
VIRTUAL THOMPSON’S GROUP1

YUYA KODAMA AND AKIHIRO TAKANO2

Abstract. For virtual knot theory, the virtual braid group was defined by generalizing
the braid group. It was proved that any virtual link can be obtained by the closure of
a virtual braid. On the other hand, due to work by Jones et al., it is known that any
(oriented) link is constructed from an element of Thompson’s group F . In this paper,
we define the “virtual version” of Thompson’s group F and prove that any virtual link
is constructed from an element of the group.

1. Introduction3

Virtual knot theory, introduced by Kauffman [15], is a generalization of classical knot4

theory. There are some motivations in this theory. One is knot theory in Σg× [0, 1], where5

Σg is a closed oriented surface of genus g ≥ 0. Classical knot theory can be regarded as6

the case of g = 0. Another is the complete correspondence with the Gauss diagrams,7

which are used to define a finite type invariant [9]. As in the braid group in classical knot8

theory, the virtual braid group is defined and studied. Kamada [14], and Kauffman and9

Lambropoulou [16] introduced this notion and proved Alexander’s theorem, that is, any10

virtual link can be obtained from the closure of a virtual braid. Moreover, they showed11

Markov’s theorem. In other words, this theorem gives a necessary and sufficient condition12

for two different braids to have equivalent closures.13

Recently, Jones [13] introduced a method of constructing a link from an element of14

Thompson’s group F , and proved Alexander’s theorem. It means that any link can be15

obtained from an element of F . For the oriented case, Jones defined a subgroup −→F of16

F whose element yields an oriented link and showed the theorem with a weaker version.17

After that Aiello [1] proved it completely. Golan and Sapir [8] showed the subgroup −→F is18

isomorphic to the Brown–Thompson group F (3).19

Thompson’s group F is defined by Richard Thompson in 1965. This group is known to20

be related to various areas and has been studied using various definitions such as piecewise21

linear maps on [0, 1], pairs of binary trees, and so on. We consider F as a diagram group22

by referring to the approach in [8]. The notion of diagram groups was suggested by Meakin23

and Sapir (unpublished), and then Kilibarda [17] studied the groups for the first time.24
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Classical crossing Virtual crossing

Figure 1. Classical and virtual crossings

This class of groups has been well studied not only algebraically but also geometrically.1

For instance, these groups are finitely presented [10], torsion-free [10], totally orderable2

[12], and act freely and cellularly on a CAT(0) cubical complex [6].3

In this paper, we generalize Thompson’s group F from the viewpoint of virtual knot4

theory. Namely, we define virtual Thompson’s group V F as a diagram group and show5

the following:6

Theorem 1.1. Any virtual link can be obtained from an element in V F .7

This paper is organized as follows: In Section 2, we first summarize definitions of virtual8

links, diagram groups, and Thompson’s group F . Then we define virtual Thompson’s9

group V F as a diagram group. At the end of this section, we discuss some properties of10

diagram groups, and hence of V F . In Section 3, we introduce a method of constructing11

a virtual link from an element in V F . This method is a generalization of the one for F .12

Then we discuss the relationship between elements of V F and labeled binary trees. Some13

elements of V F are represented by labeled binary trees. In this sense, we can regard V F14

as a generalization of F . In Section 4, we show that any virtual link is obtained from15

some element in V F . Similar to [1, 13], this is achieved by constructing the Tait graph16

from a virtual link and deforming it.17

Various other generalizations of Thompson’s group F are also known [2, 3, 5, 18]. It is18

an interesting problem to study the relationship between them and V F .19

2. Preliminaries20

2.1. Virtual knots and links. In this section, we give a short description of the virtual21

links.22

Definition 2.1. An n-component virtual link diagram is an immersion of n circles in23

the 2-sphere S2 (= R2 ∪ {∞}) such that the multiple point set consists of finite number24

of transverse double points and each of them is labeled, either as a classical crossing or25

as a virtual crossing (see Figure 1). In particular, if n = 1, we also call it a virtual knot26

diagram. A virtual link diagram without virtual crossings is said to be classical.27

Definition 2.2. An n-component virtual link is an equivalence class of the set of28

all n-component virtual link diagrams under the ambient isotopy on the plane and the29
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Figure 2. Classical Reidemeister moves

Figure 3. Virtual Reidemeister moves

Figure 4. Mixed move

generalized Reidemeister moves, that is, the (classical) Reidemeister moves (Figure 2),1

the virtual Reidemeister moves (Figure 3), and the mixed move (Figure 4). If n = 1, we2

also call it a virtual knot.3

Similarly to classical knot theory, it is natural to consider the notion of the virtual braid.4

