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Abstract. Let R be a commutative noetherian ring, I an ideal of R, and
M a finitely generated R-module. The asymptotic behavior of the quotient

modules M/InM of M is an actively studied subject in commutative algebra.
The main result of this paper shows that for large integers n > 0, the depth

of the localizations of (M/InM)p are stable uniformly for all prime ideals p

of R in each of the following cases: (1) R is CM-excellent, (2) R is semi-local,
(3) M or M/InM for some n > 0 is Cohen–Macaulay.

1. Introduction

Throughout the present paper, all rings are assumed to be commutative and noe-

therian. Let R be a ring, I an ideal of R, and M a finitely generated R-module. The

asymptotic behavior of the quotient modules M/InM of M for large integers n is one of

the most classical subjects in commutative algebra. Among other things, the asymptotic

stability of the associated prime ideals and depths of M/InM has been actively studied.

Brodmann [1] proved that the set of associated prime ideals of M/InM is stable for large

n. Brodmann [2] also showed that for any ideal J , the grade of J on M/InM is stable

for large n depending on J . In particular, the depth of M/InM attains a stable constant

value for all large n when R is local. Kodiyalam [16] gives another proof of this result

for local rings. There are a lot of studies about this subject; see [1], [2], [16], [19], [20]

for instance.

The purpose of this paper is to proceed with the study of the above subject. In

particular, we consider the existence of an integer k such that depth(M/ItM)p =

depth(M/IkM)p for all integers t ⩾ k and all prime ideals p of R. In this direction,

by using the openness of the codepth loci of modules over excellent rings studied by

Grothendieck [8], Rotthaus and Şega [20] proved that such an integer k exists if R is ex-

cellent, M is Cohen–Macaulay, and I contains an M -regular element. We aim to improve

their theorem by applying the ideas of their proof. However, in our proof, we use the

methods developed in [15] not those of Grothendieck. If such an integer k exists, then

the grade of J on M/InM is stable for all n ⩾ k and all ideals J of R; see Proposition

4.6. (Note that the integer k is independent of J .)

The main result of this paper is the following theorem; for the definition of a CM-

excellent ring and an acceptable ring in the sense of Česnavičius [5] and Sharp [21],

respectively see Definition 4.2. Obviously, we may replace all R̄ in the result below with
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R. It gives a common generalization of the above mentioned theorems proved in [16]

(that is, [2]) and [20].

Theorem 1.1 (Corollary 4.3). Let R be a ring, I an ideal of R, and M a

finitely generated R-module. Put R̄ = R/(I +AnnR(M)). Then there is k > 0 such that

depth(M/ItM)p = depth(M/IkM)p

for all integers t ⩾ k and all prime ideals p of R in each of the following cases.

(1) R̄ is a CM-excellent ring. In particular, R̄ is one of the following: an excellent ring,

an acceptable ring, and a homomorphic image of a Cohen–Macaulay ring.

(2) R̄ is a semi-local ring.

(3) M or M/InM is Cohen–Macaulay for some n > 0.

The organization of this paper is as follows. In Section 2, we state the definitions

of notions used in the later sections together with a couple of their basic properties.

In Section 3, we study the openness of the codepth loci of graded modules. We give

a sufficient condition for the codepth loci of a graded module to be open, and for the

depths of localizations of homogeneous components of a graded module to be eventually

stable. In Section 4, we prove Theorem 1.1 and consider some examples.

2. Definitions and lemmas

This section is devoted to preliminaries for the later sections. Rotthaus and Şega

[20] proved the asymptotic stability of the codepth loci of homogeneous components of

the associated graded module
⊕

i⩾0 I
iM , and also that of M/InM by using the openness

of loci of a graded module. To follow their ideas, we prepare several definitions and basic

lemmas about graded modules and loci.

In this section, we assume that A =
⊕

i⩾0 Ai is a graded ring and thatM =
⊕

i∈Z Mi

is a finitely generated graded A-module. The ring A is a finitely generated A0-algebra,

and for any i ∈ Z, the A0-module Mi is finitely generated. Let S be a multiplicatively

closed subset of A0. Then AS =
⊕

i⩾0(Ai)S is also a graded ring, and MS =
⊕

i∈Z(Mi)S
is a finitely generated graded AS-module. In particular, Ap is a graded ring having the

local base ring (A0)p for any prime ideal p of A0. Similarly, A/IA and M/IM are graded

for any ideal I of A0. A graded ring A which is generated as an A0-algebra by elements

of A1 will be called homogeneous. Every ring R is a graded ring A with A0 = R and

Ai = 0 for all i ⩾ 0.

We denote by AnnA0
(M) the annihilator ideal of M . The dimension of M as an

A0-module is given by dimA0
(M) = dim(A0/AnnA0

(M)). Let A0 be a local ring. In

general, M is not finitely generated as an A0-module. Here, the depth of M as an A0-

module is defined as follows; see [20, Definition 1.2.1]. Note that this coincides with the

one defined in [4, Definition 9.1.1].

