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Abstract

Let G be a finite group, G a normal subgroup of G and k an algebraically closed field of char-
acteristic p > 0. The first main result in this paper is to show that support 7-tilting kG-modules
with some properties are support 7-tilting modules as kG-modules, too. As the second main result,
we give equivalent conditions for support 7-tilting kG-modules to satisfy the above properties, and
show that the set of the support 7-tilting kG-modules with the properties is isomorphic to the set
of G-invariant support 7-tilting kG-modules as posets. As an application, we show that the set of
G-invariant support 7-tilting kG-modules is isomorphic to the set of support 7-tilting kG-modules in
the case that the index of G in G is a p-power. As a further application, we give a feature of vertices
of indecomposable 7-rigid kG-modules. Finally, we give block versions of the above results.

1 Introduction

Since 2014 when 7-tilting theory was introduced by T. Adachi, O. Iyama, and I. Reiten [1], the theory
continues to develop rapidly. The main theme of the theory is to study of support 7-tilting modules, and
many researchers have already contributed to it. In fact, the support 7-tilting modules are in one-to-
one correspondences with the various representation-theoretically important objects including two-term
silting complexes [1], functorially finite torsion classes [1], left-finite semibricks [3], two-term simple-
minded collections [3, 15], and so on. In particular, the theory is expected to be helpful in solving Broué’s
abelian defect group conjecture because the theory is useful for the classification of two-term tilting
complexes over group algebras or block algebras of finite groups. Even though the studies on the 7-tilting
theory related to the modular representation theory of finite groups are very important for these reasons,
there are few such studies. Therefore, it should be quite important to study modular representation
theory in relation to 7-tilting theory. Indeed, the authors started such a study in [16, 18, 17, 19].
However, the results obtained so far are all concerned with the induction functor; they tell under some
distinct situations that the induction functor Indg from kG-modules to kG-modules induces a poset
homomorphisms with some nice property from the support 7-tilting modules over kG to those over kG,
where G is a normal subgroup of a finite group G and k an algebraically closed field of characteristic
p > 0. (Poset means partially ordered set, as usual.) Naturally, there arises the following question.

Question 1.1. When does the restriction functor from kG-modules to kG-modules give the maps from
the support 7-tilting modules over kG to those over kG?

Regarding this question, in [5], S. Breaz, A. Marcus, and G. C. Modoi gave a positive answer in case
that the quotient group G /G is a p-prime group (i.e. the prime number p does not divide the order of
the factor group G /G). Therefore, we consider the case that G /G is not necessarily a p-prime group, and
get the following positive answer to the question.

Theorem 1.2 (Theorem 3.4 and Corollary 3.5). Let G be a finite group, G' a normal subgroup of
G, M a relatively G-projective support 7-tilting kG- module and (M P) a corresponding support T-
tilting pair. If it holds that IndGReng € add M, then ResGM is a support 7-tilting kG-module, and
(ResGM ResgP) a corresponding support 7-tilting pair. Moreover, for relatively G-projective support
T-tilting kG-modules M; and M, with the property that IndGReng, € add M; for i = 1,2, if M; > M,
in s7-tilt kG, then Reng\Zfl > RengQ in s7-tilt kG.
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Let M be a G’—invariant support 7-tilting kG-module. The first author showed that IndgM is a
support 7-tilting kG-module [16, Theorem 3.2]. We are interested in what is the image of the set of G-

invariant support 7-tilting kG-modules under the map induced by the induction functor Indg. Therefore,
we give equivalent conditions to the assumption of Theorem 1.2, and finally we clarify what the image of

the map induced by Indg is in the following theorem.

Theorem 1.3 (Theorem 3.8 and Corollary 3.9). Let M be a support 7-tilting kG-module. Then the
following conditions are equivalent:

(1) M =44 IndgM for some G-invariant support 7-tilting kG-module M.
(2) Inngeng € add M and M is relatively G-projective.
(3) S®@p M € add M for each simple k(G/G)-module S.

Moreover, denoting by (s7-tilt kG)© the subset of s7-tilt kG consisting of G-invariant support 7-tilting kG-
modules and by (s7-tilt kG)* the subset of s7-tilt kG consisting of support 7-tilting kG-modules satisfying

the above equivalent conditions, the induction functor Indg induces a poset isomorphism
(s7-tilt kG)C —=— (s7-tilt kG)*
M ——— IndS M.

The studies on the vertices of indecomposable modules over group algebras have been done by many
researchers for a long time, for example, see [6, 7, 8, 11, 14, 23]. On the other hand, 7-rigid modules over
finite-dimensional algebras are important classes and there are many studies on the modules. They have
nice properties and are essential objects for the representation theory, for example, see [1, 4, 9, 10, 13].
Therefore, one of our interests is to give a feature of the vertices of indecomposable 7-rigid modules over
group algebras. As a further application of Theorem 1.3, we give a feature of vertices of indecomposable
7-rigid modules.

Theorem 1.4 (Theorem 3.14). Let G be a finite group. Then any indecomposable 7-rigid kG-module
has a vertex contained in a Sylow p-subgroup of G properly if and only if G has a normal subgroup of
p-power index in G.

As a natural question, we wonder if we get a block version of our theorems for group algebras. In
particular, we are interested in how we give block versions of Theorems 1.2 and 1.3. As the results, we
get block versions of the theorems. Let G be a normal subgroup of a finite group G and B a block of kG.

We denote by I+(B) := {g eG ‘ gBj~' = B} the inertial group of B in G.

Theorem 1.5 (Theorem 5.6). Let G' be a normal subgroup of a finite group G, B a block of kG, B a
block of kG covering B, 3 the block of kIs(B) satisfying

Z xl/gxil = 135
z€[G/14(B))
and M a support 7-tilting B-module. If it holds that ﬁIndIé(B) Res ¢® ﬁResé M € add BResé M
. : G G Pla(B) 1&(B)
and 5Res?é(B)M is relatively G-projective, then we have that Reséé(B)BRes?é(B)M is a support 7-tilting
B-module. Moreover, if (M , ]3) is a support 7-tilting pair for B corresponding to M, then the pair
(Reséé(B)ﬂReS?é(B)M, Reséé(B)BResi(B)p)
is a support 7-tilting pair for B corresponding to Reséé(B) BRQS?G ( B)M .