Kamada [14], and Kauffman and Lambropoulou [16] defined the virtual braid group and5

independently proved Alexander’s theorem for virtual links:6

Theorem 2.3 ([14, Proposition 3], [16, Theorem 1]). Any virtual link can be described7

as the closure of a virtual braid.8

2.2. Diagram groups over semigroups. In this section, we briefly review the definition9

of diagram groups. Although our purpose is to define one diagram group, we explain the10

formal definition of diagram groups for the reader’s convenience. See [10] for details.11

Let P = 〈Σ | R〉 be a semigroup presentation. Here, Σ is a finite set of generators, and12

R is a finite set of relations of the form u→ v where u and v are finite words on Σ. We13

always assume that there exists no relation of the form u → u, where u is a finite word14

on Σ. For simplicity, if u→ v is in R, then we regard v → u as also being in R.15

We fix a finite word w on Σ. Roughly speaking, for the given word w, each element16

(called a diagram) of the diagram group represents a way of rewriting by relations from17

w to itself again. Formally, for w, we define a diagram as a finite sequence of words on Σ18
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with the following form1

w = w1 → w2 → · · · → wn−1 → wn = w

where each wi−1 → wi is of the form w′(pi−1)w′′ → w′(pi)w′′ with certain words w′, w′′ on2

Σ and pi−1 → pi is in R. We call each replacement of the word in the sequence a cell of3

the diagram.4

We define a reduction of a dipole as follows: Let w = w1 → · · · → wn = w be a5

diagram and assume that there exists i such that wi−1 → wi → wi+1 is of the form6

w′(pi−1)w′′ → w′(pi)w′′ → w′(pi+1)w′′ and pi−1 = pi+1 holds. In this case, we obtain a7

new diagram by eliminating wi−1 and wi, that is, by setting8

w = w1 → w2 → · · · → wi−2 → wi+1 → · · · → wn = w.

This operation and its inverse are called the reduction of dipoles and the insertion of9

dipoles, respectively.10

We will identify diagrams ∆ with ∆′ if ∆′ can be obtained from ∆ by applying these11

operations a finite number of times. In addition, we will identify two diagrams when “two12

cells are separated”. More precisely, we define two diagrams of the following forms are13

equivalent:14

w = w1 → · · · → w′p1w
′′p2w

′′ → w′p′1w
′′p2w

′′ → w′p′1w
′′p′2w

′′ → · · · → wn = w

and15

w = w1 → · · · → w′p1w
′′p2w

′′ → w′p1w
′′p′2w

′′ → w′p′1w
′′p′2w

′′ → · · · → wn = w,

where w′, w′′, w′′′ are words on Σ, and p1 → p′1, p2 → p′2 are inR. We define the equivalence16

relation on the set of all diagrams as the one generated by all of the above. We write17

D(P , w) for the set of all equivalence classes of diagrams.18

The product on D(P , w) is defined as follows: For two diagrams w = a1 → · · · → an =19

w and w = b1 → · · · → bm = w, we define their product to be the equivalence class of the20

“concatenation”21

w = a1 → · · · → an = w = b1 → · · · → bm = w.

This product is well-defined, and D(P , w) is termed diagram group.22

If we can not apply the reduction of dipoles, we call the diagram reduced. For each23

element of D(P , w), there exists a unique representative with reduced [17].24

Example 2.4. Let P = 〈a, b | a→ ab, b→ aa, a→ aa〉 and w = a. Then25

(a)→ (aa) = (a)a→ (aa)a = a(aa)→ a(a) = (aa)→ (a)

and26

(a)→ (ab) = a(b)→ a(aa)→ a(a) = (aa)→ (a) (2.1)
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are reduced diagrams. Their product is1

(a)→ (aa) = (a)a→ (aa)a = a(aa)→ a(a) = (aa)→ (a)

→ (ab) = a(b)→ a(aa)→ a(a) = (aa)→ (a),

and this diagram is also reduced. The diagram2

(a)→ (ab) = (a)b→ (ab)b→ (a)b = a(b)→ a(aa)→ a(a) = (aa)→ (a)

is not reduced since there exists (a)b → (ab)b → (a)b. If we reduce a dipole of this3

diagram, then we get diagram 2.1. The diagrams4

(a)→ (ab) = a(b)→ a(aa) = (a)aa→ (aa)aa = aa(aa)

→ aa(a) = a(aa)→ a(a) = (aa)→ (a)

and5

(a)→ (ab) = (a)b→ (aa)b = aa(b)→ aa(aa)→ aa(a) = a(aa)→ a(a) = (aa)→ (a)

are equivalent. Observe the cells a(b)→ a(aa)→ (aa)aa and (a)b→ (aa)b→ aa(aa).6

The notions in this section can also be represented by oriented graphs. Let w =7

w1w2 · · ·wn be a word where each wi is in Σ. We first define the trivial geometric diagrams8

as follows:9

Let v1, v2, . . . , vn+1 be vertices, and each vi is connected to vi+1 in this orientation.10

Namely, this graph consists of n edges (v1, v2), (v2, v3), . . . , (vn, vn+1). We label each11

