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Abstract. In this paper, for each d > 0, we study the minimum integer h3,2d ∈ N for which
there exists a complex polarized K3 surface (X,H) of degree H2 = 2d and Picard number
ρ(X) := rankPicX = h3,2d admitting an automorphism of order 3. We show that h3,2 ∈ {4, 6}
and h3,2d = 2 for d > 1. Analogously, we study the minimum integer h∗

3,2d ∈ N for which
there exists a complex polarized K3 surface (X,H) as above plus the extra condition that the
automorphism acts as the identity on the Picard lattice of X. We show that h∗

3,2d is equal to
2 if d > 1 and equal to 6 if d = 1. We provide explicit examples of K3 surfaces defined over Q
realizing these bounds.

1. Introduction

The study of automorphisms of K3 surfaces has seen a very intense activity in the last 40 years.
In [8, 10] Nikulin and Stark proved that a group acting purely non-symplectically on an algebraic K3
is cyclic and finite. More in particular, Nikulin proves that such a group can have order at most 66; if
the group has prime order, then its maximal order is 19, [9, Theorem 0.1.c), Corollary 3.2]. In these
notes we consider non-symplectic automorphisms of order 3, a topic extensively treated in [1, 11].
In particular, we focus on the interplay between the existence of non-symplectical automorphism of
order 3, a polarization of given degree, and the Picard number of the surface, as already done in [3]
for non-symplectic involutions.

More precisely, let (X,H) denote a complex polarized K3 surface of degree 2d, that is, H is an
ample divisor of X and H2 = 2d. Assume that X admits an automorphism α ∈ AutX of prime
order p. Then α induces an action α∗ on H2,0(X) = ⟨ω⟩, and hence α∗ = ζω, with ζp = 1. In this
paper we focus on the case p = 3. In this case, if ζ = 1 then α is called symplectic and ρ(X) ≥ 13,
see [9, §10]; if ζ ̸= 1, that is, ζ is a primitive 3-rd root of unity then α is called non-symplectic and
ρ(X) ≥ 2, see [1, 11]. As done in [3], one may ask when is this lower bound realized depending on
the degree of the polarization.

Definition 1.1. Let
H3,2d := {(X,H,α)}

denote the set of complex polarized K3 surfaces (X,H) such that H2 = 2d > 0 and X admits an
automorphism α of order 3, one can then define

h3,2d = min
X∈H3,2d

{ρ(X)} .

In this work we prove the following result.

Theorem 1.2. If d > 1, then h3,2d = 2. For d = 1, we have h3,2d = h3,2 ∈ {4, 6}.
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To prove that h3,2d = 2 for every d > 1 we will only consider non-symplectic automorphisms
because, as noted above, symplectic automorphisms force the Picard number to be higher than
desired. We first show that if X is a K3 surface of degree 2d with a (non-symplectic) automorphism
of order 3, then ρ(X) ≥ 2. Then we complete the proof by providing an explicit example of a K3
surface with an automorphism of order 3, a polarization of degree 2d > 2 and Picard number 2.
To provide such example for every d > 1, it is enough to consider a single K3 surface with an

automoprhism of order 3 and Picard lattice isometric to U =

(
0 1
1 0

)
, because this lattice admits

ample divisors of degree 2d for every d > 1.
The above argument leaves open the case for d = 1. Indeed for h3,2 we only have a partial answer.

The partiality of this result is due to the wide range of possibilities that arise when studying the
Picard lattice of a K3 surface with a non-symplectic automorphism of order 3 and a polarization
of degree 2. In this case, on the one hand it is easy to show that the Picard number has to be
larger than 2 and that there are examples of such surfaces with Picard number 6; on the other hand,
it is hard to control the ample cone of all the possible Picard lattices with rank 4 and we could
neither find in the literature nor construct examples of K3 surfaces of degree 2 and Picard number 4
admitting an automorphism of order 3. See Remark 3.4 for more details.

The impasse can be overcome if we allow for one extra hypothesis, in the spirit of [11]: we assume
that α acts as the identity on the Picard lattice. As we will see in §4, this is equivalent to considering
‘generic’ K3 surfaces with the desired properties. This extra assumption leads to the following
definitions.

Definition 1.3. We define

H∗
3,2d := {(X,H,α) ∈ H3,2d | α∗

|PicX = id}
and

h∗
3,2d = min

X∈H∗
3,2d

{ρ(X)} .

Clearly h∗
3,2d ≥ h3,2d. We then prove the following result.

Theorem 1.4. The following equalities hold:

h∗
3,2d =

{
6 if d = 1 ,

2 if d > 1 .