Theorem 1.6 (Theorem 5.7 and Corollary 5.8). Let G be a normal subgroup of a finite group G, B a
block of kG, B a block of kG covering B, 3 the block of kI~ (B) satisfying

Z xlgx_l =1z

2€[G/15(B)]

and M a support 7-tilting B-module. Then the following conditions are equivalent:



(1) M =aqq BIndgM for some I5(B)-invariant support 7-tilting B-module M.
(2) ﬁIndéé(B)Reséé(B),BReS?G(B)M € add BRGS?@(B)M and BRes?G(B)M is relatively G-projective.
(3) B(S @ BResT, ) M) € add Res ) M for each simple k(I (B)/G)-module 5.

Moreover, denoting by (s7-tilt B)!é(®) the subset of s7-tilt B consisting of I5(B)-invariant support 7-
tilting B-modules and by (s7-tilt B)*** the subset of s7-tilt B consisting of support 7-tilting B-modules

satisfying the above equivalent conditions, the functor Elndg~ induces a poset isomorphism
(sT-tilt B)!a(B) =5 (s7-tilt B)***
M+ BIndéM.

Our particular interest is in the case that the index of G in G is a p-power. In fact, under some
assumptions, it is expected that tilting complexes over the block B of kG give those over the unique
block B of kG covering B (for example, see [12, 20, 26]). In this regard, the authors showed the following
result in [17].

Theorem 1.7 ([17, Theorem 1.2]). Let G be a normal subgroup of a finite group G of p-power index in
G, B a block of kG, and B the unique block of kG covering B. Assume that the following two conditions
are satisfied:

(1) Any indecomposable B-module is I (B)-invariant.
(2) The set of isomorphism classes of basic support 7-tilting B-modules is a finite set.
Then the induction functor Indg induces an isomorphism from s7-tilt B to s7-tilt B of posets.

This theorem can be applied to the case that the block B has a cyclic defect group, but the two
conditions limit the scope of its use. For example, the theorem cannot be applied to the case that p = 2,
G is the alternating group A4 of degree 4 and that G is the symmetric group Sy of degree 4, because the
nontrivial simple kAs-modules are not Sy-invariant. Indeed, s7-tilt kA, is not isomorphic to s7-tilt kS,
because the number of isomorphism classes of simple kA4-modules is three and that of kS, is two.
However, we wonder if the induction functor might give some kinds of good relation between the special
subsets of the two, and finally, as an application of Theorem 1.6, we could get the following theorem
which can be applied to the case of kA4 and kS4. The following theorem is a significant generalization of
Theorem 1.7 and enables us to explain the phenomenon occurred in [16, Example 3.9] (see Example 3.11).

Theorem 1.8 (Theorem 5.9). Let G be a normal subgroup of a finite group G, B a block of kG and B
a block of kG covering B. If the quotient group I#(B)/G is a p-group, then the functor Indg induces

an isomorphism as posets between (s7-tilt B)!a¢(P) and sr-tilt B, where (s7-tilt B)/¢(®) is the subset of
s7-tilt B consisting of I (B)-invariant support 7-tilting B-modules.

Throughout this paper, we fix the following notation:

Let k be an algebraically closed field of characteristic p > 0. An algebra means a k-algebra. For a
finite-dimensional algebra A, a A-module means a finite-dimensional left A-module. For a A-module M,
we denote the Auslander-Reiten translate of M by 7M. In case that A is a symmetric algebra, 7M is
isomorphic to Q?M. We denote the category of all direct summands of finite direct sums of copies of
M by add M. For A-modules M and N, we write M =,qq N if add M = add N. This relation is an
equivalence relation. We denote by s7-tilt A the set of equivalence classes of support 7-tilting A-modules
under the equivalence relation =,44.

Let G be a finite group and H a subgroup of G. We denote the restriction functor from kG-modules
to kH-modules by Res$, and the induction functor kG @z — from kH-modules to kG-modules by Ind%.
We denote the trivial kG-module by k.

Let G be a finite group, G a normal subgroup of G. We denote a set of coset representatives of G in
G by [G/G]. For a kG-module M and j € G, we define a kG-module gM consisting of symbols §m as a
set, where m € M, and its kG-module structure is given by gm+gm’ := g(m+m’), g(gm) := §(g~tggm)
and A(gm) = g(Am) for m,m’ € M,g € G and X € k. For a kG-module M, we say that M is G-invariant
if M is isomorphic to gM for any g € G.



2 Preliminaries

In this section, we give elementary facts on the modular representation theory which are helpful to prove
our results.

Proposition 2.1 ([2, Lemma 8.5, Lemma 8.6]). Let G be a finite group, K a subgroup of G, H a
subgroup of K. For any kG-module U and kH-module V', the following hold:

(1) ResGU = ResBResGU.
2) Ind§V = IndGIndE V.
3) IndG(V @ ResGU) = (Ind% V) @y, U.

(2)
(3)
(4) Homyg (U, Ind% V) = Homy g (ResG U, V).
(5) Hompg(Ind$V, U) = Homy, g (V, ResGU).
(6)

6) The functors Resfl and Indg send free modules (projective modules) to free modules (projective
modules, respectively).

In the modular representation theory of finite groups, Mackey’s decomposition formula is well-known
and important. We recall Mackey’s decomposition formula for normal subgroups.

Proposition 2.2 ([2, Lemma 8.7]). Let G be a normal subgroup of a finite group G and M a kG-module.
Then the following isomorphism as kG-modules holds:

ResglndgM = @ xM.
ze[G/G)
The following is known as Eckmann-Shapiro Lemma.

Lemma 2.3 (][22, Proposition 2.20.7]). Let H be a finite group of a finite group G, M a kH-module and
N a kG-module. Then for all n € N, there exists an isomorphism of k-vector spaces:

Ext}; (M, Res$ N) = Ext?, (Ind$ M, N)

The following lemma is a refinement of [16, Lemma 3.1] which requires the G-invariance for the
kEG-module.

Lemma 2.4. Let G be a normal subgroup of G and M a kG-module. Then the following hold:
(1) Ind%(QM) = Q(IndéM).
(2) Ind&(rM) = r(IndSM).

Proof. 1t is enough to show that the statement (1) holds since T = 02 for symmetric algebras. There exists
a projective kG-module Q such that Ind&(QM) = Q(IndSM) @ Q and that IndS P(M) = P(IndSM) & Q.
Hence, we have that i i i i i

Res&Ind$(QM) = Res&Q(IndG M) @ Res&Q,
and the left-hand side is isomorphic to @xe[é e QM by Proposition 2.2. However, each xQ)M has no

projective summands and the restricted module Reng is a projective kG-module by Proposition 2.1 (6),
which implies that Q = 0. Therefore, we conclude that Ind%(QM) = Q(IndSM). O

Lemma 2.5. Let G be a normal subgroup of a finite group G and M be a kG-module. Then Reng is
a G-invariant kG-module.