(vi, vi+1) as wi and omit the labels of vertices. We define a trivial geometric diagram12

of w as this graph. For an oriented graph, given a vertex v and two edges (v′, v) and13

(v, v′′), we say that (v′, v) and (v, v′′) are incoming and outgoing edges of v, respectively14

(cf. Figure 12).15

Next, we define a geometric cell. Let p → q be in R, where p = p1 · · · pn and q =16

q1 · · · qm. Let vp1 and vpn be the vertices of the trivial diagram of p such that the edges17

labeled by p1 and pn are outgoing and incoming edges of vp1 and vpn , respectively. For q,18

we define the vertices vq1 and vqm similarly. Then the graph obtained by gluing vp1 and19

vpn to vq1 and vqm , respectively, is called a geometric (p, q)-cell.20

Generally, a geometric diagram is represented by attaching geometric cells to a trivial21

geometric diagram along corresponding sub-words successively. Let w be a given word22

on Σ and w = z1 → z2 → · · · zn−1 → zn = w be a diagram. Note that each zi−1 → zi23

is of the form z′(pi−1)z′′ → z′(pi)z′′, where z′, z′′ are some words on Σ. Therefore we can24

attach a (p1, p2)-cell along the subgraph of a trivial geometric diagram of w corresponding25

to p1. Then the obtained graph has two paths, z′(p1)z′′ and z′(p2)z′′. Regarding z′(p2)z′′26

as a trivial geometric diagram, and proceeding similarly to the end, we obtain a graph.27

We call this graph geometric diagram. The trivial geometric (sub)diagrams corresponding28

to the top and bottom w of the geometric diagram are called the top and bottom paths,29
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Figure 5. Trivial geometric diagrams of a and ab, and geometric (a, ab)-
cell and (aa, a)-cell

Figure 6. The geometric diagram corresponding to diagram 2.1

respectively. In the top path or bottom path, the vertex with only one outgoing or1

incoming edge is called the initial or terminal vertex, respectively. Note that for each2

diagram, there exists exactly one initial vertex and one terminal vertex since the top path3

and bottom path share them.4

Similar to the equivalence relation of diagrams, we define the equivalence relation on5

the set of all geometric diagrams. In the rest of this paper, we do not distinguish between6

geometric diagrams and diagrams. See Figures 5 and 6 for examples of trivial geomet-7

ric diagrams, geometric cells, and a geometric diagram corresponding to diagram 2.1 in8

Example 2.4.9

Convention 2.5. Throughout this paper, we assume that all orientations of the edges10

of the (geometric) diagrams illustrated in the figures are from left to right. For the sake11

of simplicity, we omit the illustration of the orientations unless it is important.12

2.3. Thompson’s group F as a diagram group and its generalization. In this13

section, we first recall Thompson’s group F . Then we give the definition and some14

properties of virtual Thompson’s group V F . This group is the most important one in15

this paper.16

We first outline the definition of Thompson’s group F . It is known that there exist17

various (equivalent) definitions for this group. We define this group as pairs of binary18

trees and then see the correspondence of the other realizations.19

Let T be the set of all pairs of binary trees whose numbers of leaves are the same.20

We define the equivalence relation on T . Let (T+, T−) be such two binary trees with n21
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Figure 7. Example of reduction of carets

leaves. We label the leaves of the trees with the numbers 1, 2, . . . , n from left to right,1

respectively. Assume that there exists i ∈ {1, 2, . . . , n − 1} such that i and i + 1 have2

a common parent in both T+ and T−. Then we can get the binary tree T ′+ by removing3

leaves i, i + 1 and corresponding two edges from T+. Similarly, we get T ′− from T−. See4

figure 7 for an example of this operation. We call this operation the reduction of carets.5

We say an element in T is reduced if there exists no such i. Define the equivalence relation6

as the one generated by reductions and its inverses. It is known that there exists a unique7

reduced representative for each equivalence class [4, §2].8

Let F be the set of the equivalence classes of T . We define the product on F as9

follows: Let a = (A+, A−) and b = (B+, B−) be in T . By the previous operations, we get10

two element (A′+, A′−) and (B′+, B′−) which are equivalent to a and b, respectively, and11

A′− = B′+ holds. Then we define the product of the equivalent class of a and that of b as12

that of (A′+, B′−). This is well-defined, and F is termed Thompson’s group F .13

The following fact is well known.14

Proposition 2.6 ([4, §2]). Thompson’s group F is isomorphic to the group consisting15

of homeomorphisms on the closed interval [0, 1] satisfying the following conditions:16

(1) they are piecewise linear and preserve the orientation,17

(2) in each linear part, its slope is a power of 2, and18

(3) the breakpoints are in Z[1
2 ]× Z[1

2 ].19

Sketch of proof. Let T be a binary tree. We decompose [0, 1] by assigning a subinterval20

to each vertex of T . First, we consider the root to be [0, 1]. Next, if a parent has [a, b],21

then we set its left child has [a, (a+ b)/2] and its right child has [(a+ b)/2, b], inductively.22