The first equality follows almost immediately from the first statement of Theorem 1.2; the second
equality builds upon the second statement: in this case we only have two possible lattices of rank 4
and we show that none of them admits a polarization of degree 2. The crucial ingredient for the
proofs of all the above results is the classification of the fixed locus of an automorphism of order 3,
provided by Artebani and Sarti in [1], see Theorem 2.6.

Remark 1.5. The problem treated in this paper naturally generalizes to any prime order p: for
any prime p one can define Hp,2d and hp,2d substitutig 3 with p in Definition 1.1. In [9], Nikulin
proves that if α is a non-symplectic automorphism of prime order p on a K3 surface, then p ≤ 19,
see [9, Theorem 3.1(c)]. Using the classification of non-symplectic automorphisms of prime order by
Artebani, Sarti, Taki [2], one might try to compute hp,2d for every prime p ≤ 19 and for every d ≥ 1.
This is indeed a joint work in progress with Wim Nijgh and Pablo Quezada Mora.

The paper is structured as follows: in §2 we briefly review the background of complex K3 surfaces
with an automorphism of order 3; in §3 we prove Theorem 1.2; finally, Theorem 1.4 is proved in §4.
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2. Projective K3 surfaces with a non-symplectic automorphism of order 3

There are several works on complex K3 surfaces with an automorphism of order 3, in these notes
we will mostly use the results presented in [1].

Let X be a complex projective K3 surface and assume it admits an automorphism α ∈ AutX of
order 3. Also assume that α is non-symplectic. Hence α3 = 1 and α∗(ω) = ζω, where ω is the class
generating H2,0(X) and ζ is a primitive third root of unity. In what follows, ζ will always denote a
primitive third root of unity. Recall that if L is a lattice, we denote by L∗ := Hom(L,Z) its dual
lattice and by AL = L∗/L its discriminant group. Notice that α induces an isometry of the lattice
H2(X,Z), which we will denote by α∗. As PicX can be viewed as a sublattice of H2(X,Z), we will
denote by α∗ also the isometry of PicX induced by α.

Definition 2.1. We define N(α) := (H2(X,Z))α∗
, the sublattice of H2(X,Z) fixed by α∗.

Definition 2.2. Let E = Z[ζ] denote the ring of Eisenstein integers. A E-lattice is a couple (L, σ)
where L is a lattice and σ is a fixed-point-free isometry of order 3 on L. If σ acts as the identity on
AL, then (L, σ) is called an E∗-lattice.

Proposition 2.3. Let (X,α) be a complex K3 surface with a non-symplectic automorphism of
order 3. Then

(1) N(α) is a primitive 3-elementary sublattice of PicX;
(2) (N(α)⊥, α∗) is a E∗-lattice, where N(α)⊥ is the orthogonal complement of N(α) inside

H2(X,Z);
(3) (TX , α∗) is a E-sublattice of N(α)⊥, where TX denotes the transcendental lattice of X.

Proof. This is the reformulation of [8, Theorem 0.1] and [7, Lemma 1.1] as in [1, Theorem 1.4]. □

Lemma 2.4. The following statements hold:
(1) Any E-lattice has even rank;
(2) Any E∗-lattice is 3-elementary.

Proof. This is [1, Lemma 1.3]. □

Corollary 2.5. Let (X,α) be a complex K3 surface with a non-symplectic automorphism of order 3.
Then ρ(X) and rkN(α) are even.

Proof. By Proposition 2.3 we have that (TX , α∗) is a E-lattice. Then from Lemma 2.4 it follows
that rkTX is even. As ρ(X) = 22− rkTX , we conclude the argument.

The same argument applied to N(α)⊥ shows that rkN(α) is also even. □

The main result of [1] is the complete classification of the K3 surfaces (X,α) in terms of the fixed
loci Fixα ⊂ X and N(α) ⊂ PicX. Moreover, for each case they also provide a projective model
realizing it. Their results can be summarized as follows.
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Theorem 2.6. [1, Theorems 2.8 and 3.4] Let (X,α) be a complex K3 surface with an automorphism
α of order 3. Then Fixα consists of n ≤ 9 points and k ≤ 6 curves. The couple (n, k) uniquely
determines N(α). All the possible triples (n, k,N(α)) are listed in [1, Table 2].

Conversely, for every triple (n, k,N(n, k)) in [1, Table 2] there exists a complex K3 surface Xn,k

with a non-symplectic automorphism α of order 3 such that Fixα consists of n points and k curves
and PicXn,k = N(α) ∼= N(n, k). For each triple (n, k,N(n, k)) a projective model of such Xn,k is
given.