Proof. Take § € G arbitrarily. We consider the map

f: Reng —_— gReng
m ——————— gm.

Clearly, this map is linear and bijective. We only show that the map is kG-homomorphism, but for any
g€ Gandme Reng, it holds that

flgm) = ggm = ggg~'gm=g-gm = g- f(m).

3 Main Theorems

In this section we give theorems stated in Section 1 and their proofs. Throughout this section, G denotes
a finite group and G a normal subgroup of G.

First, we start with a consideration on restricted modules of rigid modules and 7-rigid modules. Let A
be a finite-dimensional algebra. We recall that a A-module M is rigid (resp. 7-rigid) if Exth (M, M) = 0
(resp. Homp (M, 7M) = 0). We remark that 7-rigid modules are rigid modules by the Auslander-Reiten
duality Homy (X,Y) = D Ext} (Y, 7X), where Homy (X,Y") denotes the quotient of Hom (X,Y) by the
subspace of the homomorphisms factoring through projective A-modules.

Lemma 3.1. Let M be a kG-module with the property that InngeSgM € add M. Then the following
hold:

(1) If M is a rigid kG-module, then the restricted module Resg]\;[ is a rigid kG-module.

(2) If M is a 7-rigid kG-module, then the restricted module ResGM is a 7-rigid £G-module.

Proof. (1) Let M be a rigid kG-module. Then, by Lemma 2.3, we have that
Exth(Res M, Res@ M) = Ext! - (M, Tnd&Res& M),

By the assumption that Inngeng € add M and the rigidity of M, we have that the right-hand side is

0. Hence, Res& M is a rigid kG-module.
(2) Let M be a 7-rigid kG-module. Then we have that

Homkg(Reng, TReng) =~ Hom, 5 (M, IndgTReSgM) =~ Hom, (M, TInngeng),

where the last isomorphism comes from Lemma 2.4. By the assumption that IndGReng € add M and

the 7-rigidity of M, we have that HomkG(M TIndGReng) = 0, which implies that ReSGM is a 7-rigid
kG-module. O

For a finite group H and a subgroup K of H, we recall that a kH-module M is relatively K-projective
if M is a direct summand of Inngeng .

Lemma 3.2. Let M be a relatively G-projective kG-module. Then Resg(QM) = Q(Reng). In
particular, it holds that 7(Res&M) 22 Res& (7 M).

Proof. There exists a projective kG-module P such that Res&(QM) = Q(Res§M) @ P. Hence, it is
enough to show that P = 0. It is clear in the case that M is a projective kG-module.

We may assume that M has no projective summands. Since M is relatively G-projective, QM is
relatively G-projective too (for example see [2, Proposition 20. 7]) Hence, QM is a direct summand

of IndGRengM On the other hand, by the isomorphism RengM Q(Reng) @ P, we have that



InngengM = In@g(Q(Reng)) ® Inng. Here, since Inng is a projective kG-module by Proposi-
tion 2.1 (6) and QM has no projective summands by the self-injectivity of kG, we have that QM is a
direct summand of Ind&(Q(Res&M)). Therefore, Res&(QM) is a direct summand of

Resglndg(Q(Reng))g @ gQ(ReSgM)
gelé/a)

by Proposition 2.2, which implies that Resg~ (QM) is has no projective summands because each gQ(Reng )
has no projective summands by the self-injectivity of kG. Thus, we conclude that P = 0 and Resg(QM )
Q(Res&M). ~
The later assertion follows from the fact that 7 22 Q2 and the relative G-projectivity of QM. O
The following is important for the proof of Theorem 3.4.

Proposition 3.3 ([1, Corollary 2.13]). Let A be a finite-dimensional algebra. For a 7-rigid pair (M, P)
for A the following are equivalent:

(1) (M, P) is a support 7-tilting pair for A.
(2) If Homp (M, 7X) = 0,Hom (X,7M) = 0 and Homy (P, X) = 0, then X € add M.

Theorem 3.4. Let M be a support 7-tilting kG-module. If it holds that InngeSgM € add M and M is
relatively G-projective, then we have that Reng is a support 7-tilting kG-module. Moreover, if (M , 15)
is a support 7-tilting pair for kG corresponding to M , then (Reng , Resg]:’) is a support 7-tilting pair
for kG corresponding to Reng .

Proof. Let (M , 15) be a support 7-tilting pair for kG corresponding to the support 7-tilting kG-module
M. . .

First, we show that (Reng, ReSgP) is a 7-rigid pair for kG. Since the kG-module M is a support 7-
tilting module, it is a 7-rigid module. Hence, we have that Reng is a 7-rigid kG-module by Lemma 3.1.
On the other hand, by Proposition 2.1 we have that

Homk(;(ResgP, Reng) =~ Hom, 4 (P, Inngeng).

Now, by the assumption that Inngeng € add M, we have that Homkg(ResgP, Reng ) = 0 because
(M , ]5) is a support 7-tilting pair for kG. Therefore, we conclude that (Reng , Resgp) is a 7-rigid pair
for kG. s .

Next, we show that the 7-rigid pair (ReSgM ,Resgﬁ) is a support 7-tilting pair for kG. We show
that X € add Reng under the assumption that

Homkg(X,T(Reng)) = Homkg(Resg]\ZﬂTX) = Homkg(Resgp7X) =0,

which implies that the pair (Reng, Resg]:’) is a support 7-tilting pair for kG by Proposition 3.3. Under
these assumptions, we have the following:

Homké(lnng, M) = Homyg (X, Resg(TM)) (Proposition 2.1)
=~ Homga (X, T(Reng)) (Lemma 3.2)
=0.

Hom, (M, 7(Ind$ X)) 2 Hom, (M, Ind&(r X)) (Lemma 2.4)

= Homkg(Reng, 7X) (Proposition 2.1)
=0.



Hom, (P, Imd§X) = HOmk@(ReSgP, X) (Proposition 2.1)
=0.

By these three isomorphisms and the fact that (M P) is a support 7-tilting pair for kG, apply-
ing Proposition 3.3, we have that IndGX € add M. Also, X is a direct summand of ResgIndGX by
Proposition 2.2. Therefore, we have that X € add Reng. O

Corollary 3.5. Let M; and M, be relatively G-projective support 7-tilting kG—modules such that

ndS ResGM S addM for + = 1,2. Then M1 > Mg in sT-tilt kG implies that ResGM1 > ResGM2 in
sT-tilt kG.

Proof. The consequence immediately follows from Theorem 3.4 and the exactness of the functor Resg. O

We wish to restate the assumption of Theorem 3.4 with some equivalent conditions. First, we give
the lemmas which can be applied in case of rigid kG-modules not only support 7-tilting kG-modules.