As a result, the set of leaves of T gives the decomposition [a1, a2], [a2, a3], . . . , [an−1, an]23

where a1 = 0 and an = 1. See also Figure 8.24

Let (T+, T−) be in T . Since two trees have the same number of leaves, we get two25

decompositions [a1, a2], [a2, a3], . . . , [an−1, an] and [b1, b2], [b2, b3], . . . , [bn−1, bn]. Therefore26

we get a piecewise linear map on [0, 1] by mapping each [ai, ai+1] linearly to [bi, bi+1]. This27

induces an isomorphism. �28

We define virtual Thompson’s group as a diagram group, but the following fact is29

helpful for understanding where its definition comes from.30
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Figure 8. Vertices of a binary tree and subintervals

Figure 9. Example of the correspondence of a reduced diagram and a
(reduced) pair of binary trees

Proposition 2.7 ([10, Example 6.4], [6, Appendix]). Let PF = 〈x | x → xx〉 be a1

semigroup presentation. Then the diagram group D(PF , x) is isomorphic to the group F .2

Sketch of proof. Let ∆ be a reduced (geometric) diagram in D(PF , x). We construct3

a pair of binary trees from ∆. This is achieved by associating each cell with a binary4

tree consisting of one parent and two children. Since each cell is of the form x → xx or5

xx→ x, we put a vertex on each edge and regard the vertex on the x-side (not xx-side)6

as the parent.7

By performing the same operation for all cells, we obtain a graph. Let T+ and T− be8

the largest subgraphs whose roots are vertex on the top and bottom path, respectively.9

See Figure 9 and note that we omit the labels on all edges of diagrams since they are10

the same. Since ∆ is reduced, the union of T+ and T− is the obtained graph, and their11

intersection is a set of finitely many vertices. Moreover, (T+, T−) is reduced.12

Conversely, for given reduced (T+, T−), we can construct the diagram ∆ by applying13

the inverse operation to the graph attaching corresponding leaves of T− to T+. It is easy14

to see that this operation yields an isomorphism. �15
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In the following, we define the virtual version of Thompson’s group F . The name1

“virtual” comes from virtual knot theory described in Section 2.1.2

Definition 2.8. Let PV F be the following semigroup presentation:3 〈
x, v

∣∣∣∣∣∣ x→ xx, x→ vv, x→ vx, x→ xv

v → vv, v → xx, v → vx, v → xv

〉
.

Then we define virtual Thompson’s group V F to be the diagram group D(PV F , x).4

Remark 2.9. The group V F is motivated by virtual knot theory as an analogy of the5

virtual braid group. In this sense, this group is a “knot theoretic” Thompson’s group,6

and seems to be algebraically different from the so-called “Thompson-like” groups.7

2.4. Properties of V F . In this section, we list some properties of V F . The proper-8

ties described below are already known to hold for diagram groups. See the respective9

references for details.10

The following statements (1) and (2) follow from [6, Theorem 3.13, Theorem 4.1], (3)11

from [10, Theorem 15.25], (4) and (5) from [12, Theorem 6.1, Theorem 7.1], and (6) from12

[11, Theorem 9.9].13

Theorem 2.10. Let P be a semigroup presentation and w be a given word.14

(1) If P is a finite semigroup presentation, then D(P , w) acts properly, cellularly, and15

freely by isometries on a proper CAT(0) cubical complex.16

(2) If P is a finite semigroup presentation and the semigroup is finite, then the diagram17

group D(P , w) is of type F∞. Especially, D(P , w) is finitely presented.18

(3) The group D(P , w) has the unique extraction of root property. Especially, D(P , w)19

is torsion-free.20

(4) The group D(P , w) is totally orderable.21

(5) The group D(P , w) is residually countable.22

(6) All integer homology groups of D(P , w) are free abelian. Especially, the abelian-23

ization of the group D(P , w) is free abelian.24

Here, for n ≥ 1, a group G is of type Fn if there exists an aspherical CW-complex25

such that its fundamental group is isomorphic to G and it has finitely many n-skeleton.26

A group G is of type F∞ if G is of type Fn for all n ≥ 1.27

Note that statement (1) has various corollaries such as satisfying the Haagerup property28

and the Baum–Connes conjecture. See [6, Section 3.4] for details.29

We remark that we have x = v as an element of the semigroup determined by PV F .30

Therefore, since PV F is a finite presentation and PV F determines a trivial semigroup, we31

have the following corollary:32

Corollary 2.11. The group V F has all the properties in Theorem 2.10.33
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In addition, by using only the relation x→ xx in the rewriting, we have the following:1