As we are only interested in K3 surfaces with low Picard number, in Table 1 we only include the
first entries of [1, Table 2], omitting the transcendental lattice and indicating the type of projective
model provided by Artebani and Sarti.

n k N model for Xn,k

0 1 U(3) Quadric ∩ cubic ⊂ P4

2 U Weierstrass model
1 1 U(3)⊕A2 Quartic in P3

2 U ⊕A2 Weierstrass model
2 1 U(3)⊕A⊕2

2 Double cover of P2

2 U ⊕A⊕2
2 Weierstrass model

Table 1. Table of possible cases of (n, k,N(α)) for (X,α) with rkN(α) ≤ 6. In
the last column we indicate the type of projective model provided in [1].

This result is very convenient because it tells us where to look in order to find polarized K3
surfaces of any degree admitting an automorphism of order 3, as shown in the following sections.

Remark 2.7. The K3 surfaces with a given marking and an automorphism of order 3 form a
subfamily of K3 surfaces with the same marking. To see this, let (X,α) be a very generic complex
K3 surface with a non-symplectic automorphism α of order 3.

Let V denote the C-vector space given by H2(X,Z) ⊗ C. Then α∗ acts on V and its action
induces an orthogonal decomposition of V into eigenspaces:

V = V1 ⊕ Vζ ⊕ Vζ2 .

As α is non-symplectic we can assume that H0,2(X) ⊆ Vζ2 . We know that N(α) ⊆ PicX by Propo-
sition 2.3.(1); as we assumed X to be very generic, we have that PicX = N(α) = V1 and hence
TX ⊗ C = Vζ ⊕ Vζ2 . As Vζ and Vζ2 are swapped by α∗, they have the same dimension, and so we
conclude that

rkTX = dim(TX ⊗ C) = 2 dimVζ .

This means that if (X,α) is a K3 surface with an automorphism of order 3, its period ω lies in P(Vζ)
which has dimension

dimP(Vζ) = (rkTX)/2− 1 = 10− ρ(X)/2.

On the other hand, if we just consider a marked K3 surface X with PicX ∼= L, without any other
assumption, then the period of X will lie in

{ω ∈ P(TX ⊗ C) : ⟨ω, ω⟩ = 0 , ⟨ω, ω̄⟩ > 0 },

which has dimension rkTX − 2 = 20− ρ(X).
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3. Proof of the first theorem

Throughout this section, let X be the complex projective elliptic K3 surface defined by

(1) X : y2 = x3 + p(t) ,

with p(t) a polynomial of degree 12 with only simple roots. It is easy to see that the map
α : (x, y, t) 7→ (ζx, y, t) defines an automorphism of order 3 on X. We also assume p(t), and hence
X, to be generic.

Lemma 3.1. (1) X admits an elliptic fibration;
(2) PicX = ⟨F,O⟩ ∼= U , where F is the class of the fiber of the elliptic fibration and O is the

class of the unique section.
(3) α∗(F ) = F and α∗(O) = O, that is, N(α) = PicX.

Proof. The existence of the elliptic fibration is immediate from (1). It is also easy to see that the
Gram matrix of ⟨F,O⟩ is (

0 1
1 −2

)
,

and hence U ∼= ⟨F,O⟩ ⊆ PicX. As X is assumed to be generic, we also have that ⟨F,O⟩ = PicX,
see [1, Proposition 4.2, Theorem 5.6]. The third statement is then just an immediate consequence of
the second, as by [1, Proposition 4.2] we have that N(α) ∼= U ∼= PicX. □

Proposition 3.2. Let e, f be the generators of U ∼= PicX such that e2 = f2 = 0 and e.f = 1.
Then, up to a choice of signs, the ample cone of PicX is given by the divisors D = xe+ yf such
that y > x > 0.

Proof. Notice that in U there are only two −2-classes: ±(e− f). Assume O = (e− f) is effective.
Hence O is the only effective −2-curve of S. The positive cone of X is given by divisors xe+ yf
such that xy > 0. Hence the ample cone is given by divisors D = xe+ yf such that xy > 0 and
D.(e− f) > 0. As D.(e− f) = −x+ y, we obtain the desired statement. □

We are now ready to prove the first theorem.

Proof of Theorem 1.2. To prove the first statement, consider X defined in (1). Let e, f denote
two generators of U ∼= PicX as in Proposition 3.2, and consider the divisor D = e + df . Then,
by Proposition 3.2, D ∈ PicX is ample because d > 1. As D2 = 2d and X has an automorphism
of order 3 then X ∈ H3,2d and hence h3,2d ≤ 2. As in general h3,2d ≥ 2 (it follows immediately
from Theorem 2.6), we conclude that h3,2d = 2.

