2π

m′
√
N

sin θk′,m′−1

=
π

2m′ −
2π

m′
√
N

sin θk′,m′−1

≥ π

2m′ −
2π

m′
√
N

(π − θk′,m′−1),

where the last inequality comes from the fact that sin(x) ≤ π − x on [0, π). Thus

π − θk′,m′−1 ≥
π

2m′
(
1 + 2π

m′
√
N

) =
π

2
(
m′ + 2π√

N

) . (3.8)

Finally, combining (3.7) and (3.8) gives

θk′,m′−1 − θk,m−1 ≥
(m′ −m)π

2
(
m+ 2π√

N

)(
m′ + 2π√

N

) ,
as desired. The case for ϕ is proved similarly. □

In this next lemma, we instead compare θ and ϕ.

Lemma 3.8. Suppose m > 2π/
√
N . Then

(1) ϕk′,1 < θk,1 and θk,m−2 < ϕk′,m′−1,
(2) θk′,0 < ϕk,1 and ϕk,m−1 < θk′,m′−1.

Proof. (1) Taking the difference of Definitions 1.3 and 1.4, we have

m(θk,1 − ϕk′,1) = (m′ −m)ϕk′,1 +
π

2
+

2π√
N

(sin θk,1 − sinϕk′,1). (3.9)

We must have ϕk′,1 < θk,1, otherwise by Lemma 3.1, we have the inequality

m(ϕk′,1 − θk,1) ≤ −(m′ −m)ϕk′,1 −
π

2
+

2π√
N

(ϕk′,1 − θk,1),

which cannot hold for m > 2π/
√
N . On the other hand, we similarly have

m
(
ϕk′,m′−1 − θk,m−2

)
=
(
m′ −m

) (
π − ϕk,m′−1

)
+

π

2
+

2π√
N

(
sinϕk′,m′−1 − sin θk,m−2

)
.(3.10)
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We must have θk,m−2 < ϕk′,m′−1, otherwise by Lemma 3.1 and (3.10), we get

m
(
θk,m−2 − ϕk′,m′−1

)
≤ −

(
m′ −m

) (
π − ϕk,m′−1

)
− π

2
+

2π√
N

(
θk,m−2 − ϕk′,m′−1

)
,

which cannot hold for m > 2π/
√
N , by Lemma 3.4.

(2) The proof is similar to (1). □

This next lemma will be useful in Section 6.

Lemma 3.9. If m > 2π/
√
N , then

(1) ϕk,ℓ < θk,ℓ for all 1 ≤ ℓ ≤ m− 1 and θk,ℓ − ϕk,ℓ >
π

2(m+2π/
√
N)

,

(2) θk,ℓ < ϕk,ℓ+1 for all 0 ≤ ℓ ≤ m− 2 and ϕk,ℓ+1 − θk,ℓ >
π

2(m+2π/
√
N)

.

Proof. Recall Definitions 1.3 and 1.4:

mϕk,ℓ = ℓπ +
2π√
N

sinϕk,ℓ, (3.11)

mθk,ℓ =
π

2
+ ℓπ +

2π√
N

sin θk,ℓ, (3.12)

mϕk,ℓ+1 = (ℓ+ 1)π +
2π√
N

sinϕk,ℓ+1. (3.13)

(1) Assume for the sake of contradiction that ϕk,ℓ ≥ θk,ℓ. Taking the difference of (3.11) and (3.12)
yields

m(ϕk,ℓ − θk,ℓ) = −π

2
+

2π√
N

(sinϕk,ℓ − sin θk,ℓ). (3.14)

By Lemma 3.1,

m(ϕk,ℓ − θk,ℓ) +
π

2
≤ 2π√

N
(ϕk,ℓ − θk,ℓ),

which is a contradiction for m > 2π/
√
N .

Now that ϕk,ℓ < θk,ℓ, (3.14) and Lemma 3.1 gives us

θk,ℓ − ϕk,ℓ ≥
π

2
(
m+ 2π√

N

) .
(2) Assume for the sake of contradiction θk,ℓ ≥ ϕk,ℓ+1 and take the difference of (3.12) and (3.13)
to obtain

m(θk,ℓ − ϕk,ℓ+1) =
π

2
− π +

2π√
N

(sin θk,ℓ − sinϕk,ℓ+1).

By Lemma 3.1,

m(θk,ℓ − ϕk,ℓ+1) +
π

2
≤ 2π√

N
(θk,ℓ − ϕk,ℓ+1), (3.15)

a contradiction for m > 2π/
√
N .
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We have shown θk,ℓ < ϕk,ℓ+1. Thus by (3.15) and 3.1,

ϕk,ℓ+1 − θk,ℓ ≥
π

2
(
m+ 2π√

N

) ,
as desired. □

3.3. Interlacing and Bounds for the Actual Angles. The remaining lemmas in this section
establish similar properties for the actual angles θ∗k,ℓ and ϕ∗

k,ℓ when either k or N is large enough.

First, we provide conditions to show that each θ∗k,ℓ is ordered and unique, that is, each actual

angle θ∗k,ℓ is close to only one sample angle, namely θk,ℓ. Recall that for k ≥ 6, C(k,N) is defined
as in Proposition 2.3.

Lemma 3.10. Suppose π
m+2π/

√
N

> 2C(k,N)

2m
√
N

, k′ > k ≥ 6, and m > 2π/
√
N . Then the following

hold:

(1) for all 0 ≤ ℓ ≤ m− 2, θ∗k,ℓ < θ∗k,ℓ+1;

(2) for all 1 ≤ ℓ ≤ m− 2, ϕ∗
k,ℓ < ϕ∗

k,ℓ+1;

(3) for all 0 ≤ ℓ′ ≤ m′ − 2, θ∗k′,ℓ′ < θ∗k′,ℓ′+1;

(4) for all 1 ≤ ℓ′ ≤ m′ − 2, ϕ∗
k′,ℓ′ < ϕ∗

k′,ℓ′+1.

Proof. We will only show (1) and (3), as the proofs for (2) and (4) are similar.

(1) By Lemma 3.6 and (2.8),

θ∗k,ℓ+1 − θ∗k,ℓ = (θ∗k,ℓ+1 − θk,ℓ+1) + (θk,ℓ+1 − θk,ℓ) + (θk,ℓ − θ∗k,ℓ)

≥ (θk,ℓ+1 − θk,ℓ)−
∣∣θk,ℓ − θ∗k,ℓ

∣∣− ∣∣θ∗k,ℓ+1 − θk,ℓ+1

∣∣
>

π

m+ 2π√
N

− 2C(k,N)

2m
√
N

.

(3) Although this statement looks identical to (1), notice that we only impose a condition on k,
not k′. It is easy to show with induction on m that

π

m′ + 2π√
N

>
2C(k,N)

2m′√N
.

□

The next few results provide conditions for the ordering between the first (resp. last) elements
of Af ′ and Af when ε(f ′) = ε(f).

Lemma 3.11. Let f ′ ∈ Sk′(Γ0(N)), f ∈ Sk(Γ0(N)) be newforms, and k′ > k ≥ 6. Suppose

ε(f ′) = ε(f) and m > 2π/
√
N . Then

(1) if (m′−m)π

(m+2π/
√
N)(m′+2π/

√
N)

> 2C(k,N)

2m
√
N

+ 2C(k′,N)

2m
′√

N
, then θ∗k′,0 < θ∗k,0 and θ∗k,m−1 < θ∗k′,m′−1.

(2) if π
m+2π/

√
N

> 2C(k,N)

2m
√
N

, then θ∗k,0 > 0 and θ∗k,m−1 < π.

(3) if (m′−m)π

(m+2π/
√
N)(m′+2π/

√
N)

> 2C(k,N)

2m
√
N

+ 2C(k′,N)

2m′√N
, then ϕ∗

k′,1 < ϕ∗
k,1 and ϕ∗

k,m−1 < ϕ∗
k′,m′−1.

(4) if π
m+2π/

√
N

> 2C(k,N)

2m
√
N

, then ϕ∗
k,1 > 0 and ϕ∗

k,m−1 < π.
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Proof. (1) By Lemma 3.7 and (2.8),

θ∗k,0 − θ∗k′,0 = (θ∗k,0 − θk,0) + (θk,0 − θk′,0) + (θk′,0 − θ∗k′,0)

≥ θk,0 − θk′,0 −
∣∣θ∗k,0 − θk,0

∣∣− ∣∣θ∗k′,0 − θk′,0
∣∣

>
(m′ −m)π

2
(
m+ 2π√

N

)(
m′ + 2π√

N

) − C(k,N)

2m
√
N

− C(k′, N)

2m′√N

> 0.

A similar argument shows

θ∗k′,m′−1 − θ∗k,m−1 >
(m′ −m)π(

m+ 2π√
N

)(
m′ + 2π√

N

) − 2C(k,N)

2m
√
N

− 2C(k′, N)

2m′√N
> 0.

(2) By (3.5) and (2.8),

θ∗k,0 > θk,0 −
∣∣θ∗k,0 − θk,0

∣∣ > π

2
(
m+ 2π√

N

) − C(k,N)

2m
√
N

> 0.

We can similarly show

π − θ∗k,m−1 >
π

2
(
m+ 2π√

N

) − C(k,N)

2m
√
N

> 0.

Parts (3) and (4) follow similarly to (1) and (2). □

The next lemma resembles the previous lemma except we are instead comparing θ∗ and ϕ∗.

Lemma 3.12. Suppose m > 2π/
√
N .

(1) If (m′−m)π

(m+2π/
√
N)(m′+2π/

√
N)

> 2C(k,N)

2m
√
N

+ 2C(k′,N)

2m′√N
, then ϕ∗

k′,1 < θ∗k,1 and θ∗k,m−2 < ϕ∗
k′,m′−1.