Proposition 2.12. Thompson’s group F is a subgroup of V F .2

In the rest of this section, we give an infinite presentation of V F by using the Squier3

complex. Let P = 〈Σ | R〉 be a semigroup presentation. The Squier complex S(P) of P4

is the 2-dimensional complex defined as follows:5

• the 0-cells are the words on Σ;6

• the 1-cells ep,u→v,q connect two 0-cells from puq to pvq if u→ v ∈ R; and7

• the 2-cells Dp,u1→v1,q,u2→v2,r bound the 4-cycles given by four 1-cells ep,u1→v1,qu2r,8

epv1q,u2→v2,r, e−1
p,u1→v1,qv2r(= ep,v1→u1,qv2r), and e−1

pu1q,u2→v2,r(= epu1q,v2→u2,r),9

where ui → vi ∈ R (i = 1, 2) and p, q, r are words on Σ. Moreover, if ep,u→v,q is an edge10

in S(P), then we have e−1
p,u→v,q = ep,v→u,q. For a given word w on Σ, the diagram group11

D(P , w) can be regarded as the fundamental group π1(S(P), w). See [10, Section 6] or12

[7, Section 2] for details.13

Theorem 2.13. Virtual Thompson’s group V F admits the following infinite presenta-14

tion:15

Generators:16

• Xv→vv, Xv→vx, Xv→xv,17

• Xx,s→t,u, Xv,s→t,u (s ∈ {x, v}, t ∈ {xx, xv, vx, vv} and u is a word on Σ),18

• Xx→vv,u, Xx→vx,u, Xv→xx,u, Xv→xv,u (u is a non-empty word on Σ).19

Relations:20

• Xx,s1→t1,ps2qXx,s2→t2,q = Xx,s2→t2,qXx,s1→t1,pt2q,21

• Xv,s1→t1,ps2qXv,s2→t2,q = Xv,s2→t2,qXv,s1→t1,pt2q,22

• Xx→vv,psqXv,s→t,q = Xx,s→t,qXx→vv,ptq,23

• Xx→vx,psqXv,s→t,q = Xx,s→t,qXx→vx,ptq,24

• Xv→xx,psqXx,s→t,q = Xv,s→t,qXv→xx,ptq,25

• Xv→xv,psqXx,s→t,q = Xv,s→t,qXv→xv,ptq,26

where Σ = {x, v}, s, s1, s2 ∈ {x, v}, t, t1, t2 ∈ {xx, xv, vx, vv}, and p, q are words27

in Σ.28

Proof. First, we choose a spanning tree T of the Squier complex S(P), that is, a sub-29

tree of S(P) which contains all vertices. Then the diagram group D(P , w) ∼= π1(S(P), w)30

is generated by all edges subject to the following relations:31

• e = 1 for any 1-cell e ∈ T ,32

• e1e2 · · · ek = 1 for any 2-cell e1e2 · · · ek.33

In this case, we define a spanning tree T of S(PV F ) by the following edges:34

• ex→xx, ex→xv, ex→vx, ex→vv, ev→xx,35

• ex→xx,u, ex→xv,u, ev→vx,u, ev→vv,u (u is a non-empty word on Σ)36
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Figure 10. The Squier complex S(PV F ) corresponding to the words with
up to three letters on Σ. The black edges are those of a spanning tree T .

Figure 10 shows the Squier complex corresponding to the words with up to three let-1

ters on Σ. We rewrite the letter ep,s→t,q to Xp,s→t,q. Then we obtain the generators of2

π1(S(PV F ), x) of the forms3

• Xv→vv, Xv→vx, Xv→xv,4

• Xp,s→t,u (s ∈ {x, v}, t ∈ {xx, xv, vx, vv}, p is a non-empty word, and u is a word5

on Σ),6

• Xx→vv,u, Xx→vx,u, Xv→xx,u, Xv→xv,u (u is a non-empty word on Σ).7

By the definition of the 2-cells, we have8

Xp,s1→t1,qs2rXpt1q,s2→t2,r = Xps1q,s2→t2,rXp,s1→t1,qt2r,

where s1, s2 ∈ {x, v}, t1, t2 ∈ {xx, xv, vx, vv}, and p, q, r are words on Σ. If p = 1, s1 = x9

ans t1 = xx, then we obtain10

Xx→xx,qs2rXxxq,s2→t2,r = Xxq,s2→t2,rXx→xx,qt2r.