Lemma 3.6. Let M be a rigid kG-module and L a kG-module. If it holds that S @ M € add M for
any composition factor S of L, then the following isomorphism as kG-modules holds:

L®kM§@S®kM,
S

where S runs over all composition factors of L.

Proof. Let L be an arbitrary kG-module and M a rigid kG-module satisfying that
S @y M € add M for any composition factor of S of L. (3.1)

We use induction on the composition length £(L) of L. If /(L) = 1, there is nothing to prove. Hence, we
assume that (L) > 2 and that the statement for any kG-module L’ satisfying ¢(L’) < ¢(L) is true. Let
T be a simple submodule of L. We get the exact sequence

0 — TyM — Ly M — L/T@y M —— 0 (3.2)
obtained by applying the exact functor — ®j, M to the exact sequence

0 T L L)T 0.

By the rigidity of M, the assumption (3.1) and the assumption of this induction, the sequence (3.2) splits,
and we get that

Loy M=Tox MO L/Tor M=Tey Mo@) S @, M =S M,
S’ S

where S” and S run over all composition factors of L/T and L, respectively. O
Lemma 3.7. Let M be a rigid kG-module. Then the following conditions are equivalent:

(1) Inngeng € add M and M is relatively G-projective.

(2) S @i M € add M for each simple k(G/G)-module S.

Proof. By Proposition 2.1, we have that

mdZResG M = Ind (ke ©x Res§ M) = (ndke) @k M = k(G/G) @ M



(1) = (2). By the assumptions, we have that InngeSgM =ada M. Hence, by Proposition 2.1 we get
that

S @k M =aqq S Q% IndGReSGM
= IndG(ReSGS R ResGM)
= TndS (k€ 9™ 5 @, Res@ NI)
=add Inngeng\Z[
=ada M,

for any simple k(G /G)-module S, which implies that S ®; M € add M.
(2) = (1). By Lemma 3.6, we have that

IndSResG M 2 k(G/G) @, M = D S @ M,
s
where S runs over all composition factors of the kG-module k(G /G). Therefore, the assumption implies
that IndGReng € add M. Moreover, since the trivial kG-module k& appears as a composition factor

of k(G/G), we have that the module M appears as a direct summand of Ind Reng that is M is a
relatively G-projective kG-module. O

We obtain below some conditions that are equivalent to the assumption of Theorem 3.4.

Theorem 3.8. Let M be a support 7-tilting kG-module. Then the following conditions are equivalent:
(1) M =44 IndgM for some G-invariant support 7-tilting kG-module M.
(2) Inngeng € add M and M is relatively G-projective.
(3) S @i M € add M for each simple k(G/G)-module S.

Proof. (1) = (2). Assume that M =44 IndGM for some G-invariant support 7-tilting kG-module M.
Then clearly M is a relatively G-projective kG-module (see [2, 3.9.1]), and by Proposition 2.2, we have
that : . . B : . 3 R
IndGResG M =,aq IndgResGIndGM = Indg( @ M) = P IndgM € add M.
g€lG/G] g€lG/a)
(2) = (1). Assume that IndGRevaM € add M and that M is relatively G-projective. Put M := Reng
Then by Lemma 2.5 and Theorem 3.4, M is a G-invariant support 7-tilting kG-module. We show that
IndGM —=.ad4 M, that is add(IndGM) = add M. By the assumption that IndGReSGM € add M, we have
add(IndGM ) C addM On the other hand, since M is relatively G-projective, M is a direct summand

of IndGResGM = IndGM Hence, we have add M C add(IndGM)
(2) & (3). Since support 7-tilting kG-modules are rigid kG-modules, the equivalence follows from
Lemma 3.7. O

Corollary 3.9. Let (s7-tilt k;G)é be the subset of s7-tilt kG consisting of é—invariaNnt support 7-tilting
kG-modules and (s7-tilt kG)* the subset of s7-tilt kG consisting of support 7-tilting kG-modules satisfying
the equivalent conditions of Theorem 3.8. Then the induction functor Indg induces a poset isomorphism

(s7-tilt kG)C —=— (s7-tilt kG)*

i (3.3)
M ———— IndSM
In particular, the induction functor Indg induces the poset monomorphism
(s7-tilt kG —— s7-tilt kG (3.4)

Mr—— dSM.



Proof. By [16, Theorem 3.2], the map (3.4) is well-defined. Moreover, by the exactness of the functor
Indg, if N < M in s7-tilt kG then IndgN < IndgM in s7-tilt kG for any support 7-tilting kG-modules
N and M. Therefore, the map (3.4) is a poset homomorphism. By the exactness of the functor Resg7
Lemma 2.5 and Theorem 3.4, the map

43 Y\ % 43 G
(sT-tilt kG)* —— (s7-tilt kG) (3.5)

Mr——— 5 ResGII

is well-defined and a poset homomorphism. ~
We show that the map (3.4) restricts to a bijection (3.3). By the definition of (s7-tilt kG)* and the
above argument, the map (3.3) is well-defined and a poset homomorphism. For any relatively G-projective

support 7-tilting kG-module M with IndGReng € add M, we have that

IndGReSGM —add M.

Moreover, for any G-invariant support T-tilting kG-module M, we have that

Res@IndS M = P M =uaa M.
z€[G/G]

Therefore, the maps (3.3) and (3.5) are inverse to each other.
The latter assertion immediately follows from the fact that the map (3.4) is the composition of the

poset isomorphism (3.3) and the inclusion map (s7-tilt kG)* —— s7-tilt kG. O

As an application of Theorem 3.8, we consider the case that G /G is a p-group.

Theorem 3.10. Let G be a finite group and G a normal subgroup of G of p-power index in G. Then
the induction functor Indg induces an isomorphism as posets between (s7-tilt kG)¢ and s7-tilt kG, where
(s7-tilt kG)E is the subset of sT-tilt kG consisting of G-invariant support 7-tilting kG-module.

Proof. By Corollary 3.9, the map (3.3) is a poset isomorphism. It is enough to show that (s7-tilt kG)* =
sT-tilt kG. Tt is clear that (sT-tilt kG)* C s7-tilt kG. To prove the reverse inclusion, take an arbitrary
support 7-tilting kG-module M. Since G/G is a p-group, the only simple k(G/G) module is the trivial

k(G /G)-module. Hence, the condition (3) of Theorem 3.8 is satisfied in our situation because kéq®k M

is isomorphic to M. Therefore, we conclude that sr-tilt kG’ C (sT-tilt kG)*. O

Here we reproduce from [16] an example with an error corrected; in Figure 2 below, the centered
direct-sum of three non-projectives is corrected.