(2) If (m′−m)π

(m+2π/
√
N)(m′+2π/

√
N)

> 2C(k,N)

2m
√
N

+ 2C(k′,N)

2m′√N
, then θ∗k′,0 < ϕ∗

k,1 and ϕ∗
k,m−1 < θ∗k′,m′−1.

Proof. (1) Since sinϕk′,1 ≥ 0, we have ϕk′,1 ≥ π/m′ > π/(m′+2π/
√
N), and thus by (3.9), Lemmas

3.1 and 3.8 part (1),

θk,1 − ϕk′,1 >
(m′ −m)ϕk′,1 +

π
2

m+ 2π√
N

>
(m′ −m)π

2
(
m+ 2π√

N

) (m′ +
2π√
N

)
.

Thus, in the same way as Lemma 3.11, we may bound the difference of the actual angles:

θ∗k,1 − ϕ∗
k′,1 >

(m′ −m)π(
m+ 2π√

N

)(
m′ + 2π√

N

) − 2C(k,N)

2m
√
N

− 2C(k′, N)

2m′√N
.

As in Lemma 3.10, it is easy to see π − ϕk′,m′−1 ≥ π
m′+2π/

√
N
. Thus,

(
m′ −m

) (
π − ϕk′,m′−1

)
≥ (m′ −m)π

m′ + 2π√
N

>
(m′ −m)π

2
(
m′ + 2π√

N

) .
17



Now, by (3.10) and Lemmas 3.1 and 3.8 part (1),

ϕk′,m′−1 − θk,m−2 ≥
(m′ −m)

(
π − ϕk′,m′−1

)
+ π

2

m+ 2π√
N

.

Therefore,

ϕk′,m′−1 − θk,m−2 >
(m′ −m) (π − ϕk′,m′−1) +

π
2(

m+ 2π√
N

) >
(m′ −m)π

2
(
m+ 2π√

N

)(
m′ + 2π√

N

) ,
so that akin to the proof of Lemma 3.11, we may write

ϕ∗
k′,m′−1 − θ∗k,m−2 >

(m′ −m)π(
m+ 2π√

N

)(
m′ + 2π√

N

) − 2C(k,N)

2m
√
N

− 2C(k′, N)

2m′√N
.

(2) The proof is similar to (1), using Lemma 3.8 part (2). □

This next lemma will be useful in Section 6.

Lemma 3.13. If π
2(m+2π/

√
N)

> 2C(k,N)

2m
√
N

, then

(1) ϕ∗
k,ℓ < θ∗k,ℓ for all 1 ≤ ℓ ≤ m− 1,

(2) θ∗k,ℓ < ϕ∗
k,ℓ+1 for all 0 ≤ ℓ ≤ m− 2.

Proof. The argument is identical to Lemma 3.11, using Lemma 3.9 and (2.8). □

4. The case k′ > k ≥ 6, N ≥ 335464, and ε(f ′) = ε(f)

In this section, we will consider parts (1) and (2) of Theorem 1.6 when N ≥ 335464. The
first subsection will treat the case when ε(f ′) = ε(f) = 1 and the second will give the result for
ε(f ′) = ε(f) = −1.

For N ≥ 335464, by (2.9), we have a tighter bound for the distance between actual angles and
sample angles. That is, for all k ≥ 6 and all levels N ≥ 335464, we have the bound∣∣θ∗k,ℓ − θk,ℓ

∣∣ < C(6, 335464)

2m
√
N

,

where C(6, 335464) < 289.596 by Lemma 2.5 and [9, zgap.sage]. In addition,
√
N ≥ 2C(6, 335464). (4.1)

Lemma 4.1. If

π
(
m′ −m− 4π√

N

)
(
m+ 2π√

N

)(
m′ − 2π√

N

) >
2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
,

then for all 0 ≤ ℓ ≤ m− 2 and 0 ≤ ℓ′ ≤ m′ − 2,∣∣θ∗k′,ℓ′+1 − θ∗k′,ℓ′
∣∣ < ∣∣θ∗k,ℓ+1 − θ∗k,ℓ

∣∣ ,
and for all 1 ≤ ℓ ≤ m− 2 and 1 ≤ ℓ′ ≤ m′ − 2,∣∣ϕ∗

k′,ℓ′+1 − ϕ∗
k′,ℓ′
∣∣ < ∣∣ϕ∗

k,ℓ+1 − ϕ∗
k,ℓ

∣∣ .
18



Proof. By our assumption on N , we have m > 2π/
√
N . Recall from Lemmas 3.5 and 3.6,

π

m+ 2π√
N

< |θk,ℓ+1 − θk,ℓ| <
π

m− 2π√
N

. (4.2)

In addition, as we let

π
(
m′ −m− 4π√

N

)
(
m+ 2π√

N

)(
m′ − 2π√

N

) >
2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
,

we have the equivalent expression

π

m+ 2π√
N

− 2C(k,N)

2m
√
N

>
π

m′ − 2π√
N

+
2C(k′, N)

2m′√N
. (4.3)

On the other hand, by (2.8) we get:∣∣θ∗k′,ℓ′+1 − θ∗k′,ℓ′
∣∣ < ∣∣θk′,ℓ′+1 − θk′,ℓ′

∣∣+ 2C(k′, N)

2m′√N
(4.4)

and ∣∣θ∗k,ℓ+1 − θ∗k,ℓ
∣∣ > |θk,ℓ+1 − θk,ℓ| −

2C(k,N)

2m
√
N

. (4.5)

Thus, by (4.2), (4.3), (4.4), and (4.5),∣∣θ∗k′,ℓ′+1 − θ∗k′,ℓ′
∣∣ < ∣∣θ∗k,ℓ+1 − θ∗k,ℓ

∣∣ .
The same argument proves

∣∣∣ϕ∗
k′,ℓ′+1 − ϕ∗

k′,ℓ′

∣∣∣ < ∣∣∣ϕ∗
k,ℓ+1 − ϕ∗

k,ℓ

∣∣∣. □

We need a few more lemmas before we can show parts (1) and (2) of Theorem 1.6 for N ≥ 335464
and k ≥ 6.

Lemma 4.2. For all m′ > m ≥ 2 and N ≥ 335464,

π(m′ −m)(
m+ 2π√

N

)(
m′ + 2π√

N

) >
π
(
m′ −m− 4π√

N

)
(
m+ 2π√

N

)(
m′ − 2π√

N

) .
Proof. This can be shown easily. □

Lemma 4.3. When N ≥ 335464, for all m′ > m ≥ 2,

π
(
m′ −m− 4π√

N

)
(
m+ 2π√

N

)(
m′ − 2π√

N

) >
3π

5m2
.

Proof. By our assumption on N , m′ − 2π/
√
N > 0. Thus, it suffices to show

5m2

(
m′ −m− 4π√

N

)
− 3m′

(
m+

2π√
N

)
> 0.

Let

f
(
m,m′) := 5m2

(
m′ −m− 4π√

N

)
− 3m′

(
m+

2π√
N

)
.
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It is straightforward to apply Lemma 3.3 by taking M = 2 to show f is positive. □

4.1. The case ε(f ′) = ε(f) = 1. The next lemma establishes sufficient conditions for strong
Stieltjes interlacing (1.2) to hold (and therefore regular interlacing) for Af ′ and Af . Recall
k′ = 2m′ + 2 and k = 2m+ 2 in the following.

Lemma 4.4. Suppose k′ > k ≥ 6 and N ≥ 335464. Then, the following statements hold for
0 ≤ ℓ ≤ m− 2 and 0 ≤ ℓ′ ≤ m′ − 2:

(1) θ∗k,ℓ < θ∗k,ℓ+1 and θ∗k′,ℓ′ < θ∗k′,ℓ′+1,

(2) θ∗k′,ℓ′+1 − θ∗k′,ℓ′ < θ∗k,ℓ+1 − θ∗k,ℓ,

(3) 0 < θ∗k′,0 < θ∗k,0 and θ∗k,m−1 < θ∗k′,m′−1 < π.

Proof. (1) Since 2π√
N

< 1, it is clear that for m ≥ 2,

π

m+ 2π√
N

>
π

m+ 1
>

1

2m
.

By (4.1) and Lemma 2.5, we have
√
N ≥ 2C(6, 335464) ≥ 2C(k,N), so

π

m+ 2π√
N

>
1

2m
>

2C(k,N)

2m
√
N

.

Thus, the desired statement follows from Lemma 3.10.

(2) Firstly, by Lemma 2.5 and (4.1), we have the estimate

2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
≤ 2C(6, 335464)

2m
√
N

+
2C(6, 335464)

2m′√N
≤ 1

2m
+

1

2m+1
=

3

2m+1
.

On the other hand, by Lemma 4.3 and a simple estimate, for m ≥ 2 we have

π
(
m′ −m− 4π√

N

)
(
m+ 2π√

N

)(
m′ − 2π√

N

) >
3π

5m2
>

3

2m+1
,

so that

π
(
m′ −m− 4π√

N

)
(
m+ 2π√

N

)(
m′ − 2π√

N

) >
2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
.

Thus by Lemma 4.1 and part (1), θ∗k′,ℓ′+1 − θ∗k′,ℓ′ < θ∗k,ℓ+1 − θ∗k,ℓ.