To prove the second statement, consider (Y,H, α) ∈ H3,2 and let N(α) ⊂ PicY be the fixed locus
of α∗. As the the fixed locus of α is not empty [1, Theorem 2.2] we have that ρ(Y ) ≥ rkN(α) ≥ 2.
If ρ(Y ) = 2 it follows that PicY = N(α) = U or U(3) (Theorem 2.6). In both cases PicY does not
admit an ample divisor of degree 2, hence a contradiction with the hypothesis that H2 = 2. From
this it follows that h3,2 > 2.

On the other hand, from Table 1 we see that there exists a complex K3 surface Y with an
automorphism σ of order 3 and PicY = N(σ) ∼= U(3)⊕A⊕2

2 and this Y can be realized as double
cover of P2, i.e., it admits a polarization of degree 2. From this it follows that h3,2 ≤ 6.

As the Picard lattice of a K3 surface with a non-symplectic automorphism of order 3 is always
even (Corollary 2.5), we conclude that h3,2 ∈ {4, 6}, proving the second statement. □
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Remark 3.3. We are left to show that, for every integer d > 1, the bound h3,2d = 2 can be attained
over Q. In fact, a priori X is only defined over C. One might expect that for a random choice of
rational coefficients of p(t) one still obtains a K3 surface with Picard number 2. A practical problem
arises though: computing the Picard number of a K3 surface given in its Weierstrass form is not
easy.

Luckily we can use the beautiful K3 surface

X66 : y
2 = x3 + t(t11 − 1)

considered by Kondo in [5], that is defined over Q. This surface has the remarkable property of
being the unique K3 surfaces (up to isomorphism) to admit a Z/66Z-action, hence admitting an
automorphism of order 3. The Picard lattice of X66 is indeed U [5, Example 3.0.1].

Remark 3.4. Assume (Y,H, α) is in H3,2. As we will see in the next section, if

PicY = N(α)

then ρ(Y ) ≥ 6. Unfortunately, the above equality does not need to always hold, for instance see
Example 3.5. Therefore at the moment we cannot exclude that ρ(Y ) = 4. In this case, PicY is a
finite index overlattice of N(α)⊕ L, where L is the orthogonal complement of N(α) in PicY . From
Table 1, we know that N(α) is either U or U(3). Notice that if N(α) = U , then PicY = N(α)⊕ L,
see [4, Example 14.0.6]. Moreover, as L is not contained in N(α), the isometry α∗ of PicY induces
an isometry of order 3 on L. Hence L is a negative definite lattice of rank 2 with an isometry of
order 3: by [6, Lemma 6.11], it follows that L ∼= A2(j) for some j ≥ 1. This means that PicY is
either U ⊕A2(j) or an overlattice of U(3)⊕A2(j), for some value of j ≥ 1. It is possible to show
that for some values of j, the above lattices do not admit 2-divisors, but we have been unable to
reach a general understanding of the existence of ample 2-divisors for all the values of j.

Example 3.5. It is not hard to construct an example of a K3 surface with an automorphism of
order 3 acting non-trivially on the Picard lattice. For example, consider an elliptic K3 surface
Z defined as in (1), with p(t) with only simple roots and equal to f2

6 − g34 , for some f6 and g4
polynomials in t of degree 6 and 4, respectively. Then N(α) ∼= U and one can easily check that Z
has at least two sections, namely (g4, f6, t) and (ζ3g4, f6, t). We then conclude that ρ(Z) ≥ 4 and
N(α) = U ⫋ PicZ.

4. The proof of the second theorem

In this section assume that (X,H,α) is in H∗
3,2d, that is, X is a projective K3 surface with a

polarization H of degree 2d and an automorphism α of order p acting as the identity on the whole
PicX. Using the notation introduced in §2, this means that N(α) = PicX. It also means that
(X,α) is generic in the moduli space of K3 surface with an automorphism σ of order 3 and fixed
locus of σ∗ equal to N(α), see [1, Theorem 5.6]. The classification of the fixed locus of an order 3
non-symplectic automorphism given in [1, 11] is the key in establishing h∗

3,2.

Lemma 4.1. For every d > 1, one has h∗
3,2d = 2.

Proof. Recalling that h∗
3,2d ≥ h3,2d, Theorem 1.2 implies that h∗

3,2d ≥ 2. On the other hand,
Lemma 3.1 shows that the surface defined in (1) is in H∗

3,2d and has Picard number 2, concluding
the proof. □

Remark 4.2. Kondo’s surface mentioned in Remark 3.3 shows that also the bound h∗
3,2d can be

attained over Q, for every d > 1.
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We are left with case for d = 1.