Example 3.11. Let k£ be an algebraically closed field of characteristic p = 2. We consider that the case
that G is the alternating group A4 of degree 4 and G is the symmetric group Sy of degree 4. The algebras
kA4 and kS, are Brauer graph algebras associated to the Brauer graphs in Figure 1(a) and Figure 1(b),
respectively:

Now we draw the Hasse diagram H(s7-tilt kA4) of the poset s7-tilt kA4 as follows:



multiplicity: 2

ka, =1 1 =kg,
(a) The Brauer graph of kA4 (b) The Brauer graph of kSy

Figure 1: Brauer graphs
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Figure 2: The Hasse diagram of s7-tilt kA4



The enclosed support 7-tilting modules in Figure 2 are all the invariant support 7-tilting modules under
the action of Sy. Next, we draw the Hasse diagram #H(s7-tilt £S4) of poset s7-tilt kS, as follows:

H(s7-tilt(kSs)) :

: 2! 2! | :: 1
\ 1’ D PQ/ I N Pl’ D 1
201 2/ } I 2/ U
2’ 2’ , , 1
1’ @ g/ %/ @ 1’
20 1 2/ 2’
2’ 1’
2/ 1’

Figure 3: The Hasse diagram of s7-tilt k.S,

The functor Indf{fL takes each enclosed Sy-invariant support 7-tilting kA4-module in Figure 2 to that in
Figure 3 with the same square.

Remark 3.12. Let (IndS) ! (s7-tilt k() := {M € sr-tilt kG | IndSM € s-tilt kG}. Then (s7-tilt kG)@
is contained in (Ind%)~!(s7-tilt kG) by [16, Theorem 3.2]. On the other hand, they do not coincide in

general. Moreover, though the poset homomorphism
(sT-tilt k:G)G —— sT-tilt kG

M ndéM

is a monomorphism by Corollary 3.9, the one

(IndS) ! (s7-tilt kG) —— sr-tilt kG
M IndgM
is not a monomorphism in general.
For example, for p = 2, the alternating group Ay of degree 4 and the symmetric group Sy of degree
4, a kAs-module M := 16 } is a support 7-tilting kA4-module, where 1 denotes the trivial kA4-module

and 2 a non-trivial kAs-module. Also, it holds that oM = 1@ i for o € Sy \ A4, where 3 denotes
the non-trivial simple kA4 module not isomorphic to 2. T herefore we have that M ¢ (s7-tilt kA,)5.

However, Ind5 M= 1 &) 1’ is a support 7-tilting kS4-module, where 1’ denotes the trivial kS4-module
and 2’ the simple kS4 modulc of dimension 2. This implies that M 6 (Inds‘i1 )~ (s7-tilt kS4). Moreover,
for N:=1® } @ 1 € (sr-tilt kA4)®4, it holds that IndS“N ~ 1, ® 1 &) 1 =add %; &) i; (=add Indi‘iM).
Therefore, the map

(Ind3" )~ (s7-tilt kSy) — sT-tilt kS,

M———————— Ind3} M

is not a monomorphism.
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At the end of this section, we discuss a feature of vertices of indecomposable 7-rigid kG-modules.

Lemma 3.13. Let G be a finite group. Then the trivial kG-module kg is a 7-rigid if and only if G has
no normal subgroups of index p.

Proof. By [21, Chap. I, Corollary 10.13], there exists a normal subgroup of G of index p if and only if
Extllﬂé(ké, k&) # 0. Also, by the simplicity of the trivial kG-module and Auslander-Reiten duality, we
have that

Homké(ké, Tké) = Homké(ké, Tk‘é) = DEthlcé(ké, ké)

Therefore, we get the result. O

Theorem 3.14. Let G be a finite group. Then any indecomposable 7-rigid kG-module has a vertex
contained in a Sylow p-subgroup of G properly if and only if G has a proper normal subgroup of p-power
index.

Proof. Assume that G has no proper normal subgroup of p-power index. Then by Lemma 3.13, the trivial
kG-module, whose vertex is a Sylow p-subgroup of G, is a 7-rigid module.

Conversely, assume that G has normal subgroup of p-power index. In this case, there exists a normal
subgroup G of G of index p. Let X be an arbitrary 7-rigid kG-module. Then, X is a direct summand
of a support 7-tilting kG-module M by [1, Theorem 2.10], that is, X is relatively G-projective. Also,

there exists a G-invariant support T-tilting kG-module M such that M =,qq IndgM by Theorem 3.10.

Hence, X is a direct summand of IndgM . Therefore, X has a vertex contained in a Sylow p-subgroup of
G properly. O

4 Preliminaries for block versions of the main results

We recall the definition of blocks of group algebras. Let G be a finite group. The group algebra kG has
a unique decomposition
kG =By x ---xX B

into the direct product of indecomposable algebras. We call each indecomposable direct product compo-
nent B; a block of kG and the decomposition above the block decomposition. We remark that any block
B; is a two-sided ideal of kG.

For any indecomposable kG-module U, there exists a unique block B; of kG such that U = B;U and
B;U =0 for all j # i. Then we say that U lies in the block B; or simply U is a B;-module. We denote
by Bo(kG) the principal block of kG, in which the trivial kG-module kg lies.

Let G be a normal subgroup of a finite group G, B a block of kG and B a block of kG. We say that
B covers B (or that B is covered by B) if 115 # 0, where 1p and 15 denote the respective identity
element of B and B.

Proposition 4.1 ([2, Theorem 15.1, Lemma 15.3]). With the notation above, the following are equivalent:
(1) The block B covers B.
(2) There exists a non-zero B-module U such that Resgﬁ has a non-zero direct summand lying in B.
(3) For any non-zero B-module U, there exists a non-zero direct summand of Resgf] lying in B.

(4) For any non-zero B-module U and indecomposable direct summand V of Resgﬁ , there exists § € G
such that V lies in the block §B§!.

(5) The block B is a direct summand of B as a (kG, kG)-bimodule.
(6) The block B is a direct summand of kGBG as a (kG, kG)-bimodule.

We denote by I5(B) the inertial group of B in G, that is

1(B) == {g cG ‘ GBj~! = B}.

13



Remark 4.2. For a block B of kG and a block B of kG, the block B covers only B if and only if
I5(B) = G by [2, Theorem 15.1 (1)]. Since Res&kg = ke, the principal block By(kG) of kG is the only
block of kG covered by the principal block By(kG) of kG by the equivalence of Proposition 4.1 (1), (3).
Therefore, we have that I~(By(kG)) = G.