Definition 2.1. Let (A0,m0) be local. If M is zero, then we set depthA0
(M) =

∞; otherwise, we define depthA0
(M) = sup{n ⩾ 0 | there is an M -regular sequence



Asymptotic stability of depths of localizations of modules 3

x = x1, . . . , xn in m0}. Also, if M is zero, then we set codepthA0
(M) = −∞; otherwise

we define codepthA0
(M) = dimA0

(M)− depthA0
(M).

In this paper, the following notation is used.

Definition 2.2. Let R be a ring, I an ideal of R, and n ⩾ 0 an integer. We set

• VR(I) = {p ∈ Spec(R) | I ⊆ p} and DR(I) = {p ∈ Spec(R) | I ⊈ p}.

• CM(R) = {p ∈ Spec(R) | dim(Rp) ⩽ depth(Rp)}.

• CA0
n (M) = {p ∈ Spec(A0) | codepth(A0)p(Mp) ⩽ n}.

• CMA0(M) = {p ∈ Spec(A0) | dim(A0)p(Mp) ⩽ depth(A0)p(Mp)}.

The subset CM(R) of Spec(R) is said to be the Cohen–Macaulay locus of R. The

subset CA0
n (M) of Spec(A0) is called the nth codepth locus of the A0-module M . We

call CMA0(M) the Cohen–Macaulay locus of the A0-module M . Note that the equalities

SuppA0
(M) = VA0

(AnnA0
(M)) and CMA0

(M) = CA0
0 (M) hold.

We now prepare several lemmas about graded modules, which are needed to prove

the results of the next section. Some of the results below are proved in [15] and [20].

The ring is assumed to be homogeneous throughout [20], but some lemmas for which

that assumption is not required in the proof are cited without proof.

Lemma 2.3. [20, Lemma 1.1.1] Suppose that A is homogeneous. Then there exists

an integer k such that AnnA0
(Mt) = AnnA0

(Mk) for all integers t ⩾ k.

Lemma 2.4. [20, Lemma 1.1.2] The function F : AssA(M) → AssA0
(M) defined

by F (P ) = P ∩A0 is well defined and surjective. In particular, AssA0
(M) is a finite set.

Lemma 2.5. [20, Lemma 1.1.3(2)] Put I = AnnA0(M). For any prime ideal p of

A0, there is an equality Ann(A0)p(Mp) = I(A0)p, and thus dim(A0)p(Mp) = ht(p/I). In

particular, we have SuppA0
(M) = VA0

(I).

Lemma 2.6. Let (A0,m0) be a local ring.

(1) [20, Lemma 1.2.2(1)] There is an equality dimA0(M) = sup{dimA0(Mi) | i ∈ Z}.

(2) [20, Lemma 1.2.2(2)] One has the equality depthA0
(M) = inf{depthA0

(Mi) | i ∈ Z}.

(3) Let 0 → N → M → L → 0 be an exact sequence of finitely generated graded A-

modules. Then

depthA0
(M) ⩾ min{depthA0

(N), depthA0
(L)}.

(4) Suppose that a sequence x = x1, . . . , xn of elements in m0 is an M -regular sequence.

Then we have

dimA0
(M) = dimA0

(M/xM) + n, and depthA0
(M) = depthA0

(M/xM) + n.
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Proof. (1): We have VA0
(AnnA0

(M)) = SuppA0
(M) =

∪
i∈Z SuppA0

(Mi).

(3): We can choose i ∈ Z such that depthA0
(M) = depthA0

(Mi) by (2). There is

an exact sequence 0 → Ni → Mi → Li → 0 of A0-modules. It follows from (2) and [4,

Proposition 1.2.9] that

depthA0
(Mi) ⩾ min{depthA0

(Ni), depthA0
(Li)} ⩾ min{depthA0

(N), depthA0
(L)}.

(4): The assertion follows from (1) and (2). ■

Lemma 2.7. Let p be a prime ideal of A0, and let I = AnnA0
(M).

(1) Suppose that a sequence x = x1, . . . , xn of elements in p is an Mp-regular sequence.

Then there exists f ∈ A0 \ p such that x is an Mf -regular sequence.

(2) The prime ideal p belongs to AssA0
(M) if and only if depth(A0)p(Mp) = 0.

(3) Suppose that n ⩽ depth(A0)p(Mp) < ∞. Then there is an Mp-regular sequence

x = x1, . . . , xn of elements in p such that htxA0 = n.

(4) If pM = 0, then Mf is a free (A0/p)f -module for some f ∈ A0 \ p.

(5) [15, Lemma 2.7(4)] If p is a minimal prime ideal of I, then
√

I(A0)f = p(A0)f for

some f ∈ A0 \ p.

Proof. (1): We may assume n = 1. Let φ be the multiplication map of M by

x1. The submodule kerφ of M is a finitely generated A-module, and (kerφ)p = 0. We

have (kerφ)f = 0 for some f ∈ A0 \ p, which means that x1 is an Mf -regular element.