(3) By Lemma 4.2 and part (2),

π(m′ −m)(
m+ 2π√

N

)(
m′ + 2π√

N

) >
π
(
m′ −m− 4π√

N

)
(
m+ 2π√

N

)(
m′ − 2π√

N

) >
2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
. (4.6)

We have already shown
π

m+ 2π√
N

>
2C(k,N)

2m
√
N

,

so by Lemma 3.11, 0 < θ∗k′,0 < θ∗k,0 and θ∗k,m−1 < θ∗k′,m′−1 < π. □
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The next proposition proves Theorem 1.6 part (1) and (2) when ε(f ′) = ε(f) = 1 for N ≥ 335464
and k ≥ 6.

Proposition 4.5. Let k′ > k ≥ 6, and f ′ ∈ Sk′(Γ0(N)), f ∈ Sk(Γ0(N)) be newforms with ε(f ′) =
ε(f) = 1. Then, Af ′ strongly Stieltjes interlaces with Af .

Proof. Lemma 4.4 part (1) implies that the elements of Af ′ and Af have the same order as their
ℓ indices. Suppose that for some ℓ, no element from Af ′ lies in the interval (θ∗k,ℓ, θ

∗
k,ℓ+1). Thus by

Lemma 4.4 part (3), we have that θ∗k′,0 < θ∗k,ℓ < θ∗k′,m′−1 for all 0 ≤ ℓ ≤ m − 1. Then there exists

some 0 ≤ ℓ′ ≤ m′ − 2 such that θ∗k′,ℓ′ < θ∗k,ℓ < θ∗k,ℓ+1 < θ∗k′,ℓ′+1. This implies that θ∗k′,ℓ′+1 − θ∗k′,ℓ′ >

θ∗k,ℓ+1 − θ∗k,ℓ, violating Lemma 4.4 part (2). Thus, we have strong Stieltjes interlacing between Af ′

and Af . In particular, this implies that for k′ = k + 2, Af ′ interlaces with Af . □

4.2. The case ε(f ′) = ε(f) = −1. Here, Lemma 4.6 and Proposition 4.7 are proved identically to
Lemma 4.4 and Proposition 4.5, respectively.

Lemma 4.6. Suppose k′ > k ≥ 6 and N ≥ 335464. The following statements hold for 1 ≤ ℓ ≤ m−2
and 1 ≤ ℓ′ ≤ m′ − 2:

(1) ϕ∗
k,ℓ < ϕ∗

k,ℓ+1 and ϕ∗
k′,ℓ′ < ϕ∗

k′,ℓ′+1,

(2) ϕ∗
k′,ℓ′+1 − ϕ∗

k′,ℓ′ < ϕ∗
k,ℓ+1 − ϕ∗

k,ℓ,

(3) 0 < ϕ∗
k′,1 < ϕ∗

k,1 and ϕ∗
k,m−1 < ϕ∗

k′,m′−1 < π.

Proposition 4.7. Suppose ε(f ′) = ε(f) = −1, N ≥ 335464, and k′ > k ≥ 6. Then Af ′ strongly
Stieltjes interlaces with Af .

Therefore, we have completed the proof of Theorem 1.6 parts (1) and (2) for N ≥ 335464.

5. The case k′ > k ≥ 78 and ε(f ′) = ε(f)

In this section, we will prove Theorem 1.6 parts (1) and (2) under the assumptions that k′ > k ≥
78 and ε(f ′) = ε(f). By Lemma 2.5 and [9, zgap.sage], for all levels N and k′ > k ≥ 78, we have
the bound ∣∣θ∗k,ℓ − θk,ℓ

∣∣ < C(78, 1)

2m
√
N

<
2.434 · 107

2m
√
N

.

Recall that k′ = 2m′+2 and k = 2m+2. The following lemma will be shown later to be a sufficient
condition for strong Stieltjes interlacing.

Lemma 5.1. For all k′ > k ≥ 78 and N ≥ 1,

2π2(
m+ 2π√

N

)(
m′ + 2π√

N

) (m′ −m
2π√
N

− π

m′ − 2π√
N

)
− 3C (78, 1) ·

(
2m + 2m

′

2m+m′

)
> 0. (5.1)

Proof. When N increases, the left hand side of (5.1) increases, so we only need to prove this for
N = 1. Define f(m,m′) to be the left hand side of (5.1) with N = 1. Then for M = 38, it
is straightforward to apply Lemma 3.3 to see that f is always positive for m′ > m ≥ 38, or
equivalently k′ > k ≥ 78. □
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5.1. The case ε(f ′) = ε(f) = 1. Our next lemma compares the first angles of Af ′ and Af .

Lemma 5.2. For all k′ > k ≥ 78 and N ≥ 1, we have

(1) θk,0 − θk′,0 >
C(78,1)

2m
√
N

+ C(78,1)

2m′√N
,

(2) θ∗k′,0 < θ∗k,0,

(3) θ∗k,m−1 < θ∗k′,m′−1.

Proof. (1) By (5.1),

2π2(
m+ 2π√

N

)(
m′ + 2π√

N

) (m′ −m
2π√
N

− π

m′ − 2π√
N

)
>

3C (78, 1)

2m
+

3C (78, 1)

2m′ .

Since π/(m′ − 2π/
√
N) > 0, we get

2π2(
m+ 2π√

N

)(
m′ + 2π√

N

) (m′ −m
2π√
N

)
>

3C(78, 1)

2m
+

3C(78, 1)

2m′ ,

which implies

π(m′ −m)

3
(
m+ 2π√

N

)(
m′ + 2π√

N

) >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
. (5.2)

By Lemma 3.7 part (1), we have

θk,0 − θk′,0 ≥
(m′ −m)π

2
(
m+ 2π√

N

)(
m′ + 2π√

N

) >
π(m′ −m)

3
(
m+ 2π√

N

)(
m′ + 2π√

N

) >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.

(2) By Lemma 2.5, C(78, 1) ≥ C(k,N) > C(k′, N),

(m′ −m)π

2
(
m+ 2π√

N

)(
m′ + 2π√

N

) >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
>

C(k,N)

2m
√
N

+
C(k′, N)

2m′√N
.

Thus by Lemma 3.11 part (1),

θ∗k,0 − θ∗k′,0 > 0,

as desired.

(3) This follows similarly to (2) from Lemma 3.7 part (3) and Lemma 3.11 part (3). □

The following lemma resembles Lemma 4.4 part (1).

Lemma 5.3. Suppose k′ > k ≥ 78 and N ≥ 1. Then for all 0 ≤ ℓ ≤ m − 2 and 0 ≤ ℓ′ ≤ m′ − 2,
θ∗k,ℓ+1 − θ∗k,ℓ > 0, and θ∗k′,ℓ′+1 − θ∗k′,ℓ′ > 0.

Proof. Since (m′ + 2π/
√
N)/(m′ −m) > 1 and by (5.2),

π

m+ 2π√
N

>
3C(78, 1)

2m
√
N

+
3C(78, 1)

2m′√N
>

2C(78, 1)

2m
√
N

. (5.3)

Therefore, by Lemma 3.10 parts (1) and (3), we have

θ∗k,ℓ+1 − θ∗k,ℓ > 0 and θ∗k′,ℓ′+1 − θ∗k′,ℓ′ > 0,
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as desired. □

For each 0 ≤ ℓ ≤ m−2, we would like to find some θk′,ℓ̂ that is close to θk,ℓ+1 where 0 ≤ ℓ̂ ≤ m′−2.

We need the following definition:

Definition 5.4. For each 0 ≤ ℓ ≤ m− 2, we define the set

Uℓ :=

{
0 ≤ ℓ′ ≤ m′ − 2 : θk′,ℓ′ < θk,ℓ+1 −

C(78, 1)

2m
√
N

− C(78, 1)

2m′√N

}
.

We define ℓ̂ to be the largest element of Uℓ.

Remark. By Lemma 5.2 and Lemma 3.5 part (1),

θk′,0 < θk,0 −
C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
< θk,ℓ+1 −

C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
,

so 0 ∈ Uℓ and ℓ̂ exists.

For each 0 ≤ ℓ ≤ m− 2, we would like a bound on the distance between θk,ℓ+1 and θk′,ℓ̂.

Lemma 5.5. Suppose k′ > k ≥ 78 and N ≥ 1. For all 0 ≤ ℓ ≤ m− 2,

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
+

π

m′ − 2π√
N

> θk,ℓ+1 − θk′,ℓ̂ >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.

Proof. By the definition of ℓ̂,

θk,ℓ+1 − θk′,ℓ̂ >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.

Suppose for the sake of contradiction that

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
+

π

m′ − 2π√
N

≤ θk,ℓ+1 − θk′,ℓ̂.

By Lemma 3.7 part (3), θk,m−1 < θk′,m′−1. Then by Lemma 3.5 and our assumption, θk′,m′−1 >

θk,m−1 ≥ θk,ℓ+1 > θk′,ℓ̂, and ℓ̂ ≤ m′ − 2. By Lemma 3.6,

θk′,ℓ̂+1 − θk′,ℓ̂ <
π

m′ − 2π√
N

≤ θk,ℓ+1 − θk′,ℓ̂ −
C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
,

and thus

θk′,ℓ̂+1 < θk,ℓ+1 −
C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
.

Therefore ℓ̂+ 1 ∈ Uℓ, a contradiction, and

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
+

π

m′ − 2π√
N

> θk,ℓ+1 − θk′,ℓ̂,

as desired. □

Lemma 5.6. Suppose k′ > k ≥ 78 and N ≥ 1. Then for all 0 ≤ ℓ ≤ m− 2, θ∗k,ℓ+1 > θ∗
k′,ℓ̂

.
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Proof. By Lemma 5.5 and (2.8), we get

θ∗k,ℓ+1 − θ∗
k′,ℓ̂

≥ (θk,ℓ+1 − θk′,ℓ̂)−
∣∣∣θk′,ℓ̂ − θ∗

k′,ℓ̂

∣∣∣− ∣∣θ∗k,ℓ+1 − θk,ℓ+1

∣∣
>

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
− C(78, 1)

2m′√N
− C(78, 1)

2m
√
N

= 0,

completing the proof. □

Lemma 5.7. Suppose k′ > k ≥ 78 and N ≥ 1. Then for all 0 ≤ ℓ ≤ m− 2,

θ∗k,ℓ+1 − θ∗k,ℓ > θ∗
k′,ℓ̂+1

− θ∗
k′,ℓ̂

.