Proposition 4.3. Let G be a normal subgroup of a finite group G, B a block of kG and U an indecom-
posable B-module. Then the following hold:

(1) For a block B of kG covering the block B, the module ResgBInng has a direct summand iso-
morphic to U. In particular, the B-module BInng is non-zero.
(2) Any indecomposable direct summand V of Inng lies in a block of kG covering B.

Proof. Let U be an indecomposable B-module. By the equivalence of Proposition 4.1 (1), (5), the block
B has a direct summand B as a (kG, kG)-bimodule. Hence, there exists a (kG, kG)-bimodule B’ such
that B~ B @ B’ as a (kG, kG)-bimodule. Therefore, we have that

ResG BIndSU = Res& B(kG @i U) 2 ResCB ®rg U = (B® B) @rg U 2 U & (B @1 U),

which prove (1). i
Let V be an indecomposable direct summand of Inng lying in a block A of kG. Since the restricted

module ResgV is a direct summand of the kG-module Res&Ind&U, we have that the block A covers B
by Proposition 2.2 and the equivalences of Proposition 4.1 (1), (2), (4). Hence, we get that (2). O

The following is a generalization of [24, Corollary 5.5.6] (or [25, Corollary 9.9.6]).

Proposition 4.4. Let G be a normal subgroup of a finite group G and B a block of kG. If there exists

an indecomposable B-module X such that Inng is an indecomposable kG-module, then there exists
only one block of kG covering B.

Proof. Let A and B be a block of kG covering B. The modules flInng and BInng are non-zero
direct summands of the indecomposable kG-module Inng by Proposition 4.3 (1). Hence, we get that
BInng = AInng = Inng by the indecomposability of Inng . Since the non-zero kG-module
Inng lies in the blocks A and B, we get that A = B. O

Corollary 4.5 ([24, Corollary 5.5.6] or [25, Corollary 9.9.6]). If G/G is a p-group, then there exists only
one block of kG covering B.

Proof. Tt immediately follows from Proposition 4.4 and Green’s indecomposability theorem (for example,
see [2, 11, 24]). O

Proposition 4.6 ([22, Theorem 6.8.3] or [24, Theorem 5.5.10, Theorem 5.5.12]). Let G be a normal
subgroup of a finite group G and B a block of £G. Then the following hold:

or an oc o ~ coverin , there exists a bloc B of kG such that
1) F y block 3 of kI~(B ing B, th i block B of kG h th

Z xlgx_l =1z,

z€[G/15(B))

and then B covers B. Moreover, the correspondence sending 3 to B induces a bijection between
the set of blocks of kI5(B) covering B and those of kG covering B.

(2) If B corresponds to 5 under the bijection of (1), then the induction functor
md§ )+ klg(B)mod —— kG-mod
restricts to a Morita equivalence

Ind?é(B): f-mod —— B-mod

14



and its inverse functor is given by

BResIéé(B): B-mod —— f-mod.

Proposition 4.7. Let G' be a normal subgroup of a finite group G, B a block of kG, U a B-module, 8
a block of kI5(B) covering B and B a block of kG covering B such that

Z J)lﬂl‘_l =13.

velG/15(B)
Then BIndGU = Ind§, 5 fIndgs VU,

Proof. Let Bi = B,..., B, be the all blocks of kG covering B. By Proposition 4.6, we can take ;1 =
B, ..., Be the blocks of kI~ (B) satisfying the induction functor IndIGé( p) restricts to a Morita equivalence

Ind?é(B): Bi-mod —— Bsmod
for any i = 1,...,e. By Proposition 4.3 (2), we get the following isomorphism:
md WU =~ gmd P U e - & sInd ¢ VU,
Moreover, by Proposition 2.1 (2), we have that
AU 2 Ind¥ 5 Indf VU = ndf, ) id U @ - © Idf ) B Ind s UL
Since the kG-module Ind?é(g)ﬂilndé@(B)U lies in the block B; for any i = 1,...,e, we get that

BilndGU = nd§. 5 BIndgg VU,

Therefore, we complete the proof. O

5 Block version of main results

In this section we give block versions of our theorems stated in Section 3. Let A be a finite-dimensional
algebra. For A-modules M and N, we write M <,qq N if add M C add N. This relation is clearly
reflexive and transitive. Moreover, if M <,qq N and N <pqq M then M =,qq N for any A-modules M
and N. The following is the special case of the block version of Theorem 3.4.
Theorem 5.1. Let G be a normal subgroup of a finite group G, B a block of kG satlsfylng I4(B) = G,
B ablock of kG covering B and M a support 7-tilting B module. If it holds that BIndGReSGM € add M
and M is relatively G-projective, then we have that ResGM is a support 7-tilting B-module. Moreover, if
(M , P) is a support 7-tilting pair for B corresponding to M , then (ReSgM , Resgf’) is a support 7-tilting
pair for B corresponding to Reng .
Proof. Let (M P) be a support 7-tilting pair for B corresponding to the support 7-tilting B-module M.
Our assumption I5(B) = G implies that the block B is the only block of kG covered by B by Remark 4.2.
Hence, we have that the restricted modules ResGM and ResGP are B-modules by Proposition 4.1 (4).
First, we show that (Res&M,Res&P) is a 7-rigid pair for B. Since the B-module M is a support
T-tilting B—module, it is a 7-rigid B-module. Hence, we have that ResGM is a 7-rigid B-module by
Lemma 3.1. On the other hand, by Proposition 2.1 (4) we have that

HomB(Resg1757 Reng) Homkg(ResGP ResGM)
= Hom,, ( ndGReSGM)
=~ Hom (P, ndGResGM)
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Now, by the assumption that BInngeng € add M, we have that HomB(P,BInngesg]\Zf) =0
because (]\;L]B) is a support 7-tilting pair for B. Therefore, we conclude that (Reng7Resg]5) is a
T-rigid pair for B.

Next, we show that the 7-rigid pair (Reng , Resgp) is a support 7-tilting pair for B. We show that
X € add Reng under the assumption that

Homp (X, T(Reng)) = HomB(Reng,TX) = HomB(ReSgP,X) =0,

which implies that the pair (Rong , Rcsgp) is a support 7-tilting pair for B by Proposition 3.3. Under
these assumptions, we have the following:

HomB(BInng, M) = Homké(lnng, M) (M is a B-module)
> Homyg (X, Resg(TM)) (Proposition 2.1 (5))
=~ Homye (X, 7(ResS M) (Lemma 3.2)
>~ Homp (X, T(Reng)) (X and T(Reng) are B-modules)
=0.
Hom 5(M, T(Blnng)) =~ Hom (M, BIndg(TX)) (Lemma 2.4)
=~ Hom, (M, Indg(TX)) (M is the B-module)
= Homkg(Resg]\Z7 T7X) (Proposition 2.1 (4))
= HomB(Reng, 7X) (Resg]\;[ and 7X are B-modules)
=0.
Hom (P, Blnng) =~ Hom, & (P, Inng) (P is a B-module)
= Homkg(ResgP, X) (Proposition 2.1 (4))
= HornB(ReSgP7 X) (Resgp and X are B-modules)
=0.