(2): It follows from [18, Theorem 6.2] that p is in AssA0(M) if and only if p(A0)p is in

Ass(A0)p(Mp). Hence the “only if” part is trivial. In order to prove the “if” part, suppose

depth(A0)p(Mp) = 0. There is i ∈ Z such that depth(A0)p(Mi)p = depth(A0)p(Mp) = 0

by Lemma 2.6(2). The prime ideal p belongs to the subset AssA0
(Mi) of AssA0

(M).

(3): We prove the lemma by induction on n. There exists an Mp-regular sequence

x′ = x1, . . . , xn−1 of elements in p such that htx′A0 = n−1 by the induction hypothesis.

Note that n ⩽ depth(A0)p(Mp) ⩽ htp. Since AssA0
(M/x′M) is a finite set, we can choose

xn ∈ p such that it does not belong to all prime ideals belonging to AssA0(M/x′M) \
VA0(p) and all minimal prime ideals of x′A0. It follows from (2) and Lemma 2.6(4) that

the inequality depth(A0)p(M/x′M)p > 0 holds, and thus p is not in AssA0
(M/x′M). It

is easy to verify that x = x1, . . . , xn is as desired; see [18, Theorems 6.1(ii) and 6.2].

(4): We see that M is a finitely generated A/pA-module. Since A/pA is a finitely

generated A0/p-algebra, the assertion follows from [10, Lemma 8.1]. ■

Next, we state some basic lemmas about open subsets of the spectrum of rings. Below

is a helpful lemma to see if the locus is open, called the topological Nagata criterion.

Lemma 2.8. [18, Theorem 24.2] Let R be a ring and U a subset of Spec(R). Then

U is open if and only if the following two statements hold true.

(1) U is stable under generalization, that is, if p ∈ U and q ∈ Spec(R) with q ⊆ p, then

q ∈ U .
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(2) U contains a nonempty open subset of V(p) for all p ∈ U .

In general, it is not difficult to check that a given locus satisfies (1) of the above

lemma. Indeed, for any n ⩾ 0, the nth codepth locus of a module is stable under

generalization; see Lemmas 3.1 and 3.2. The following two lemmas and remark are

useful to verify whether a subset of Spec(R) satisfies (2).

Lemma 2.9. [15, Lemmas 2.5] Let R be a ring, p ∈ Spec(R), and f ∈ R \ p. Let

F : D(f) → Spec(Rf ) be the natural homeomorphism, S a subset of Spec(R), and T the

image of D(f)∩S by F . Then S contains a nonempty open subset of V(p) if and only if

T contains a nonempty open subset of V(pRf ).

Lemma 2.10. [15, Lemmas 2.6] Let R be a ring, I an ideal of R, and p ∈ V(I).

Let F : V(I) → Spec(R/I) be the natural homeomorphism, S a subset of Spec(R), and

T the image of V(I) ∩ S by F . Then S contains a nonempty open subset of V(p) if and

only if T contains a nonempty open subset of V(p/I).

Remark 2.11. The subset SuppA0
(M) = VA0

(AnnA0
(M)) of Spec(A0) is closed.

Therefore, if a prime ideal p of A0 is not in SuppA0
(M), then the codepth locus CA0

n (M)

contains a nonempty open subset DA0(AnnA0(M)) ∩VA0(p) of VA0(p) for any n ⩾ 0.

We close this section by stating an elementary lemma about open subsets.

Lemma 2.12. Let R be a ring, and let {U t
n}n⩾0,t∈Z be a family of open subsets

of Spec(R). Suppose that U t
n is contained in both U t+1

n and U t
n+1 for all t ∈ Z and all

n ⩾ 0. Then there is an integer k such that U t
n = Uk

n for all t ⩾ k and all n ⩾ 0.

Proof. There is an integer k1 such that U t
t = Uk1

k1
for all t ⩾ k1 since R is

noetherian. Also, there is an integer k2 such that U t
n = Uk2

n for all t ⩾ k2 and all

0 ⩽ n < k1. Put k = max{k1, k2}. For all t ⩾ k and all n ⩾ 0, we have U t
n = Uk

n by

considering the case 0 ⩽ n < k1 and the case k1 ⩽ n separately. ■

3. The openness of the codepth loci of graded modules

In this section, we study the openness of the codepth loci of graded modules. The

purpose of this section is to give a sufficient condition for the depths of localizations

of homogeneous components of a graded module to be eventually stable. As in the

previous section, we assume in this section that A =
⊕

i⩾0 Ai is a graded ring and that

M =
⊕

i∈Z Mi is a finitely generated graded A-module.

The following two lemmas are known results of Grothendieck [8, (6.11.5)] and

Rotthaus–Şega [20, Lemma 2.5], respectively. However, our proofs are simpler than

theirs.

Lemma 3.1. Let (R,m) be a local ring, p a prime ideal of R, and N a finitely

generated R-module. Then we have

codepthRp
(Np) ⩽ codepthR(N).
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Proof. We may assume that p belongs to SuppR(N). Let x = x1, . . . , xn be a

maximal N -regular sequence in p. There exists an associated prime ideal q of N/xN

containing p. By [18, Theorem 17.2], we obtain

depthR(N)− depthRp
(Np) ⩽ depthR(N)− n = depthR(N/xN) ⩽ dim(R/q)

⩽ dim(R/p) ⩽ dimR(N)− dimRp
(Np).