Since ex→xx,qs2r and ex→xx,qt2r are edges of the spanning tree T , they are trivial in11

π1(S(PV F ), x), and thus Xxxq,s2→t2,r = Xxq,s2→t2,r. In general, we obtain a relation12

Xx,s→t,r = Xxq,s→t,r for any word q. Similarly, we have Xv,s→t,r = Xvq,s→t,r, and they13

are the second generators of the presentation in the theorem. By using these relations, if14

p = x, then we are able to rewrite the relation15

Xx,s1→t1,qs2rXxt1q,s2→t2,r = Xxs1q,s2→t2,rXx,s1→t1,qt2r

to16

Xx,s1→t1,qs2rXx,s2→t2,r = Xx,s2→t2,rXx,s1→t1,qt2r,
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Figure 11. The generators Xv→vx, Xx,x→xx,u and Xx→vv,u where u is a
word u1u2 · · ·uk.

which is the first relation of the presentation. Similarly, we have1

Xv,s1→t1,qs2rXv,s2→t2,r = Xv,s2→t2,rXv,s1→t1,qt2r,

which is the second relation. Moreover, if p = 1, s1 = x, and t1 = vv, then2

Xx→vv,qs2rXvvq,s2→t2,r = Xxq,s2→t2,rXx→vv,qt2r,

and thus3

Xx→vv,qs2rXv,s2→t2,r = Xx,s2→t2,rXx→vv,qt2r,

which is the third relation. Similarly, we obtain the fourth to sixth relations. �4

For example, substituting si = x, ti = xx (i = 1, 2), p = xj, and q = xk (j, k ≥ 0) in5

the first relation, we have6

Xx,x→xx,xjxxkXx,x→xx,xk = Xx,x→xx,xkXx,x→xx,xjxxxk .

Set xk := Xx,x→xx,xk , then we rewrite this relation as follows:7

xj+k+1xk = xkxj+k+2,

that is,8

xnxk = xkxn+1 (0 ≤ k < n),

which is exactly the relation for Thompson’s group F .9

From the presentation in Theorem 2.13, three generators Xv→vv, Xv→vx and Xv→xv have10

no relations. Therefore, the virtual Thompson’s group V F is the free product of the free11

group of rank 3 generated by these generators and the remaining part of V F .12

Finally, the generators of V F can be described as the geometric diagrams shown in13

Figure 11.14
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Figure 12. The edge e1 is the first incoming edge and e3 is the last in-
coming edge of v.

3. The Construction of virtual links from virtual Thompson’s group1

3.1. The construction. In this section, we explain the construction of a virtual link2

from an element of virtual Thompson’s group V F with an example. This construction is3

based on [13] and [8].4

Step 1: Construct the Thompson graph T (∆).5

Let ∆ be a reduced diagram in V F = D(PV F , x). We define the Thompson graph T (∆)6

as a “subgraph” of the diagram ∆ as follows (cf. [8, Definition 3.2]): the vertices of T (∆)7

are all vertices of ∆ except the terminal vertex. In order to define the edges of T (∆), we8

use the following lemma.9

Lemma 3.1 ([10, Lemma 3.7]). For any inner vertex v of ∆, that is, the vertex which10

does not coincide with the initial vertex nor the terminal vertex, there uniquely exists a11

sequence e1, . . . , en of edges with endpoint v in the counterclockwise order such that for12

some k (1 ≤ k < n), edges e1, . . . , ek are incoming and edges ek+1, . . . , en are outgoing13

(see Figure 12).14

For any inner vertex v of ∆, we assign numbers to edges with endpoint v as in Lemma15

3.1. The edges of T (∆) are the first and the last incoming edges with respect to the16

order for each inner vertex of ∆. If the first and the last edges of v coincide, that is, v17

has exactly one incoming edge, then we make a copy of the incoming edge labeled by the18

same letter. Therefore, any inner vertex of T (∆) has two incoming edges. Figure 13 is an19

example of this step.20

Step 2: Construct the medial graph M(T (∆)).21

The medial graph is defined for any connected plane graph. Let G be a connected plane22

graph, and then its medial graph M(G) is obtained as follows: we put a vertex of M(G)23

on every edge of G, and join two new vertices by an edge if the corresponding edges of G24

are adjacent on a face of G. Figure 14 is an example of this step.25

Step 3: Construct the virtual link diagram L(∆).26

In general, because the medial graph is 4-valent, we are able to obtain a virtual link27

diagram L(∆) by turning all vertices of M(T (∆)) into classical or virtual crossings: for a28
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Figure 13. An example of the Thompson graph T (∆)

Figure 14. An example of the medial graph M(T (∆))

Figure 15. An example of the virtual link diagram L(∆)

vertex of M(T (∆)), if the corresponding edge in T (∆) is1 
the first and labeled by x, then → ,
the last and labeled by x, then → , or
labeled by v, then → .