By these three isomorphisms and the fact that (M ,}5) is a support 7-tilting pair for B, applying
Proposition 3.3, we havg that ~BInng € add M. Also, since the block B covers B, the B—module Xisa
direct summand of Res&BInd$ X by Proposition 4.3 (1). Therefore, we have that X € addRes&M. O

We wish to restate the assumption of Theorem 5.1 with some equivalent conditions. First, we give
the lemmas which can be applied in case of rigid B-modules not only support 7-tilting B-modules. The
following lemma is a block version of Lemma 3.6, which is helpful to prove Theorem 5.4.

Lemma 5.2. Let CN{be a finite group, B a block of kG, M a rigid B-module and L a kG-module. If it
holds that B(S ® M) € add M for any composition factor S of L, then the following isomorphism as
B-modules holds: ~ ~ R R
B(L @y M) = P B(S @ M),
s
where S runs over all composition factors of L.

Proof. A similar proof of Lemma 3.6 works in this setting. Let L be an arbitrarily kG-module and M a
rigid B-module satisfying that

B(S ® M) € add M for any composition factors S of L. (5.1)
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We use induction on the composition length ¢(L) of L. If /(L) = 1, there is nothing to prove. Hence, we
assume that (L) > 2 and that the statement for any kG-module L’ satisfying ¢(L’) < ¢(L) is true. Let
T be a simple submodule of L. We get the exact sequence

0 —— B(T @ M) —— B(L®) M) —— B((L/T) @ M) — 0 (5.2)

obtained by applying the exact functor B(— @y M) to the exact sequence

0 T L L/T 0.

By the rigidity of M, the assumption (5.1) and the assumption of the induction, the sequence (5.2) splits,
and we get that

B(L®y, M) = B(T @, M) & B((L/T) ® M) = B(T @, M) & ) B(S' @ M) = ) B(S @ M),
S’ S

where S’ and S run over all composition factors of L/T and L, respectively. O

Lemma 5.3. Let G be a normal subgroup of a finite group G, B a block of kG and M a rigid B-module.
Then the following conditions are equivalent:

(1) BInngeng € add M and M is relatively G-projective.
(2) B(S ®x M) € add M for each simple k(G/G)-module S.

Proof. By Proposition 2.1, we have that
BIndSResS M = BIndS (ke @ Res@ M) =2 B((IndCke) @1 M) = B(k(G/G) &y, M).

(1) = (2). By the assumptions, we have that BInngeSgM —.d4da M. Hence, by Proposition 2.1 we get
that

B(S @k M) =aaa B(S @1, BIndGRes& M)
<add B(S @1 IndGResG M)
= Blndg(ResgS Ok Reng)
~ BIndS (k2™ S @, ResE )
=.dd BInngeng
=aaa M,

for any simple k(G/G)-module S, which implies that B(S @, M) € add M.
(2) = (1). By Lemma 5.2, we have that

BIndGResgM = B(k(G/G) @1, M) = € B(S @y, M),
S

where S runs over all composition factors of the kG-module k(é /G). Therefore, the assumption implies
that BInngeng € add M. Moreover, since the trivial kG-module kg appears as a composition factor

of k(G/G), we have that the B-module M appears as a direct summand of BInngeng, that is M is
a relatively G-projective kG-module. O

We obtain below some conditions that are equivalent to the assumption of Theorem 5.1.

Theorem 5.4. Let G be a normal subgroup of a finite group, B a block of kG satisfying I~(B) = G
and B a block of kG covering B. Let M be a support 7-tilting B-module. Then the following conditions
are equivalent:
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(1) M =aqq BIndgM for some G-invariant support 7-tilting B-module M.
(2) BInngeng € add M and M is relatively G-projective.
(3) B(S ®x M) € add M for each simple k(G/G)-module S.

Proof. (1) = (2). Assume that M =,44 qudgM for some G-invariant support 7-tilting B-module M.
Then clearly M is a relatively G-projective B-module, and we get that

Blnngeng =add BInngesgBIndgM
<add BInngesgIndgM
> Bmd§( P M)
gel@/a
~ B BmdgM
gelé/al
=ada M.

Hence, we get BInngeng € add M.

(2) = (1). Assume that Blnngeng € add M and that M is relatively G-projective. Put M := Reng.
Then by Lemma 2.5, Proposition 4.1 (4), Remark 4.2 and Theorem 5.1, M is a G-invariant support 7-
tilting B-module. We show that BIndgM —adda M, that is add(BIndgM) =add M. By the assumption
that BlndgM = Blnngeng € add M, we have that add(BIndgM) C add M. On the other hand,
since M is relatively G-projective, M is a direct summand of Inngeng = IndgM . Moreover, since

M lies in B, M is a direct summand of BIndgM. Hence, we have add M C add(BIndgM).
(2) < (3) Since support 7-tilting B-modules are rigid B-modules, the equivalence follows from Lemma 5.3.
O

Corollary 5.5. Let G be a normal subgroup of a finite group G, B a block of kG satisfying I#(B) = G

and B a block of kG covering B. We denote by (sT-tilt B)Y the subset of s7-tilt B consisting of G-
invariant support 7-tilting B-modules and by (s7-tilt B)** the subset of s7-tilt B consisting of support
7-tilting B-modules satisfying the equivalent conditions of Theorem 5.4. Then the functor BIndg induces
a poset isomorphism

(s7-tilt B)G —~— (s7-tilt B)**

i (5.3)

M —— BInd§ M.

In particular, the functor BIndg induces the poset monomorphism
(s7-tilt B)G —— s7-tilt B (5.4)

M —— BIndSM.