This says that the assertion holds. ■

Lemma 3.2. Let p and q be prime ideals of A0 with p ⊆ q. Then we have

codepth(A0)p(Mp) ⩽ codepth(A0)q(Mq).

Proof. By (1) and (2) of Lemma 2.6, we can take integers i, j, k, l ∈ Z such that

dim(A0)p(Mp) = dim(A0)p(Mi)p, depth(A0)p(Mp) = depth(A0)p(Mj)p,

dim(A0)q(Mq) = dim(A0)q(Mk)q, and depth(A0)q(Mq) = depth(A0)q(Ml)q.

It follows from Lemma 3.1 that

codepth(A0)p(Mp) = codepth(A0)q(Np) ⩽ codepth(A0)p(Nq) = codepth(A0)q(Mq)

as N := Mi ⊕Mj ⊕Mk ⊕Ml is a finitely generated A0-module. ■

We consider the openness of the codepth loci of a graded module to state the main

result of this paper. The following theorem is a graded version of [15, Theorem 5.4].

Theorem 3.3. Let p ∈ CMA0
(M)∩SuppA0

(M). If CM(A0/p) contains a nonempty

open subset of Spec(A0/p), then CMA0(M) contains a nonempty open subset of VA0(p).

Proof. Note we may replace A with A/AnnA(M) to assume SuppA0
(M) =

Spec(A0); see Lemma 2.10. Since p belongs to CMA0
(M) and SuppA0

(M) = Spec(A0),

we have d := depth(A0)p(Mp) = dim(A0)p(Mp) = htp. We can choose a sequence

x = x1, . . . , xd in p such that it is an Mp-regular sequence and htxA0 = d by Lemma

2.7(3). It follows from Lemma 2.7(5) that pr(A0)a is contained in x(A0)a for some

a ∈ A0 \ p and some r > 0. Lemma 2.7(1) yields that for some b ∈ A0 \ p, x is an

Mb-regular sequence. By assumption, (A0/p)c is Cohen–Macaulay for some c ∈ A0 \ p.
Set N = M/xM . Thanks to Lemma 2.7(4), for each 1 ⩽ i ⩽ r, there is di ∈ A0 \ p such

that (pi−1N/piN)di
is free as an (A0/p)di

-module. Put f = abcd1 · · · dr ∈ A0 \ p. We

can replace our ring A with its localization Af to prove the theorem; see Lemma 2.9.

Therefore, we may assume that the following conditions are satisfied.

(a) pr is contained in xA0. (In particular, p is the unique minimal prime ideal of xA0.)

(b) x is an M -regular sequence.

(c) A0/p is Cohen–Macaulay.

(d) pi−1N/piN is free as an A0/p-module for each 1 ⩽ i ⩽ r.
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We claim that CMA0
(M) contains VA0

(p). Let q ∈ VA0
(p). We obtain

ht(q/xA0) = ht(q/p) = depth(A0/p)q = depth(A0)q(p
i−1N/piN)q

for each 1 ⩽ i ⩽ r by (a), (c), and (d). Using (a) and Lemma 2.6(3), we see by induction

on i that for any 1 ⩽ i ⩽ r, depth(A0)q(p
r−iN)q ⩾ ht(q/xA0). It follows from Lemmas

2.5 and 2.6(4) that

depth(Mq) = depth(Nq) + d ⩾ ht(q/xA0) + d = htq ⩾ dim(Mq)

as htxA0 = d. This means that q belongs to CMA0
(M). ■

Below is a direct corollary of Theorem 3.3.

Corollary 3.4. Suppose that CM(A0/p) contains a nonempty open subset of

Spec(A0/p) for any p ∈ SuppA0
(M) ∩ CMA0

(M). Then CMA0
(M) is open.

Proof. It suffices to verify that CMA0(M) = CA0
0 (M) satisfies the two conditions

of Lemma 2.8. Lemma 3.2 yields that it is stable under generalization. Let p ∈ CMA0
(M).

If p belongs to SuppA0
(M), then CMA0

(M) contains a nonempty open subset of VA0
(p)

by Theorem 3.3. Otherwise, by Remark 2.11, CMA0
(M) contains a nonempty open subset

DA0
(AnnA0

(M)) ∩VA0
(p) of VA0

(p). ■

Corollary 3.4 is a graded version of [15, Corollary 5.5(1)]. When the base ring of

A/AnnA(M) is catenary, Theorem 3.3 can be extended as follows.

Theorem 3.5. Let n ⩾ 0 be an integer and let p ∈ CA0
n (M)∩SuppA0

(M). Suppose

that that the ring A0/AnnA0
(M) is catenary. If CM(A0/p) contains a nonempty open

subset of Spec(A0/p), then CA0
n (M) contains a nonempty open subset of VA0

(p).