(3.1)

Figure 15 is an example of this step.2

3.2. Labeled binary trees. In this section, we discuss the relationship between elements3

of V F and labeled binary trees. Suppose that the diagram ∆ : x = w1 → w2 → · · · →4
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Figure 16. An example of the correspondence of a diagram and a pair of
labeled binary trees.

wn−1 → wn = x satisfies the following condition:1

There uniquely exists i ∈ Z ∩ [1, n] such that

|wj| < |wj+1| (1 ≤ j < i)
|wj| > |wj+1| (i ≤ j < n)

hold, (3.2)

where | · | denotes the length of a word. Geometrically, this condition implies that all2

vertices of ∆ can be placed on a straight line, and every vertex except the initial vertex3

has an incoming edge connected to its immediate left one. The path of ∆ on the straight4

line connecting all the vertices is exactly the trivial geometric diagram of wi. Then the5

cell wj → wj+1 for 1 ≤ j < i is the (s, t)-cell and the cell wj → wj+1 for i ≤ j < n is6

the (t, s)-cell, where s ∈ {x, v} and t ∈ {xx, xv, vx, vv}. In this case, the first and last7

edges coincide with the top-most and bottom-most incoming edges of [8, Definition 3.2],8

respectively. Similarly to the proof of Proposition 2.7, the diagram ∆ can be described as9

a pair (T+, T−) of labeled binary trees with the same number of leaves. The label of each10

edge is determined by the one of the corresponding “child” edge of the cell in ∆. We give11

an example in Figure 16.12

On the other hand, Jones [13] introduced a method of constructing a link diagram from13

an element of F by using a pair of binary trees. In the case above, this construction can be14

extended naturally. Let (T+, T−) be a pair of reduced labeled binary trees with n+1 leaves15

obtained from an element of V F , and place its leaves at
(

1
2 , 0

)
,
(

3
2 , 0

)
, . . . ,

(
2n+1

2 , 0
)
. Note16

that the tree T+ is in the upper half-plane, and T− is in the lower half-plane. The plane17

graph Γ(T+, T−), which is called the Γ-graph of (T+, T−), is defined uniquely up to ambient18

isotopy on the 2-sphere S2 (= R2 ∪ {∞}) as follows: the vertices of Γ(T+, T−) are put at19

(0, 0), (1, 0), . . . , (n, 0). An edge of Γ(T+, T−) passes transversely just once an edge of20

T+ (i.e., an edge from top right to bottom left) or an edge of T− (i.e., an edge from top21

left to bottom right) and does not do the other edges of (T+, T−). Every edge is labeled22

by x or v corresponding to the label of an edge of (T+, T−). We illustrate an example in23

Figure 17.24
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Figure 17. An example of the correspondence of a pair of labeled binary
trees and a Γ-graph.

For the two constructions, the following holds:1

Proposition 3.2 (cf. [8, Proposition 3.5]). Let ∆ be a diagram of V F satisfying con-2

dition (3.2) and (T+, T−) the pair of labeled binary trees obtained from ∆. Then the3

Thompson graph T (∆) is isomorphic to the Γ-graph Γ(T+, T−).4

Proof. Let ∆ be a diagram in V F . By forgetting the labels x and v of the edges5

in ∆, we obtain the (possibly non-reduced) diagram ∆̃ in F . When the diagram ∆̃ is6

reduced, this proposition is already proved by Golan and Sapir [8] by stretching the edges7

of T (∆̃) upward. In general, ∆̃ is not reduced but satisfies condition (3.2), and thus this8

diagram can also be described as a pair (T̃+, T̃−) of (non-labeled) binary trees with the9

same number of leaves. Then, we can use the argument of Golan and Sapir, and prove this10

proposition. Putting the labels on the edges of (T̃+, T̃−) (see Figure 16), we obtain the11

pair (T+, T−) of labeled binary trees of ∆. Moreover, the correspondence of the labels of12

the edges of T (∆) and Γ(T+, T−) is clear from the construction. We illustrate an example13

in Figure 18. �14

4. Proof of Theorem 1.115

Theorem 1.1 states that every virtual link can be described as the virtual link diagram16

L(∆) for an element ∆ of V F . In this section, we prove this theorem. The procedure17

of the proof is based on [13]. In fact, we are always able to choose an element of V F18

representing a given virtual link which satisfies condition (3.2).19

Let L be a virtual link diagram.20

Step 1: Construct the Tait graph T (L).21

We apply the checkerboard coloring to the diagram L, that is, we paint regions of L22

with black or white so that adjacent regions are different colors. By convention, the color23

of the unbounded region is white. The vertices of the Tait graph T (L) correspond to the24
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Figure 18. An example of the correspondence in Proposition 3.2. By
stretching the edges of T (∆) upward, it is isomorphic to the graph
Γ(T+, T−). The gray letters are labels of binary trees.