Proof. By (5.1),

2π2(
m+ 2π√

N

)(
m′ + 2π√

N

) (m′ −m
2π√
N

− π

m′ − 2π√
N

)
− C(78, 1)

2m
− C(78, 1)

2m′ >
2C(78, 1)

2m
+

2C(78, 1)

2m′ .

Since m′ > m ≥ 38 >
√
2π,

2π2

√
N
(
m+ 2π√

N

)(
m′ + 2π√

N

) < 1,

so that

2π2(
m+ 2π√

N

)(
m′ + 2π√

N

) (m′ −m
2π√
N

− π

m′ − 2π√
N

− C(78, 1)

2m
√
N

− C(78, 1)

2m′√N

)

>
2C(78, 1)

2m
+

2C(78, 1)

2m′ . (5.4)

Next, since | cos(θ)| ≤ 1,

2π2

√
N
(
m− 2π√

N
cos θk,ℓ+1

)(
m′ − 2π√

N
cos θk′,ℓ̂

) (m′ −m
2π√
N

− π

m′ − 2π√
N

− C(78, 1)

2m
√
N

− C(78, 1)

2m′√N

)

>
2C(78, 1)

2m
√
N

+
2C(78, 1)

2m′√N
. (5.5)

By Lemma 5.5 and Lemma 3.1,

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
+

π

m′ − 2π√
N

> θk,ℓ+1 − θk′,ℓ̂ > cos θk′,ℓ̂ − cos θk,ℓ+1,

giving us(
m′ − 2π√

N
cos θk′,ℓ̂

)
−
(
m− 2π√

N
cos θk,ℓ+1

)
>

2π√
N

(
m′ −m

2π√
N

− C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
− π

m′ − 2π√
N

)
.

Therefore,

π

m− 2π√
N
cos θk,ℓ+1

− π

m′ − 2π√
N
cos θk′,ℓ̂
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>
2π2

√
N
(
m− 2π√

N
cos θk,ℓ+1

)(
m′ − 2π√

N
cos θk′,ℓ̂

) (m′ −m
2π√
N

− C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
− π

m′ − 2π√
N

)
.

Combining this with (5.5), we get

π

m− 2π√
N
cos θk,ℓ+1

− π

m′ − 2π√
N
cos θk′,ℓ̂

>
2C(78, 1)

2m
√
N

+
2C(78, 1)

2m′√N
.

Recall Lemma 2.5 states C(78, 1) ≥ C(k,N) > C(k′, N). By (3.1),

(θk,ℓ+1 − θk,ℓ)− (θk′,ℓ̂+1 − θk′,ℓ̂) >
2C(78, 1)

2m
√
N

+
2C(78, 1)

2m′√N
>

2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
.

Therefore by (2.8),

(θk,ℓ+1 − θk,ℓ)− (θk′,ℓ̂+1 − θk′,ℓ̂) > (θk,ℓ+1 − θ∗k,ℓ+1) + (θ∗k,ℓ − θk,ℓ)

+ (θ∗
k′,ℓ̂+1

− θk′,ℓ̂+1) + (θk′,ℓ̂ − θ∗
k′,ℓ̂

),

which implies

θ∗k,ℓ+1 − θ∗k,ℓ > θ∗
k′,ℓ̂+1

− θ∗
k′,ℓ̂

,

our desired result. □

The next proposition proves Theorem 1.6 parts (1) and (2) when ε(f ′) = ε(f) = 1 for k′ > k ≥ 78
and N ≥ 1.

Proposition 5.8. Let k′ > k ≥ 78, N ≥ 1, and f ′ ∈ Sk′(Γ0(N)), f ∈ Sk(Γ0(N)) be newforms with
ε(f ′) = ε(f) = 1. Then, Af ′ strongly Stieltjes interlaces with Af .

Proof. As proved in Lemma 5.3, for all 0 ≤ ℓ ≤ m−2, θ∗k,ℓ < θ∗k,ℓ+1. Suppose for some ℓ, no element

from Af ′ lies in the interval (θ∗k,ℓ, θ
∗
k,ℓ+1). In particular, θ∗

k′,ℓ̂
̸∈ (θ∗k,ℓ, θ

∗
k,ℓ+1). By Lemma 5.6, we have

θ∗
k′,ℓ̂

< θ∗k,ℓ+1, so θ∗
k′,ℓ̂

≤ θ∗k,ℓ. Thus,

θ∗
k′,ℓ̂

≤ θ∗k,ℓ < θ∗k,ℓ+1.

By Lemma 5.7, θ∗
k′,ℓ̂+1

− θ∗
k′,ℓ̂

< θ∗k,ℓ+1 − θ∗k,ℓ, which implies that θ∗
k′,ℓ̂+1

< θ∗k,ℓ+1. Since θ∗
k′,ℓ̂+1

̸∈
(θ∗k,ℓ, θ

∗
k,ℓ+1), we have θ∗

k′,ℓ̂+1
≤ θ∗k,ℓ. So,

θ∗
k′,ℓ̂

< θ∗
k′,ℓ̂+1

≤ θ∗k,ℓ < θ∗k,ℓ+1. (5.6)

By (5.3), we have

π

m+ 2π√
N

− C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
>

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
,

which by Lemma 3.6 and (2.8) implies

θk,ℓ+1 − θk,ℓ + (θk,ℓ − θ∗k,ℓ) + (θ∗
k′,ℓ̂+1

− θk′,ℓ̂+1) >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.

Equivalently,

θk,ℓ+1 − θ∗k,ℓ + θ∗
k′,ℓ̂+1

− θk′,ℓ̂+1 >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.
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Combining this with (5.6), we get

θk,ℓ+1 − θk′,ℓ̂+1 >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.

Therefore, ℓ̂ + 1 ∈ Uℓ and is larger than ℓ̂, contradicting Definition 5.4. This gives us Stieltjes
interlacing of Af

′ and Af . To complete the proof of strong Stieltjes interlacing, by Lemma 5.2 part
(2) and part (3),

θ∗k′,0 < θ∗k,0 and θ∗k,m−1 < θ∗k′,m′−1.

Thus, strong Stieltjes interlacing between Af ′ and Af is proved for k′ > k ≥ 78, N ≥ 1, and
ε(f ′) = ε(f) = 1. □

5.2. The case ε(f ′) = ε(f) = −1. This proceeds similarly to the previous section, so we just state
the corresponding lemmas without proof.

This first lemma is similar to Lemma 5.2.

Lemma 5.9. For all k′ > k ≥ 78 and N ≥ 1, we have

(1) ϕk,1 − ϕk′,1 >
C(78,1)

2m
√
N

+ C(78,1)

2m′√N
,

(2) ϕ∗
k′,1 < ϕ∗

k,1,

(3) ϕ∗
k,m−1 < ϕ∗

k′,m′−1.

Here, we have a lemma that matches Lemma 5.3.

Lemma 5.10. Suppose k′ > k ≥ 78 and N ≥ 1. Then for all 1 ≤ ℓ ≤ m− 2 and 1 ≤ ℓ′ ≤ m′ − 2,
ϕ∗
k,ℓ+1 − ϕ∗

k,ℓ > 0, and ϕ∗
k′,ℓ′+1 − ϕ∗

k′,ℓ′ > 0.

The next definition is similar to Definition 5.4.

Definition 5.11. For each 1 ≤ ℓ ≤ m− 2, consider the set

Vℓ =

{
1 ≤ ℓ′ ≤ m′ − 2 : ϕk′,ℓ′ < ϕk,ℓ+1 −

C(78, 1)

2m
√
N

− C(78, 1)

2m′√N

}
.

We define ℓ̃ to be the largest element of Vℓ.

Remark. By Lemma 5.9 and Lemma 3.5,

ϕk′,1 < ϕk,1 −
C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
< ϕk,ℓ+1 −

C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
,

so 1 ∈ Vℓ.

The following lemmas match Lemmas 5.5-5.7, respectively.

Lemma 5.12. Suppose k′ > k ≥ 78 and N ≥ 1. For all 1 ≤ ℓ ≤ m− 2,

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
+

π

m′ − 2π√
N

> ϕk,ℓ+1 − ϕk′,ℓ̃ >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.

Lemma 5.13. Suppose k′ > k ≥ 78 and N ≥ 1. Then, ϕ∗
k,ℓ+1 > ϕ∗

k′,ℓ̃
.

Lemma 5.14. Suppose k′ > k ≥ 78 and N ≥ 1. Then, for all 1 ≤ ℓ ≤ m− 2,

ϕ∗
k,ℓ+1 − ϕ∗

k,ℓ > ϕ∗
k′,ℓ̃+1

− ϕ∗
k′,ℓ̃

.
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The next proposition proves Theorem 1.6 parts (1) and (2) when ε(f ′) = ε(f) = −1 for k′ > k ≥
78 and N ≥ 1.

Proposition 5.15. Let k′ > k ≥ 78, and f ′ ∈ Sk′(Γ0(N)), f ∈ Sk(Γ0(N)) be newforms with
ε(f ′) = ε(f) = −1. Then, Af ′ strongly Stieltjes interlaces with Af .