Proof. We prove the theorem by induction on n. We have already shown the

case where n = 0 in Theorem 3.3. Let n > 0 and d = depth(A0)p(Mp). We may assume

codepth(A0)p(Mp) = n by the induction hypothesis. Thanks to Lemma 2.7(1), there is a

sequence x = x1, . . . , xd in p and a ∈ A0 \ p such that x is an Ma-regular sequence. We

can choose b ∈ A0 \ p such that b ∈ q for any minimal prime ideal q of AnnA0(M), which

is not contained in p. Then p(A0)b contains any minimal prime ideal of Ann(A0)b(Mb).

SetN = M/xM . Note that the p-torsion submodule Γp(N) ofN is finitely generated

and graded as an A-module. We easily see that SuppA0
(Γp(N)) = VA0(p) as p belongs

to AssA0
(N); see Lemmas 2.6(4) and 2.7(2). Lemma 2.6(4) yields the equalities n =

codepth(Np) = dim(Np). Since there is an inequality

dim(A0)p(Γp(N))p = 0 < n = dim(Np),

it is seen that p is in CA0
0 (Γp(N)) and dim(N/Γp(N))p = dim(Np) = n. On the other

hand, Lemma 2.7(2) implies depth(N/Γp(N))p > 0. Thus p belongs to CA0
n−1(N/Γp(N)).

We can take c, d ∈ A0 \ p such that CA0
0 (Γp(N)) contains DA0

(cA0) ∩ VA0
(p) and

CA0
n−1(N/Γp(N)) contains DA0(dA0) ∩VA0(p) by the induction hypothesis.
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Put f = abcd ∈ A0 \ p. We can replace our ring A with its localization Af to prove

the theorem; see Lemma 2.9. We may assume that the following conditions are satisfied.

(a) There is an M -regular sequence x = x1, . . . , xd in p.

(b) The prime ideal p contains any minimal prime ideal of AnnA0
(M).

(c) The set VA0
(p) is contained in both CA0

0 (Γp(N)) and CA0
n−1(N/Γp(N)).

We prove that VA0
(p) is contained in CA0

n (M). Let q ∈ VA0
(p). By (c), we have

depth(Γp(N))q ⩾ dim(Γp(N))q and depth(N/Γp(N))q ⩾ dim(N/Γp(N))q − (n− 1).

The ring A0/Ann(M) is catenary. So, by (b) and Lemma 2.5, we obtain equalities

ht(q/p) = ht(q/Ann(M))− ht(p/Ann(M)) = dim(Mq)− dim(Mp) = dim(Mq)− (n+ d).

Note that Supp(N/Γp(N)) = Supp(N) since Supp(N/Γp(N)) contains VA0
(p). We get

dim(N/Γp(N))q = dim(Nq) = dim(Mq)− d.

From the above, the inequalities

depth(Γp(N))q ⩾ dim(Γp(N))q = ht(q/p) = dim(Mq)− (n+ d) and

depth(N/Γp(N))q ⩾ dim(N/Γp(N))q − (n− 1) = dim(Mq)− (n+ d) + 1

hold. Therefore, we observe that

depth(Mq) = depth(Nq) + d ⩾ min{depth(Γp(N))q, depth(N/Γp(N))q}+ d

⩾ dim(Mq)− n

by Lemma 2.6(3), which means that q belongs to CA0
n (M). ■

For the codepth loci, the same proof yields the analogous result as Corollary 3.4.

Corollary 3.6. Suppose that the ring A0/AnnA0(M) is catenary.

(1) Let n ⩾ 0 be an integer. Suppose that CM(A0/p) contains a nonempty open subset

of Spec(A0/p) for any p ∈ SuppA0
(M) ∩ CA0

n (M). Then CA0
n (M) is open.

(2) Suppose that CM(A0/p) contains a nonempty open subset of Spec(A0/p) for any

p ∈ SuppA0
(M). Then CA0

n (M) is open for any integer n ⩾ 0.

We study the asymptotic behavior of the depths of localizations of homogeneous

components of a graded module. We prepare the following basic lemma to state Lemma

3.8. When the ring is excellent, Lemma 3.7 is proved in Section 4 of [20]. Here we give

a proof that does not require that assumption.

Lemma 3.7. Suppose that A is homogeneous and that (A0,m0, k0) is local. Then

there exists an integer k such that depthA0
(Mt) = depthA0

(Mk) for all integers t ⩾ k.
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Proof. For all integers t ∈ Z, the equalities

depthA0
(Mt) = inf{i | ExtiA0

(k0,Mt) ̸= 0} = inf{i | AnnA0(Ext
i
A0

(k0,Mt)) ̸= A0}

hold. It is seen that ExtiA0
(k0,M) ≃

⊕
t∈Z Ext

i
A0

(k0,Mt) is a finitely generated graded

A-module for all i ⩾ 0. (Compute them using a minimal free resolution of the A0-module

k0.) Lemma 2.3 implies that there is k such that the equalities AnnA0
(ExtiA0

(k0,Mt)) =

AnnA0
(ExtiA0

(k0,Mk)) hold for all t ⩾ k and all 0 ⩽ i ⩽ dim(A0), which means that the

assertion holds. ■

Applying the ideas of the proof of [20, Theorem 4.2], we can prove the result below,

which extends it.