Proof. By [16, Theorem 3.3], the map (5.4) is well-defined. Moreover, by the exactness of the functor
BIndg, if N < M in st-tilt B then BIndgN < BIndng in s7-tilt B. Therefore, the map (5.4) is a poset
homomorphism. By the exactness of the functor Resg7 Lemma 2.5 and Theorem 5.1, the map

-tilt B)** -tilt B)C
(s7-tilt B)*™* —— (s7-tilt B) (55)

M— Reng

is well-defined and a poset homomorphism.
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We show that the map (5.4) restricts to a bijection (5.3). By the definition of (s7-tilt kG)** and the
above argument, the map (5.3) is well—deﬁnfzd and a poset homomorphism. For any relatively G-projective

support 7-tilting B-module M with BInngeng € add M, we have that
M =4 Blnngeng.
Moreover, for any G-invariant support T-tilting B-module M, we have that
M <aqa ResGBIAGM <oqq ResGIndSM = @) GM =aaa M
S (eyle]

by Proposition 4.3 (1), Proposition 2.2 and the G-invariance of M. Therefore, we have that M =.qq

Res& BIndG M. Therefore, the maps (5.3) and (5.5) are inverse to each other.
The latter assertion immediately follows from the fact that the map (5.4) is the composition of the

poset isomorphism (5.3) and the inclusion map (s7-tilt B)** —— s7-tilt B. O
The following is a block version of Theorem 3.4.

Theorem 5.6. Let G be a normal subgroup of a finite group G, B a block of kG, B a block of kG
covering B, 8 the block of kI~ (B) satisfying

Z xlgx_l =153

2€[G/15(B)]

and M a support 7-tilting B-module. If it holds that BIndéé(B)Reséé(B)ﬂResi(B)M € add BRes?é(B)M
and BRes?é( B)M is relatively G-projective, then we have that Reséé(B),@Res?G( B)M is a support 7-tilting
B-module. Moreover, if (M, P) is a support 7-tilting pair for B corresponding to M, then the pair

(ResIGé(B)ﬁResi(B)M, Reséé(B)BReS?é(B)p)

is a support 7-tilting pair for B corresponding to Reséé(B) BResi ( B)M .
Proof. Since the functor

BRes?é(B): B-mod —— f-mod
is a Morita equivalence by Proposition 4.6, the module BResi( B)M is a support 7-tilting S-module and

(ﬁReb?é(B)M, 6R98?é(3)p)

is a corresponding support 7-tilting pair for 5. Hence, by Theorem 5.1 it immediately follows the conse-
quence. O

The following is a block version of Theorem 3.8.

Theorem 5.7. Let G be a normal subgroup of a finite group G, B a block of kG, B a block of kG
covering B, 3 the block of kI (B) satisfying

Z I15I71 = ]‘B
2€[G/15(B)]
and M a support T-tilting B-module. Then the following conditions are equivalent:
(1) M =aqq BIndgM for some I5(B)-invariant support 7-tilting B-module M.

(2) ﬁIndéé(B)Reséé(B),BReS?G(B)M € add BRGS?@(B)M and BRes?é(B)M is relatively G-projective.
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(3) B(S @y BRGS?G(B)M) € add ﬁReS?G(B)M for each simple k(I (B)/G)-module S.

Proof. We remark that the module ﬁRes?é( B)M is a support 7-tilting S-module since the functor

ﬁRes?é(B): B-mod —— f-mod (5.6)

is a Morita equivalence by Proposition 4.6.
(1) = (2). Assume that M =,qq BIndSM for some I+ (B)-invariant support 7-tilting B-module M. By
[16, Theorem 3.3], the module ,BIndg’(B)M is a support 7-tilting S-module. Since the functor

Ind?é(B): B-mod —— B-mod (5.7)

is a Morita equivalence with the inverse functor (5.6). we have Indi( B)BRes?é( B)]\;I ~ M. Also, by
the assumption and Proposition 4.7, we get that M =,qq BIndgM = Ind?é(B)ﬂlndé@(B)M. Therefore,
we have that Ind?é(B)ﬂRes?é(B)M =add Ind?é(B)BIndéé(B)M. Hence, by the fact that the functor (5.7)

is a Morita equivalence again, we have that BResi( B)M =add BIndéG(B)M . Therefore, we get the

consequence (2) by the equivalence of Theorem 5.4. (1) and (2).
(2) = (1). Since 5Res?é(3)]\;[ is a support 7-tilting S-module, there exists an I5(B)-invariant support

7-tilting B-module M such that ,BResi( B)M —add BIndéé(B)M by the assumptions and Theorem 5.4.
Therefore, by Proposition 4.7, we get that

~ 5 5 ~ e I=(B S G
M 2= nd§, ) BRes¢ ) M =aqq Ind$. ) BInd (@ M = Bma§ .

(2) & (3). Since the support 7-tilting S-module BRGS?G(B)M is the rigid S-module, the equivalence
follows from Lemma 5.3. O

Corollary 5.8. Let (s7-tilt B)’¢(P) be the subset of s7-tilt B consisting of Iy (B)-invariant support
7-tilting B-modules and (s7-tilt B)*** the subset of s7-tilt B consisting of support 7-tilting B-modules
satisfying the equivalent conditions of Theorem 5.7. Then the functor BIndg induces a poset isomorphism

(sT-tilt B)!a(B) — 5 (s7-tilt B)*** (5.8)

M BIndéM.
In particular, the functor BIndg induces the poset monomorphism

(s7-tilt B)!a(B) — sr-tilt B

M +——— BInd¢M.

Proof. Let (s7-tilt 8)** be the subset of s7-tilt 8 consisting of support 7-tilting S-modules satisfying the
equivalent conditions of Theorem 5.4. Since the functor

Ind?é(B): B-mod —— B-mod
is a Morita equivalence, we have poset isomorphisms

s7-tilt 8 —— s7-tilt B

M s nd§, (p) M
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and
(sT-tilt B)** —— (s7-tilt B)***

. (5.9)
G
M— Ind]é(B)M'
By Theorem 5.4, we get the poset isomorphism
s7-tilt B)!e(B) —— (s7-tilt §)**
(s7-tilt B) (s7-tilt B) (5.10)

M—— gimdeP s
By Proposition 4.7, the map (5.8) is the composition of the poset isomorphisms (5.10) and (5.9). Hence,

we complete the proof. O

As an application of Corollary 5.8, we consider the case that I(B)/G is a p-group. The following
theorem is a significant generalization of [17, Theorem 1.2] and [10, Theorem 15].

Theorem 5.9. Let G be a normal subgroup of a finite group G, B a block of kG and B a block of kG
covering B. If the quotient group I~(B)/G is a p-group, then the functor Indg induces an isomorphism

as posets between (s7-tilt B)!a(5) and sr-tilt B, where (s7-tilt B)’&(5) is the subset of s7-tilt B consisting
of I#(B)-invariant support 7-tilting B-modules.

Proof. This immediately follows from Corollary 4.5, Theorem 5.7 (3), Corollary 5.8 and the fact that the
trivial k(Iz(B)/G)-module is a unique simple k(I5(B)/G)-module. O
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