Combining Propositions 4.5, 4.7, 5.8, and 5.15, we have completed the proof of Theorem 1.6 for
parts (1) and (2).

6. The case when ε(f ′) ̸= ε(f)

This section is devoted to the proof of the remaining parts of Theorem 1.6. First, we prove part
(3). Suppose f, h ∈ Sk(Γ0(N)) and ε(f) ̸= ε(h). The following lemma is similar to Lemma 4.4.

Lemma 6.1. Suppose either k ≥ 6 and N ≥ 335464, or k ≥ 78. Then, we have the following:

(1) for all 1 ≤ ℓ ≤ m− 1, ϕ∗
k,ℓ < θ∗k,ℓ;

(2) for all 0 ≤ ℓ ≤ m− 2, θ∗k,ℓ < ϕ∗
k,ℓ+1;

(3) for all 0 ≤ ℓ ≤ m− 2, θ∗k,ℓ < θ∗k,ℓ+1, and ϕ∗
k,ℓ < ϕ∗

k,ℓ+1;

(4) θ∗k,0 > 0 and ϕ∗
k,m−1 < π.

Proof. (1) Recall k = 2m + 2, so m > 2π/
√
N in either of the supposed conditions. When N ≥

335464 and k ≥ 6, we may take C(6, 335464) < 289.596 as in Section 4. Then, by Lemma 2.5, since
√
N ≥ 2C(6, 335464) ≥ 2C(k, 335464) and 2π/

√
N < 1,

we get the following expression:

π

2
(
m+ 2π√

N

) >
π

2(m+ 1)
>

1

2m
>

2C(6, 335464)

2m
√
N

>
2C(k,N)

2m
√
N

.

By Lemma 3.13, we have proved (1) for N ≥ 335464 and k ≥ 6.

On the other hand, when k ≥ 78 and N ≥ 1, we know that C(78, 1) < 2.43 · 107 as in Section 5.
Applying Lemma 2.5 for m = 38 we have

π

2
(
m+ 2π√

N

) ≥ π

2(m+ 2π)
≈ 0.035 > 0.00018 ≈ 2C(78, 1)

2m
≥ 2C(k,N)

2m
√
N

.

By Lemma 3.13 we have proved (1) for k ≥ 78.

(2)-(4) are clear from the proof of (1) by applying Lemmas 3.13, 3.10, and 3.11, respectively. □

Lemma 6.1 directly implies the following.

Proposition 6.2. Suppose either k ≥ 78, or N ≥ 335464 and k ≥ 6. Let f, h ∈ Sk(Γ0(N)) be
newforms with ε(f) = 1, ε(h) = −1. Then, Ah interlaces with Af .

Next, we will prove parts (4) and (5) of Theorem 1.6. Let f ′ ∈ Sk′(Γ0(N)) and f ∈ Sk(Γ0(N))
be newforms with ε(f ′) ̸= ε(f). Then, we have the following proposition:

Proposition 6.3. For k′ > k ≥ 78 and N ≥ 1, or k′ > k ≥ 6 and N ≥ 335464:

(1) If ε(f ′) = −1 and ε(f) = 1, Af ′ Stieltjes interlaces with Af ;
(2) If ε(f ′) = 1 and ε(f) = −1, Af ′ strongly Stieltjes interlaces with Af .
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The technique of proving this proposition is exceedingly similar to the techniques that have
already been established in Sections 4 and 5. Therefore, we will prove some similar lemmas and
then give a proof outline of Proposition 6.3.

When N ≥ 335464, the following lemma mimics Lemma 4.1.

Lemma 6.4. If

π
(
m′ −m− 4π√

N

)
(
m+ 2π√

N

)(
m′ − 2π√

N

) >
2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
,

then for all 1 ≤ ℓ ≤ m− 2 and 0 ≤ ℓ′ ≤ m′ − 2,∣∣θ∗k′,ℓ′+1 − θ∗k′,ℓ′
∣∣ < ∣∣ϕ∗

k,ℓ+1 − ϕ∗
k,ℓ

∣∣ ,
and for all 0 ≤ ℓ ≤ m− 2 and 1 ≤ ℓ′ ≤ m′ − 2,∣∣ϕ∗

k′,ℓ′+1 − ϕ∗
k′,ℓ′
∣∣ < ∣∣θ∗k,ℓ+1 − θ∗k,ℓ

∣∣ .
Proof. Identical to Lemma 4.1. □

Definition 6.5. For each 0 ≤ ℓ ≤ m− 2, we define the set

Wℓ :=

{
0 ≤ ℓ′ ≤ m′ − 2 : ϕk′,ℓ′ < θk,ℓ+1 −

C(78, 1)

2m
√
N

− C(78, 1)

2m′√N

}
.

Let ℓ̌ denote the largest element of Wℓ.

Similarly, for each 1 ≤ ℓ ≤ m− 2, we define the set

Zℓ :=

{
0 ≤ ℓ′ ≤ m′ − 2 : θk′,ℓ′ < ϕk,ℓ+1 −

C(78, 1)

2m
√
N

− C(78, 1)

2m′√N

}
.

Let ℓ̄ denote the largest element of Zℓ.

Remark. By Lemma 3.12 and a similar argument to Lemma 5.2, these sets are well defined.

The following lemma mimics Lemmas 5.5-5.7.

Lemma 6.6. Suppose k′ > k ≥ 78 and N ≥ 1. Then for all 0 ≤ ℓ ≤ m− 2, we have

(1) C(78,1)

2m
√
N

+ C(78,1)

2m′√N
+ π

m′−2π/
√
N

> θk,ℓ+1 − ϕk′,ℓ̌ >
C(78,1)

2m
√
N

+ C(78,1)

2m′√N
,

(2) θ∗k,ℓ+1 > ϕ∗
k′,ℓ̌

,

(3) θ∗k,ℓ+1 − θ∗k,ℓ > θ∗
k′,ℓ̌+1

− θ∗
k′,ℓ̌

.

Proof. (1) By the definition of ℓ̌,

θk,ℓ+1 − ϕk′,ℓ̌ >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.

Suppose for the sake of contradiction that

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
+

π

m′ − 2π√
N

≤ θk,ℓ+1 − ϕk′,ℓ̌.
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By Lemma 3.8 part (1), θk,m−2 < ϕk′,m′−1. Then by Lemma 3.5 and our assumption, ϕk′,m′−1 >

θk,m−2 ≥ θk,ℓ+1 > ϕk′,ℓ̌, and ℓ̌ ≤ m′ − 2. By Lemma 3.6,

ϕk′,ℓ̌+1 − ϕk′,ℓ̌ <
π

m′ − 2π√
N

≤ θk,ℓ+1 − ϕk′,ℓ̌ −
C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
,

and thus

ϕk′,ℓ̌+1 < θk,ℓ+1 −
C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
.

Therefore, ℓ̌+ 1 ∈ Wℓ, a contradiction and

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
+

π

m′ − 2π√
N

> θk,ℓ+1 − ϕk′,ℓ̌,

as desired.

(2) Identical to the proof of Lemma 5.6.

(3) We will follow the proof of Lemma 5.7. By (2) and Lemma 3.1,

C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
+

π

m′ − 2π√
N

> θk,ℓ+1 − ϕk′,ℓ̌ > cosϕk′,ℓ̌ − cos θk,ℓ+1,

giving us (
m′ − 2π√

N
cosϕk′,ℓ̌

)
−
(
m− 2π√

N
cos θk,ℓ+1

)
>

2π√
N

(
m′ −m

2π√
N

− C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
− π

m′ − 2π√
N

)
.

Therefore,
π

m− 2π√
N
cos θk,ℓ+1

− π

m′ − 2π√
N
cosϕk′,ℓ̌

>
2π2

√
N
(
m− 2π√

N
cos θk,ℓ+1

)(
m′ − 2π√

N
cosϕk′,ℓ̌

) (m′ −m
2π√
N

− C(78, 1)

2m
√
N

− C(78, 1)

2m′√N
− π

m′ − 2π√
N

)
,

and by (5.4), we get

π

m− 2π√
N
cos θk,ℓ+1

− π

m′ − 2π√
N
cosϕk′,ℓ̌

>
2C(78, 1)

2m
√
N

+
2C(78, 1)

2m′√N
.

Recall that Lemma 2.5 states C(78, 1) ≥ C(k,N) > C(k′, N). By (3.1),

(θk,ℓ+1 − θk,ℓ)− (ϕk′,ℓ̌+1 − ϕk′,ℓ̌) >
2C(78, 1)

2m
√
N

+
2C(78, 1)

2m′√N
>

2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
.

Therefore by (2.8),

(θk,ℓ+1 − θk,ℓ)− (ϕk′,ℓ̌+1 − ϕk′,ℓ̌)

>(θk,ℓ+1 − θ∗k,ℓ+1) + (θ∗k,ℓ − θk,ℓ) + (ϕ∗
k′,ℓ̌+1

− ϕk′,ℓ̌+1) + (ϕk′,ℓ̌ − ϕ∗
k′,ℓ̌

),

which implies

θ∗k,ℓ+1 − θ∗k,ℓ > ϕ∗
k′,ℓ̌+1

− ϕ∗
k′,ℓ̌

,

29



our desired result. □

The next lemma follows from Lemmas 5.12-5.14, by applying the same proof as Lemma 6.6.

Lemma 6.7. Suppose k′ > k ≥ 78 and N ≥ 1. Then, for all 1 ≤ ℓ ≤ m− 2,

(1) C(78,1)

2m
√
N

+ C(78,1)

2m′√N
+ π

m′−2π/
√
N

> ϕk,ℓ+1 − θk′,ℓ̄ >
C(78,1)

2m
√
N

+ C(78,1)

2m′√N
,

(2) ϕ∗
k,ℓ+1 > θ∗

k′,ℓ̄
,

(3) ϕ∗
k,ℓ+1 − ϕ∗

k,ℓ > θ∗
k′,ℓ̄+1

− θ∗
k′,ℓ̄

.