Lemma 3.8. Suppose that A is homogeneous. Denote by Nt the graded A-module⊕
i⩾t Mi for each t ∈ Z. If CA0

n (Nt) is open for all t ∈ Z and all n ⩾ 0, then there is an

integer k such that for all integers t ⩾ k and all prime ideals p of A0,

depth(A0)p(Mt)p = depth(A0)p(Mk)p.

Proof. It follows from (1) and (2) of Lemma 2.6 that CA0
n (Nt) is contained in

both CA0
n (Nt+1) and CA0

n+1(Nt) for all t ∈ Z and all n ⩾ 0. By Lemmas 2.3 and 2.12, we

can choose an integer l ∈ Z such that

J := AnnA0
(Mt) = AnnA0

(Ml) and Un := CA0
n (Nt) = CA0

n (Nl)

for all t ⩾ l and n ⩾ 0. Note that any prime ideal of A0 belongs to Un for some n ⩾ 0.

Since U0 ⊆ U1 ⊆ · · · is an ascending chain of open subsets, there exists m ⩾ 0 such

that Um =
∪

n⩾0 Un = Spec(A0). For each 0 ⩽ n ⩽ m − 1, we can write VA0
(In) =

Spec(A0) \ Un for some ideal In of A0. The subset
∪m−1

n=0 AssA0
(A0/In) of Spec(A0) is

finite. It follows from Lemma 3.7 that we can take k ⩾ l such that

depth(Mt)q = depth(Mk)q (3.8.1)

for any t ⩾ k, and any q ∈
∪m−1

n=0 AssA0
(A0/In). For any p ∈ VA0

(J) and any t ⩾ k, we

have the equality

dim(Mt)p = dim(Mk)p. (3.8.2)

Let p be a prime ideal of A0. We claim that depth(Mt)p = depth(Mk)p for all t ⩾ k.

We may assume that p contains J . If p belongs to U0, then we have

depth(Mt)p ⩽ dim(Mt)p ⩽ dim(A0)p(Nk)p ⩽ depth(A0)p(Nk)p ⩽ depth(Mt)p

for all t ⩾ k by (1) and (2) of Lemma 2.6. This means that the claim holds. If p does

not belong to U0, then codepth(A0)p(Nk)p = n + 1 for some 0 ⩽ n ⩽ m − 1. As p is

in VA0(In), we see that q ⊆ p for some q ∈ AssA0(A0/In). Since q is not in Un, we get

n + 1 ⩽ codepth(Nk)q, and in particular, q contains J . On the other hand, by (1) and

(2) of Lemma 2.6, (3.8.1), and (3.8.2), it is seen that for all t ⩾ k,
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codepth(Nk)q = codepth(Mt)q.

Also, it is follows (1) and (2) of Lemma 2.6 and Lemma 3.1 that for all t ⩾ k,

codepth(Mt)q ⩽ codepth(Mt)p ⩽ codepth(Nk)p = n+ 1.

Hence we get codepth(Mt)p = n+ 1 for all t ⩾ k. The claim follows from (3.8.2). ■

4. Asymptotic stability of depths of localizations of modules

In this section, we prove the main result of this paper. All of the results of Theorem

1.1 are given as corollaries of the theorem below.

Theorem 4.1. Let R be a ring, I an ideal of R, and M a finitely generated R-

module. Suppose that that the ring R̄ := R/(I+AnnR(M)) is catenary and that CM(R/p)

contains a nonempty open subset of Spec(R/p) for any p ∈ SuppR(R̄). Then there is an

integer k > 0 such that for all integers t ⩾ k and all prime ideals p of R,

depth(M/ItM)p = depth(M/IkM)p.

Proof. The associated graded ring A =
⊕

i⩾0 I
i/Ii+1 is homogeneous. Then⊕

i⩾0 I
iM/Ii+1M is a finitely generated graded A-module. By Corollary 3.6(2) and

Lemma 3.8, we find an integer m > 0 such that

depth(ItM/It+1M)p = depth(ImM/Im+1M)p (4.1.1)

for all integers t ⩾ m and all prime ideals p of R. For any i > 0 and any p ∈ Spec(R),

X := SuppR(R̄) = SuppR(M/IiM) and dim(M/IiM)p = dim(R̄)p. (4.1.2)

Applying Corollary 3.6(2) to A = A0 = R, we see that U t
n :=

∪
m⩽i⩽t C

R
n (M/IiM) is

open for any t ⩾ m and any n ⩾ 0. Lemma 2.12 implies that there is an integer l ⩾ m

such that U t
n = U l

n for all t ⩾ l and all n ⩾ 0. Put k = l + 1. By (4.1.2), we have

only to show that the following claim holds. Indeed, it means that codepth(M/ItM)p =

codepth(M/IkM)p for all t ⩾ k and all prime ideals p of R.

Claim. CR
n (M/ItM) = CR

n (M/IkM) for all t ⩾ k and all n ⩾ 0.