Lemma 4.3. If X ∈ H∗
3,2d has Picard number 4, then d > 1.

Proof. From the hypothesis, using Table 1, it immediately follows that PicX is either U ⊕A2 or
U(3)⊕A2.

First we show that U(3)⊕A2 does not admit 2-divisors at all. Let u1, u2 and a1, a2 denote the
generators of U(3) and A2, respectively and let

D := x1u1 + x2u2 + y1a1 + y2a2

a 2-divisor, that is, D2 = 2. Dividing by 2, we get the following equality:

(2) 3x1x2 − y21 + y1y2 − y22 = 1 .

This can be rewritten as

(3) 3x1x2 − 1 = y21 − y1y2 + y22 .

Reducing modulo 3, (3) induces the following equation:

(4) y21 − y1y2 + y22 ≡ 2 mod 3 .

It easy to see by direct computations that (4) has no solutions in Z/3Z, proving the claim.
Assume then that PicX ∼= U ⊕A2. This implies that U ↪→ N(α) = PicX and hence X is elliptic

and can be described by the following Weierstrass equation [1, Proposition 4.2]:

y2 = x3 + p(t),

where p is a polynomial of degree 12. As PicX ∼= U ⊕ A2 we see that X has only one reducible
singular fiber, of Kodaira type IV. This implies that PicX is generated by the class of the fiber
F , the class of the section O and the two components E1, E2 of the reducible fiber not meeting O.
Using these four generators, the Gram matrix of PicX is the following.

0 1 0 0
1 −2 0 0
0 0 −2 1
0 0 1 −2


Let us write H = aO + fF + e1E1 + e2E2 and notice that the third component of the singular fiber
can be written as E3 = F − E1 − E2. Then H2 = 2 implies

(5) af + e1e2 = e21 + e22 + a2 + 1 .

As H is ample, its intersection with all the −2-curves is positive, that is,
H.O = f − 2a > 0 ,

H.E1 = −2e1 + e2 > 0 ,

H.E2 = e1 − 2e2 > 0 ,

H.E3 = a+ e1 + e2 > 0 .

From the above inequalities we deduce that
0 < 2a < f ,

e1, e2 < 0 ,

0 < −e1 − e2 < a .
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Consider then the quantity 2a2 + 1. As 2a < f and e1e2 ≥ 1 we can write

2a2 + 1 < af + e1e2 < af + 3e1e2 .

Using (5), we can substitute af + e1e2, hence obtaining

2a2 + 1 < e21 + e22 + a2 + 1 + 2e1e2 = (−e1 − e2)
2 + a2 + 1 < 2a2 + 1

as −e1 − e2 is strictly smaller than a. In this way we get

2a2 + 1 < 2a2 + 1 ,

a contradiction, proving that U ⊕A2 admits no ample 2-divisors. This concludes the proof. □

Lemma 4.4. h∗
3,2 = 6.

Proof. As h∗
3,2 ≥ h3,2, from Theorem 1.2 it follows that h∗

3,2 > 2. From Lemma 4.3 we also know
that h∗

3,2 ̸= 4, hence h∗
3,2 ≥ 6. As already noted in the proof of the second statement of Theorem 1.2,

from Table 1 we see that there exists a complex K3 surface Y with an automorphism σ of order 3
and PicY = N(σ) ∼= U(3) ⊕ A⊕2

2 and this Y can be realized as double cover of P2. From this it
follows that h∗

3,2 = 6. □

Now we have everything we need to prove the second theorem.

Proof of Theorem 1.4. The first equality is Lemma 4.4; the second is Lemma 4.1. □

Remark 4.5. It is easy to show that the bound h∗
3,2 can be attained over Q. Indeed the paper [1]

tells us how to find explicit examples of K3 surfaces of degree 2 with Picard number equal to 6, just
by considering a surface as [1, Proposition 4.11] that is generic enough. For example, consider the
K3 surface X2,1 given by the double cover of P2 branched along the curve

B : F6(x0, x1) + F3(x0, x1)x
3
2 + bx6

2

with

F6 := −x6
0 + 2x5

0x1 − x4
0x

2
1 − 2x3

0x
3
1 − x2

0x
4
1 + x0x

5
1 − x6

1 ,

F3 := 2x2
0x1 − x3

1 ,

b := 2 .

From [1, Proposition 4.11] we know that ρ(X2,1) ≥ 6. By reducing modulo a prime of good reduction,
e.g. 11, one can see that ρ(X2,1) = 6 and hence PicX2,1

∼= U ⊕A⊕2
2 .
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