Similarly to Lemmas 5.2 and 5.9, we show the smallest element of Af ′ is less than the smallest
element of Af , and the largest element of Af ′ is greater than the largest element of Af .

Lemma 6.8. Suppose either k′ > k ≥ 6 and N ≥ 335464, or k′ > k ≥ 38. Then

(1) 0 < ϕ∗
k′,1 < θ∗k,1 and θ∗k,m−2 < ϕ∗

k′,m′−1 < π,

(2) 0 < θ∗k′,0 < ϕ∗
k,1 and ϕ∗

k,m−1 < θ∗k′,m′−1 < π.

Proof. (1) By (4.6), when k′ > k ≥ 6 and N ≥ 335464, we have

π(m′ −m)(
m+ 2π√

N

)(
m′ + 2π√

N

) >
2C(k,N)

2m
√
N

+
2C(k′, N)

2m′√N
,

and when k′ > k ≥ 78, by (5.2),

π(m′ −m)

2
(
m+ 2π√

N

)(
m′ + 2π√

N

) >
C(78, 1)

2m
√
N

+
C(78, 1)

2m′√N
.

Thus, by Lemma 3.12, the desired statement holds.

(2) The proof is identical. □

Proof of Proposition 6.3. (1) When k′ > k ≥ 78, similarly as the proof of Proposition 5.8 using
Lemmas 5.3, 5.10, 6.6, and 6.8 part (1), we can achieve the desired statement. On the other hand,
when N ≥ 335464 and k′ > k ≥ 6, similarly to Proposition 4.5, we can use Lemmas 4.4, 4.6, 6.4, and
6.8 part (1), to show Af ′ strongly Stieltjes interlaces with Af \ {θk,0, θk,m−1}. If θk,0 < ϕk′,1 < θk,1,
then Af ′ Stieltjes interlaces with Af \ θk,m−1. Else, if ϕk′,1 ≤ θk,0, by Lemma 6.4, there exists some
ℓ′ such that θk,0 < ϕk′,ℓ′ < θk,1, and again Af ′ Stieltjes interlaces with Af \ θk,m−1. We can use a
similar argument to add θk,m−1 back in to obtain that Af ′ Stieltjes interlaces with Af .

(2) When k′ > k ≥ 78, following the proof of Proposition 5.8 using Lemmas 5.3, 5.10, 6.7, and
6.8 part (2), we can achieve the desired statement. On the other hand, when N ≥ 335464 and
k′ > k ≥ 6, identically to Proposition 4.5, we can use Lemmas 4.4, 4.6, 6.4, and 6.8 part (2), to
show that Af ′ strongly Stieltjes interlaces with Af . □

7. The case when k = 4

In this section, we will prove Theorem 1.7. For brevity, we will define N0 := ⌈3354644.41⌉. We
only need to consider the case when ε(f) = 1, since Af is empty when ε(f) = −1; see Definition
1.5. Recall that θ4,0 = π/2. Thus, by Proposition 2.3 and Lemma 2.4 we know that for N ≥ N0,∣∣∣π

2
− θ∗4,0

∣∣∣ < C(4, N0)

N1/8
,
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where C(4, N0) ≈ 871.455 [9, 4bigO.sage].

7.1. When ε(f ′) = 1. To prove strong Stieltjes interlacing between Af ′ and Af , it suffices to show
0 < θ∗k′,0 < θ∗4,0 < θ∗k′,m′−1 < π. The following proposition proves Theorem 1.7 parts (1) and (2).

Proposition 7.1. For k = 4, k′ ≥ 6, and N ≥ N0 = ⌈3354644.41⌉, the following are true:

(1) θ∗k′,0 < θ∗4,0 < θ∗k′,m′−1,

(2) 0 < θ∗k′,0 and θ∗k′,m′−1 < π.

Proof. We have already shown in Lemma 4.4 that part (2) holds when N ≥ 335464 and k′ ≥ 6, so
the statement certainly holds for N ≥ N0. Thus, we need only show θ∗k′,0 < θ∗4,0 < θ∗k′,m′−1.

Firstly, using Definition 1.3 and Lemma 3.1, we have

θk′,0 ≤
π

2
(
m′ − 2π√

N

) and θk′,m′−1 ≥
2πm′ − π

2
(
m′ + 2π√

N

) . (7.1)

By Proposition 2.3 and Lemmas 2.4 and 2.5,

θ∗4,0 − θ∗k′,0 ≥ θ4,0 − θk′,0 −
∣∣θ∗4,0 − θ4,0

∣∣− ∣∣θ∗k′,0 − θk′,0
∣∣

≥ π

2
− π

2
(
m′ − 2π√

N

) − C(4, N0)

N1/8
− C(k′, N0)

2m′√N

≥ π

2
− π

2
(
m′ − 2π√

N

) − C(4, N0)

N1/8
− C(6, 335464)

2m′√N

≥ π

2
− π

2
(
2− 2π√

N0

) − 871.455

N
1/8
0

− 221.628

22
√
N0

≈ 0.0015 > 0.

Next, by Proposition 2.3 and Lemma 2.5 we may bound

θ∗k′,m′−1 − θ∗4,0 ≥ θk′,m′−1 − θ4,0 −
∣∣θ∗4,0 − θ4,0

∣∣− ∣∣θ∗k′,m′−1 − θk′,m′−1

∣∣
≥ 2πm′ − π

2
(
m′ + 2π√

N

) − π

2
− C(4, N0)

N1/8
− C(k′, N0)

2m′√N

≥ 2πm′ − π

2
(
m′ + 2π√

N

) − π

2
− C(4, N0)

N1/8
− C(6, 335464)

2m′√N

≥ 4π − π

2
(
2 + 2π√

N0

) − π

2
− 871.455

N
1/8
0

− 221.628

22
√
N0

≈ 0.0015 > 0.

So for all N ≥ N0 and k′ ≥ 6, θ∗k′,0 < θ∗4,0 < θ∗k′,m′−1. □
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7.2. When ε(f ′) = −1. This section will proceed similarly to above. The following proposition
proves Theorem 1.7 part (3).

Proposition 7.2. For k′ ≥ 10 and N ≥ N0, the following hold:

(1) ϕ∗
k′,1 < θ∗4,0 < ϕ∗

k′,m′−1.

(2) 0 < ϕ∗
k′,1 and ϕ∗

k′,m′−1 < π.

Proof. We have already shown in Lemma 4.4 that (2) holds when N ≥ 335464, so the statements
certainly hold for N ≥ N0. Thus, we need only show (1). Firstly, by Definition 1.4 and Lemma 3.1,

ϕk′,1 ≤
π

m′ − 2π√
N

and ϕk′,m′−1 ≥
(m′ − 1)π

m′ + 2π√
N

. (7.2)

Similarly to Proposition 7.1, by Proposition 2.3, Lemmas 2.4 and 2.5,

θ∗4,0 − ϕ∗
k′,1 ≥ θ4,0 − ϕk′,1 −

∣∣θ∗4,0 − θ4,0
∣∣− ∣∣ϕ∗

k′,1 − ϕk′,1

∣∣
≥ π

2
− π

4− 2π√
N0

− 871.455

N
1/8
0

− 221.628

24
√
N0

≈ 0.0015 > 0.

Then identically to Proposition 7.1, by Proposition 2.3 and Lemmas 2.4 and 2.5, we have

ϕ∗
k′,m′−1 − θ∗4,0 ≥ ϕk′,m′−1 − θ4,0 −

∣∣θ∗4,0 − θ4,0
∣∣− ∣∣ϕ∗

k′,m′−1 − ϕk′,m′−1

∣∣
≥ 3π

4 + 2π√
N0

− π

2
− 871.455

N
1/8
0

− 221.628

24
√
N0

≈ 0.0015 > 0.

Thus ϕ∗
k′,1 < θ∗4,0 < ϕ∗

k′,m′−1, for k
′ ≥ 10 and N ≥ ⌈3354644.41⌉. □

8. The Case N = 1

When k < 78, the upper bound of the difference between actual and sample angles given by (2.8),
is too large. Nevertheless, we can directly compute the actual angles and prove strong Stieltjes
interlacing between Af ′ and Af for k′ large enough. This would allow us to verify finite cases when
both k and k′ are small. In this way, we prove Theorem 1.8.

Definition 8.1.

D(f) := min{|x− y| : x ̸= y ∈ Af ∪ 0 ∪ π} and D := min{D(f) : f ∈ Sk(Γ0(1)), k ≤ 76}.
In [9, distance.sage], we compute D > 0.03629.

Lemma 8.2. Recall k′ = 2m′ + 2. When k′ ≥ 188, we have

π

m′ − 2π
+

2C(k′, 1)

2m′ < D. (8.1)

Proof. Recall C(k,N) is given in Proposition 2.3. By [9, zgap.sage], we have C(188, 1) < 8.9 · 106.
Thus, when m′ = 93, π

93−2π + 2C(188,1)
293

< 0.03623 < D. By Lemma 2.5, the left side of (8.1)

decreases as k′ increases, so (8.1) holds for every k′ ≥ 188. □

In the next lemma, we gather various results scattered in (7.1), (7.2), and Lemma 3.7.
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Lemma 8.3. Suppose k′ ≥ 188. Then

(1) θk′,0 <
π

2(m′−2π) <
π

m′−2π ,

(2) ϕk′,1 <
π

m′−2π ,

(3) π − θk′,m′−1 <
π

2m′ <
π

m′−2π ,

(4) π − ϕk′,m′−1 <
π
m′ <

π
m′−2π ,

(5) θk′,ℓ′+1 − θk′,ℓ′ <
π

m′−2π , for all 0 ≤ ℓ′ ≤ m′ − 2,

(6) ϕk′,ℓ′+1 − ϕk′,ℓ′ <
π

m′−2π , for all 1 ≤ ℓ′ ≤ m′ − 2.