Fix an integer n ⩾ 0. Let p be a prime ideal of R belonging to CR
n (M/ItM) for

some t ⩾ k. We prove that p is in CR
n (M/IiM) for all i ⩾ k. We may assume that p is in

X. By (4.1.1) and (4.1.2), we obtain r := depth(IkM/Ik+1M)p = depth(IiM/Ii+1M)p
and d := dim(M/IkM)p = dim(M/IiM)p for all i ⩾ m. The prime ideal p belongs to

CR
n (M/IsM) for some m ⩽ s ⩽ l since U t

n = U l
n, which means depth(M/IsM)p ⩾ d−n.

For each integer i ⩾ s, there is an exact sequence

0 → (IiM/Ii+1M)p → (M/Ii+1M)p → (M/IiM)p → 0.

Suppose r < d−n. It follows from [4, Proposition 1.2.9] and by induction on i that for all
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i ⩾ s, depth(M/Ii+1M)p = r. In particular, we have depth(M/ItM)p = r < d− n, that

is, p is not in CR
n (M/ItM). This is a contradiction. Hence, we get r ⩾ d− n. Similarly,

we see by induction on i that depth(M/IiM)p ⩾ d − n for any i ⩾ s. This means p

belongs to CR
n (M/IiM) for all integers i ⩾ s. The proof of claim is now completed. ■

We recall a few definitions of notions used in our next result.

Definition 4.2. A ring R is said to be quasi-excellent if the following two condi-

tions are satisfied.

(1) The regular locus Reg(S) = {p ∈ Spec(S) | the local ring Sp is regular} of S is open

for all finitely generated R-algebras S.

(2) All the formal fibers of Rp are regular for all prime ideals p of R.

A ring R is said to be excellent if it is quasi-excellent and universally catenary. A

ring in which “regular” is replaced with “Cohen–Macaulay” and “Gorenstein” in both

conditions (1) and (2) in the definition of an excellent ring is called a CM-excellent ring

and an acceptable ring, respectively.

Typical examples of a CM-excellent ring include an excellent ring, an acceptable

ring, and a homomorphic image of a Cohen–Macaulay ring; see [14], [17] for instance.

Applying the above theorem, we can prove the main result of this paper.

Corollary 4.3. Let R be a ring and I an ideal of R. Let M be a finitely generated

R-module. Put R̄ = R/(I +AnnR(M)). Then there is an integer k > 0 such that

depth(M/ItM)p = depth(M/IkM)p

for all integers t ⩾ k and all prime ideals p of R in each of the following cases.

(1) R̄ is CM-excellent. (2) R̄ is semi-local. (3) M or M/InM is Cohen–Macaulay for

some n > 0.

Proof. (1): The assertion follows immediately from Theorem 4.1.

(2): Consider first the case when R is local. Let R̂ be the completion of R and M̂

the completion of M . For any prime ideal p of R, there is a prime ideal q of R̂ such that

p = q ∩R as R̂ is faithfully flat over R. It follows from [4, Proposition 1.2.16(a)] that

depthRp
(M/ItM)p = depthR̂q

(M̂/ItM̂)q − depthR̂q
(R̂q/pR̂q)

for any t > 0. The assertion follows from Theorem 4.1 since R̂ is (CM-)excellent.

Next, we handle the case where R is general. Let p1, · · · pr be all maximal ideals that

are in SuppR(R̄). For all 1 ⩽ i ⩽ r, there is an integer ki > 0 such that depth(M/ItM)p =

depth(M/IkiM)p for all t ⩾ ki and all prime ideals p which is contained in pi because

Rpi is local. Setting k = max{ki | 1 ⩽ i ⩽ r} completes the proof.

(3): Suppose that there is a Cohen–Macaulay module N such that SuppR(N) con-

tains SuppR(R̄). It is seen from [4, Theorem 2.1.3(b)] and the proof of [4, Theorem

2.1.12] that R̄ is catenary. Since CMR(N) = Spec(R) is open, [15, Theorem 5.4] implies
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that for any p ∈ SuppR(R̄), CM(R/p) contains a nonempty open subset of Spec(R/p).

Thus the assertion follows from Theorem 4.1. ■

The assumptions about the ring R̄ in Theorem 4.1 and Corollary 4.3 are satisfied if

they hold for R. The above corollary recovers [20, Theorem 5.3]. Indeed, in that result,

it was assumed that R is excellent, M is Cohen–Macaulay, and I is not contained in any

minimal prime ideal of M .

By using the technique of the proof of Theorem 4.1, the depths of localizations of

M/In+1M can be measured by those of InM/In+1M for each integer n. We provide

two examples where Corollary 4.3 is applicable, but [20, Theorem 5.3] is not.

Example 4.4. Let R = KJx, y, z, wK/(xy − zw) be a quotient of a formal power

series ring over a field K. Take the ideal I = (x) of R and the finitely generated R-

module M = R/(w). The module M is Cohen–Macaulay, and all elements of I are

zero-divisors of M . Then M is also a module over A = KJx, y, zK. We see that M ≃
A/(xy), M/InM ≃ A/(xn, xy) and InM/In+1M ≃ A/(x, y). Let p be a prime ideal

of A. A similar argument to the latter part of the proof of Theorem 4.1 shows that

depth(M/InM)p = htp − 2 for any integer n ⩾ 2 if p contains the ideal (x, y) of A;

otherwise, we have (M/In+1M)p ≃ (M/InM)p for any integer n ⩾ 1. This says that the

integer k = 2 satisfies the assertion of Corollary 4.3.

Example 4.5. Let R = K[x, y, z] be a polynomial ring over a field K. Take the

ideal I = (x) of R and the finitely generated R-module M = R/(xmy, xmz), where

m > 0. The ring R is regular but not local. All elements of I are zero-divisors of M .

The R-module M is not Cohen–Macaulay; see [4, Theorem 2.1.2(a)]. We have

M/InM ≃ R/(xn, xmy, xmz), InM/In+1M ≃

{
R/(x) (n < m)

R/(x, y, z) (n ⩾ m).

Let p be a prime ideal of R. Suppose p = (x, y, z). We get depth(M/InM)p = 2 for

any 0 ⩽ n ⩽ m. On the other hand, we obtain depth(M/InM)p = 0 for any n > m

since the submodule In−1M/InM of M/InM is isomorphic to R/p. It is seen that

(M/In+1M)p ≃ (M/InM)p for any integer n ⩾ m if p ̸= (x, y, z). This says that the

integer k = m+ 1 satisfies the assertion of Corollary 4.3.

For modules all of whose localizations have the same depth, the notion of a regular

sequence is consistent.

Proposition 4.6. Let R be a ring. Let M and N be finitely generated R-modules.

Suppose that depth(Mp) = depth(Np) for all prime ideals p of R. Then, for any sequence

x = x1, . . . , xn in R, x is an M -regular sequence if and only if it is an N -regular sequence.

In particular, grade(J,M) = grade(J,N) for any ideal J of R.

Proof. We observe that SuppR(M) = SuppR(N). We prove the proposition

by induction on n. It is seen by assumption that for any x ∈ R, SuppR(M/xM) =

SuppR(N/xN) and AssR(M) = AssR(N). This says that the assertion of the proposition
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holds in the case n = 1. Suppose n > 1. We may assume that x′ = x1, . . . , xn−1 is a reg-

ular sequence on both M and N . Then we see that depth(M/x′M)p = depth(N/x′N)p
for all prime ideals p of R. Applying the case n = 1 shows the assertion. ■

The following result is a direct corollary of Corollary 4.3 and Proposition 4.6. It

improves [16, Corollary 9] and partly refines [2, Theorem (2)(i)]. Indeed, unlike those

results, the integer k does not depend on the ideal J in Corollary 4.7.

Corollary 4.7. Let R be a ring, I an ideal of R, and M a finitely generated R-

module. Suppose that we are in one of the cases of Corollary 4.3. Then there is k > 0 such

that for all t ⩾ k and all sequences x = x1, . . . , xn in R, x is an M/ItM -regular sequence

if and only if it is an M/IkM -regular sequence. In particular, grade(J,M/ItM) =

grade(J,M/IkM) for all integers t ⩾ k and all ideals J of R.

We remark that the theorem proved by Brodmann [1] is recovered from this corollary.

Remark 4.8. Let R be a ring, I an ideal of R, and M a finitely generated R-

module. Lemma 2.4 asserts that
∪

i⩾0 AssR(I
iM/Ii+1M) is a finite set. By induction on

n > 0, it is seen that AssR(M/InM) is contained in
∪n−1

i=0 AssR(I
iM/Ii+1M); see [18,

Theorem 6.3]. The set X :=
∪

n>0 AssR(M/InM) is also a finite set. It follows from

Corollary 4.7 that there is an integer k > 0 such that depth(M/ItM)p = depth(M/IkM)p
for all integers t ⩾ k and all prime ideals p of R belonging to X. This says that for all

integers t ⩾ k, AssR(M/ItM) = AssR(M/IkM).

Finally, one application of the main result is described.

Remark 4.9. Let (R,m) be a local ring or standard graded ring (in which case m

is the irrelevant ideal), I an ideal of R, and d = dim(R). The symbol λ denotes length.

The question of when the limit

lim
n→∞

λ(Hi
m(R/In))

nd

exists and what value its limit takes has been actively studied; see [6], [7], [9], [11], [12]

for instance. In particular, as in [7, Question 1.1], one of the most important problems is

when does Hi
m(R/In) have finite length for all large n? Suppose that R is CM-excellent.

It follows from [3, Proposition 9.1.2] and [13, Theorem 1.1] that for any n, the equality

inf{i | Hi
m(R/In) is not finitely generated}

= inf{depth(R/In)p + ht(m/p) | p ∈ Spec(R) \ {m}}

holds. Corollary 4.3 deduces that the right side of the equation attains a stable constant

value for all large n. Therefore, we see that for large n, the smallest integer t such that

λ(Ht
m(R/In)) = ∞ is a constant value independent of n. This means that for any i < t,

Hi
m(R/In) has finite length for all large n.
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