Proposition 8.4. Suppose k′ ≥ 188 and k ≤ 76. Let f ′ ∈ Sk′(Γ0(1)), f ∈ Sk(Γ0(1)) be newforms.
Then Af ′ strongly Stieltjes interlaces with Af .

Proof. By Lemmas 5.3 and 5.10, when k′ ≥ 188, θ∗k′,ℓ′ < θ∗k′,ℓ′+1 for all 0 ≤ ℓ′ ≤ m′ − 2, and

ϕ∗
k′,ℓ′ < ϕ∗

k′,ℓ′+1 for all 1 ≤ ℓ′ ≤ m′ − 2. Combining (8.1), Lemma 8.3 part (5), and applying (2.8),
we get

θ∗k′,ℓ′+1 − θ∗k′,ℓ′ < θk′ℓ′+1 − θk′,ℓ′ +
2C(k′, 1)

2m′ <
π

m′ − 2π
+

2C(k′, 1)

2m′ < D.

Similarly, using Lemma 8.3 part (6) results in ϕ∗
k′,ℓ′+1 − ϕ∗

k′,ℓ′ < D. Thus, regardless of the sign of

f ′ or f , the distances between consecutive angles of Af ′ are always less than those of Af . In order
to show strong Stieltjes interlacing between Af ′ and Af , it suffices to show that the first element
of Af ′ is smaller than the first element of Af , and the last element of Af ′ is larger than the last
element of Af . When ε(f ′) = 1, by Lemma 8.3 part (1), (2.8), and (8.1),

θ∗k′,0 < θk′,0 +
C(k′, 1)

2m′ <
π

m′ − 2π
+

2C(k′, 1)

2m′ < D.

Similarly, when ε(f ′) = −1, by Lemma 8.3 part (3), ϕ∗
k′,1 < D. Thus, the first element of Af ′ is

smaller than the first element of Af . Next, when ε(f ′) = 1, by Lemma 8.3 part (2), (2.8), and (8.1),

π − θ∗k′,m′−1 < π − θk′,m′−1 +
C(k′, 1)

2m′ <
π

m′ − 2π
+

2C(k′, 1)

2m′ < D.

Similarly, when ε(f ′) = −1, by Lemma 8.3 part (4), π − ϕ∗
k′,m′−1 < D. Therefore, the last element

of Af ′ is greater than the last element of Af . This completes the proof that Af ′ strongly Stieltjes
interlaces with Af . □

In [9, checking.sage], we have verified that Theorem 1.8 holds for all k ≤ 76 and k′ ≤ 186. Thus,
with Theorem 1.6 and Proposition 8.4, we have proven Theorem 1.8.

9. Interlacing in the level aspect

In this section, we will consider the interlacing in the level aspect. Let f ′ ∈ Sk(Γ0(N
′)) and

f ∈ Sk(Γ0(N)) be newforms such that N ′ > N . Depending on the signs of f ′ and f , we divide the
discussion into three cases.

9.1. The case ε(f ′) = ε(f) = 1. In this case, we write N ′ = N(1 + ε) for 2−n < ε ≤ 2−n+1 and
n ≥ 0. To lighten the burden, we will denote the sample zeros by θN,ℓ and θN ′,ℓ, respectively. We
first compare sample angles and obtain a result similar to Lemma 3.9.

Lemma 9.1. Suppose m > 2π/
√
N and N ′ > N . Then
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(1) for all 0 ≤ ℓ ≤ m− 1, θN ′,ℓ < θN,ℓ and

θN,ℓ − θN ′,ℓ >
2π(N ′ −N)(

m+ 2π√
N

)(
m+ 2π√

N ′

)√
NN ′

(√
N +

√
N ′
) .

(2) for all 0 ≤ ℓ ≤ m− 2, θN,ℓ < θN ′,ℓ+1 and

θN ′,ℓ+1 − θN,ℓ >
π

m+ 2π√
N

.

Proof. (1) By Lemma 3.1 and Definition 1.3, it is not hard to see that θN,ℓ > θN ′,ℓ. At the same
time,

m(θN,ℓ − θN ′,ℓ) =
2π√
N

(
sin θN,ℓ − sin θN ′,ℓ

)
+

(
2π√
N

− 2π√
N ′

)
sin θN ′,ℓ

>
2π√
N

(θN ′,ℓ − θN,ℓ) +
2π(N ′ −N)

√
NN ′

(√
N +

√
N ′
) sin θN ′,ℓ. (9.1)

Recall from (3.5) and (3.8) the following bounds for θN ′,ℓ:

θN ′,ℓ >
π

2m
>

π

2
(
m+ 2π√

N ′

) , π − θN ′,ℓ ≥
π

2
(
m+ 2π√

N ′

) .
When 0 ≤ x ≤ π

2 , we have sin(x) ≥ 2x
π ; if π

2 ≤ x < π, then sin(x) ≥ 2(π−x)
π . Thus, by (9.1):

θN,ℓ − θN ′,ℓ >

2π(N ′−N)√
NN ′(

√
N+

√
N ′)

sin θN ′,ℓ

m+ 2π√
N

≥

2π(N ′−N)√
NN ′(

√
N+

√
N ′)

1
m+ 2π√

N′

m+ 2π√
N

.

(2) On the other hand, it is not hard to show θN ′,ℓ+1 > θN,ℓ, and

m(θN ′,ℓ+1 − θN,ℓ) = π +
2π√
N ′

sin θN ′,ℓ+1 −
2π√
N

sin θN,ℓ

> π +
2π√
N

(
sin θN ′,ℓ+1 − sin θN,ℓ

)
.

By Lemma 3.1 again, we obtain

θN ′,ℓ+1 − θN,ℓ >
π

m+ 2π√
N

.

This completes the proof. □

We also have the following result that is similar to Lemma 4.1.

Lemma 9.2. Suppose m > 2π/
√
N and N ′ = N(1 + ε) with 2−n < ε ≤ 2−n+1 and n ≥ 0.

(1) If π
(m+2π/

√
N)2

> 2C(k,N)
2m−n (1 + 2−n+1), then for all 0 ≤ ℓ ≤ m− 1, θ∗N,ℓ > θ∗N ′,ℓ.

(2) If π
m+2π/

√
N

> C(k,N)

2m
√
N

+ C(k,N ′)

2m
√
N ′ , then for all 0 ≤ ℓ ≤ m− 2, θ∗N ′,ℓ+1 > θ∗N,ℓ.
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Proof. (1) By Lemma 9.1, we obtain

θN,ℓ − θN ′,ℓ >
2πε(

m+ 2π√
N

)(
m+ 2π√

N ′

)√
N
√
1 + ε

(
1 +

√
1 + ε

)
>

πε(
m+ 2π√

N

)(
m+ 2π√

N ′

)√
N (1 + ε)

.

Therefore by (2.8),

θ∗N,ℓ − θ∗N ′,ℓ >
πε(

m+ 2π√
N

)(
m+ 2π√

N ′

)√
N(1 + ε)

− C(k,N)

2m
√
N

− C(k,N ′)

2m
√
N ′

,

which, combined with Lemma 2.5, implies

θ∗N,ℓ − θ∗N ′,ℓ >
π(

m+ 2π√
N

)2 − 2C(k,N)

2m−n
(1 + 2−n+1).

(2) This follows immediately from (2.8) and Lemma 9.1. □

We are now ready to establish the following interlacing property when ε(f ′) = ε(f) = 1.

Proposition 9.3. Suppose N ′ = N(1+ ε) where 2−n < ε ≤ 2−n+1 and n ≥ 0. If k ≥ 78+ 2n, then

(1) for all 0 ≤ ℓ ≤ m− 1, θ∗N,ℓ > θ∗N ′,ℓ.

(2) for all 0 ≤ ℓ ≤ m− 2, θ∗N ′,ℓ+1 > θ∗N,ℓ.

(3) for all 0 ≤ ℓ ≤ m− 2, θ∗N,ℓ < θ∗N,ℓ+1 and θ∗N ′,ℓ < θ∗N ′,ℓ+1.

(4) 0 < θ∗N,0 and θ∗N ′,m−1 < π.

Proof. (1) Since k := 2m+ 2, if k ≥ 78 + 2n, then m ≥ 38 + n. Combining this with Lemma 2.5,

C(78, 1)

237
(1 + 2) >

2C(k,N)

2m−n

(
1 + 2−n+1

)
.

By [9, zgap.sage], C(78, 1) < 2.434 · 107, so that

π(
m+ 2π√

N

)2 >
2C(78, 1)

2m
(1 + 2) >

2C(k,N)

2m−n
(1 + 2−n+1)

holds for all m ≥ 38 + n. Thus by Lemma 9.2 part (1), θ∗N,ℓ > θ∗N ′,ℓ for all 0 ≤ ℓ ≤ m− 1.

(2) When m = 38 by Lemma 2.5,

π

m+ 2π√
N

>
π

m+ 2π
≈ 0.0709 > 0.00008 ≈ 2C(78, 1)

2m
>

C(k,N)

2m
√
N

+
C(k,N ′)

2m
√
N ′

Therefore it is clear that for m ≥ 38 + n,

π

m+ 2π√
N

>
C(k,N)

2m
√
N

+
C(k,N ′)

2m
√
N ′

and by Lemma 9.2 part (2), the desired statement holds.

Parts (3) and (4) follow from Lemma 3.11 part (2) and Lemma 5.3. □
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9.2. The case ε(f ′) = ε(f) = −1. This section proceeds similarly to the previous subsection.
However, the lower bounds for sample angles are slightly different. First, similar to Lemma 9.1, we
have the following.

Lemma 9.4. Suppose m > 2π/
√
N and N ′ > N . Then

(1) for all 1 ≤ ℓ ≤ m− 1, ϕN ′,ℓ < ϕN,ℓ and

ϕN,ℓ − ϕN ′,ℓ >
2π(N ′ −N)(

m+ 2π√
N

)(
m+ 2π√

N ′

)√
NN ′

(√
N +

√
N ′
) .

(2) for all 1 ≤ ℓ ≤ m− 2, ϕN,ℓ < ϕN ′,ℓ+1 and

ϕN ′,ℓ+1 − ϕN,ℓ >
π

m+ 2π√
N

.

Proof. The proof is almost identical to that of Lemma 9.1, except that we instead use the lower
bounds

ϕk,N >
π

m
>

π

2
(
m+ 2π√

N

) and π − ϕk,N >
π

m+ 2π√
N

>
π

2
(
m+ 2π√

N

) ,
which can be obtained similarly as in (3.5) and (3.8). □

The next lemma resembles Lemma 9.2 and is proved identically.

Lemma 9.5. Suppose m > 2π/
√
N and N ′ = N(1 + ε) with 2−n < ε ≤ 2−n+1 and n ≥ 0.

(1) If π
(m+2π/

√
N)2

> 2C(k,N)
2m−n (1 + 2−n+1), then for all 1 ≤ ℓ ≤ m− 1, ϕ∗

N,ℓ > ϕ∗
N ′,ℓ.

(2) If π
m+2π/

√
N

> C(k,N)

2m
√
N

+ C(k,N ′)

2m
√
N ′ , then for all 1 ≤ ℓ ≤ m− 2, ϕ∗

N ′,ℓ+1 > ϕ∗
N,ℓ.

The following proposition establishes the interlacing between Af ′ and Af when ε(f ′) = ε(f) = −1,
and is similar to Proposition 9.3.

Proposition 9.6. Suppose N ′ = N(1+ ε) where 2−n < ε ≤ 2−n+1 and n ≥ 0. If k ≥ 78+ 2n, then

(1) For all 1 ≤ ℓ ≤ m− 1, ϕ∗
N,ℓ > ϕ∗

N ′,ℓ,

(2) For all 1 ≤ ℓ ≤ m− 2, ϕ∗
N ′,ℓ+1 > ϕ∗

N,ℓ,

(3) For all 1 ≤ ℓ ≤ m− 2, ϕ∗
N,ℓ < ϕ∗

N,ℓ+1 and ϕ∗
N ′,ℓ < ϕ∗

N ′,ℓ+1,

(4) 0 < θ∗N,1 and θ∗N ′,m−1 < π.

Proof. The proof is identical to the proof of Proposition 9.3. □

9.3. The case ε(f ′) ̸= ε(f). This case is similar to the preceding sections.

Lemma 9.7. Suppose m > 2π/
√
N . Then:

(1) for all 1 ≤ ℓ ≤ m− 1, θN,ℓ − ϕN ′,ℓ ≥ π
2(m+2π/

√
N)

.

(2) if N ′ > N ≥ 16, then for all 0 ≤ ℓ ≤ m− 2, ϕN ′,ℓ+1 − θN,ℓ ≥ π
2m − 2π

m
√
N
.

(3) if N ′ > N ≥ 16, then for all 1 ≤ ℓ ≤ m− 1, θN ′,ℓ − ϕN,ℓ ≥ π
2m − 2π

m
√
N
.

(4) for all 0 ≤ ℓ ≤ m− 2, ϕN,ℓ+1 − θN ′,ℓ ≥ π
2(m+2π/

√
N)

.
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Proof. (1) Suppose on the contrary that ϕN ′,ℓ ≥ θN,ℓ. Taking the difference of Definitions 1.3, 1.4,
and applying Lemma 3.1,

m
(
θN,ℓ − ϕN ′,ℓ

)
=

π

2
+

2π√
N

sin θN,ℓ −
2π√
N ′

sinϕN ′,ℓ

≥ π

2
+

2π√
N

(θN,ℓ − ϕN ′,ℓ).

This leads to a contradiction since m > 2π/
√
N . Thus θN,ℓ > ϕN ′,ℓ and

m
(
θN,ℓ − ϕN ′,ℓ

)
≥ π

2
+

2π√
N

(ϕN ′,ℓ − θN,ℓ),

implying that

θN,ℓ − ϕN ′,ℓ ≥
π

2
(
m+ 2π√

N

) .
(2) Taking the difference of Definitions 1.3 and 1.4,

m(ϕN ′,ℓ+1 − θN,ℓ) =
π

2
+

2π√
N ′

sinϕN ′,ℓ+1 −
2π√
N

sin θN,ℓ

>
π

2
− 2π√

N
.

Since N ≥ 16, we get ϕN ′,ℓ+1 > θN,ℓ and ϕN ′,ℓ+1 − θN,ℓ ≥ π
2m − 2π

m
√
N
.

Parts (3) and (4) are similar to parts (2) and (1), respectively. □

The next lemma is similar to Lemma 9.2 and is proved similarly.

Lemma 9.8. Suppose m > 2π/
√
N . Then

(1) if π
2(m+2π/

√
N)

> C(k,N)

2m
√
N

+ C(k,N ′)

2m
√
N ′ , for all 1 ≤ ℓ ≤ m− 1, θ∗N,ℓ > ϕ∗

N ′,ℓ.

(2) if π
2m − 2π

m
√
N

> C(k,N)

2m
√
N

+ C(k,N ′)

2m
√
N ′ , for all 0 ≤ ℓ ≤ m− 2, ϕ∗

N ′,ℓ+1 > θ∗N,ℓ.

(3) if π
2m − 2π

m
√
N

> C(k,N)

2m
√
N

+ C(k,N ′)

2m
√
N ′ , for all 1 ≤ ℓ ≤ m− 1, θ∗N ′,ℓ > ϕ∗

N,ℓ.

(4) if π
2(m+2π/

√
N)

> C(k,N)

2m
√
N

+ C(k,N ′)

2m
√
N ′ , for all 0 ≤ ℓ ≤ m− 2, ϕ∗

N,ℓ+1 > θ∗N ′,ℓ.

The following proposition establishes interlacing between Af ′ and Af when ε(f ′) ̸= ε(f).

Proposition 9.9. Suppose N ′ > N ≥ 17 and k ≥ 32. Then

(1) for all 0 ≤ ℓ ≤ m− 1, θ∗N,ℓ > ϕ∗
N ′,ℓ.

(2) for all 0 ≤ ℓ ≤ m− 2, ϕ∗
N ′,ℓ+1 > θ∗N,ℓ.

(3) for all 0 ≤ ℓ ≤ m− 1, θ∗N ′,ℓ > ϕ∗
N,ℓ.

(4) for all 0 ≤ ℓ ≤ m− 2, ϕ∗
N,ℓ+1 > θ∗N ′,ℓ.

(5) for all 0 ≤ ℓ ≤ m− 2, θ∗N,ℓ+1 > θ∗N,ℓ and θ∗N ′,ℓ+1 > θ∗N ′,ℓ.

(6) for all 0 ≤ ℓ ≤ m− 2, ϕ∗
N,ℓ+1 > ϕ∗

N,ℓ and ϕ∗
N ′,ℓ+1 > ϕ∗

N ′,ℓ.

(7) 0 < ϕ∗
N ′,1, ϕ

∗
N,1 and θ∗N,m−1, θ

∗
N,m−1 < π.
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Proof. (1) By [9, zgap.sage], we may bound C(32, 17) < 141.671. We first wish to show

π

2
(
m+ 2π√

N

) >
2C(32, 17)

2m
√
N

.

When m = 15 and N = 17, we have 0.095 . . . > 0.002 . . ., and as N increases, the left hand side
increases while the right hand side decreases. Additionally for a fixed N , as m increases it is clear
this inequality will continue to hold. Thus, by Lemma 2.5,

π

2
(
m+ 2π√

N

) >
2C(32, 17)

2m
√
N

(9.2)

>
C(k,N)

2m
√
N

+
C(k,N ′)

2m
√
N ′

,

so that by Lemma 9.8 part (1), we have θ∗N,ℓ > ϕ∗
N ′,ℓ for all 0 ≤ ℓ ≤ m− 1.

(2) Here we want to show
π

2m
− 2π

m
√
N

>
2C(32, 17)

2m
√
N

.

When m = 15 and N = 17, we have 0.003 . . . > 0.002 . . .. Again, as N increases, the left hand
side increases while the right hand side decreases, and for a fixed N , as m increases it is clear this
inequality will continue to hold. Using Lemma 2.5,

π

2m
− 2π

m
√
N

>
C(k,N)

2m
√
N

+
C(k,N ′)

2m
√
N ′

.

Parts (3) and (4) follow from (9.2) and (9.2) using Lemma 9.8 parts (3) and (4).

For the remaining parts, by (9.2) and Lemma 2.5,

π

m+ 2π√
N

>
π

m+ 2π√
N

>
2C(k,N)

2m
√
N

>
2C(k,N ′)

2m
√
N ′

.

Thus by Lemmas 3.10 parts (1) and (2) and Lemma 3.11 parts (2) and (4), the remaining statements
follow. □
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