Figure 19. The labels of crossings

Figure 20. An example of the checkerboard coloring and the Tait graph

black regions of L, and the edges correspond to the crossings and are labeled by +, −, or1

v according to the rule in Figure 19. We give an example of the Tait graph in Figure 20.2

Step 2: Deform the graph T (L).3

Jones [13] gave a sufficient condition for a connected plane graph to be obtained from4

an element (T+, T−) of F . Due to the work of Golan and Sapir [8], this is interpreted in5

terms of diagrams (cf. Proposition 2.7). Combining these two, the following holds:6

Lemma 4.1 ([13, Lemma 4.1.4], [8, Proposition 3.5]). Let Γ be a connected plane graph.7

Suppose that Γ consists of two trees, Γ+ in the upper half-plane and Γ− in the lower8

half-plane, and these two trees satisfy the following properties:9
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(1) the vertices are (0, 0), (1, 0), . . . , (n, 0),1

(2) each vertex other than (0, 0) is connected to exactly one vertex to its left one, and2

(3) each edge can be parametrized by a smooth curve (x(t), y(t)) for t ∈ [0, 1] with3

x′(t) > 0 and either y(t) > 0 or y(t) < 0 for t ∈ (0, 1).4

Then there exists an reduced element (T+, T−) of F such that Γ(T+, T−) is isomorphic to5

Γ. Equivalently, there exists a reduced diagram ∆ of F such that T (∆) is isomorphic to6

Γ.7

For the virtual case, the Thompson graph has labels x or v. In particular, if there exists8

a vertex of a diagram ∆ with exactly one incoming edge, then it has two incoming edges9

with the same labels in the Thompson graph T (∆). Hence, we obtain the condition for10

the virtual version:11

Lemma 4.2. Let Γ be a connected plane graph with each edge labeled by x or v. Suppose12

that Γ consists of two trees, Γ+ in the upper half-plane and Γ− in the lower half-plane, and13

these two trees satisfy the properties (1), (2) and (3) in Lemma 4.1. Moreover, assume14

that Γ satisfies the following condition:15

(4) Two edges connecting adjacent two vertices have the same labels.16

Then there exists a pair (T+, T−) of labeled binary trees in V F such that Γ(T+, T−) is17

isomorphic to Γ. Equivalently, there exists an element ∆ of V F satisfying condition (3.2)18

such that T (∆) is isomorphic to Γ.19

For a diagram ∆ satisfying condition (3.2), the Tait graph of L(∆) (i.e., the Thompson20

graph T (∆)) satisfies the conditions of Lemma 4.2, with edges in the upper half-plane21

labeled by + or v and edges in the lower half-plane labeled by − or v. Therefore, in order22

to prove the main theorem, we apply the Reidemeister moves on the given Tait graph so23

that the deformed graph satisfies the condition of Lemma 4.2.24

We recall some local moves on the labeled plane graph corresponding to the Reidemeis-25

ter moves R1 and R2 (see Figure 21).26

Definition 4.3 ([13, Definition 5.3.4]). Two labeled plane graphs are 2-equivalent if27

they differ by planar isotopies and any of the moves R1, R2a, and R2b.28

The moves R1, R2a, and R2b on the labeled plane graph correspond to the Reidemeister29

moves R1 and R2 on the virtual link diagram, respectively. Therefore, let L and L′ be30

virtual link diagrams. If the Tait graphs T (L) and T (L′) are 2-equivalent, then L and L′31

are equivalent.32

Lemma 4.4 ([13, Lemma 5.3.6]). Any Tait graph is 2-equivalent to a plane graph sat-33

isfying conditions (1) and (3) in Lemma 4.1.34
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Figure 21. The Reidemeister moves R1 and R2 on the plane graph

Therefore, we may assume that the Tait graph T (L) satisfies the above conditions. Such1

plane graph is said to be standard. Suppose that the edges of a standard plane graph are2

oriented from left to right. We recall some notations in [13].3

Definition 4.5 ([13, Definition 5.3.7 and 5.3.8]). For a vertex u of T (L), we set4

eup := {e ∈ E(T (L)) | e lies in the upper half-plane} ,

edown := {e ∈ E(T (L)) | e lies in the lower half-plane} ,

ein
u := {e ∈ E(T (L)) | τ(e) = u} ,

eout
u := {e ∈ E(T (L)) | ι(e) = u} ,

where E(T (L)) is the set of all edges of T (L), and τ(e) and ι(e) are the terminal and5

initial vertices of e, respectively.6

Case 1. There exists a vertex u different from (0, 0) with ein
u = ∅. Let w be the vertex7

immediately to the left of u as below:8

We add two edges connecting w and u so that the deformed graph is 2-equivalent to the9

original graph:10
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Case 2. There exists a vertex u with |ein
u | = 1. We may assume that the incoming edge1

of u is in the upper half-plane. This is labeled by +, −, or v. The situation near u is as2

below:3

Then we add one vertex and three edges as below:4

Case 3. There exists a vertex u with |ein
u ∩ eup| > 1 or |ein

u ∩ edown| > 1. We may show5

only the first case, and the other case is similar. The situation near u is below:6

Then we add three vertices and five edges as below:7

We can repeat this operation until the vertex u satisfies |ein
u ∩ eup| = 1.8

Case 4. After applying the previous deformations, all vertices, except the vertex (0, 0),9

have two incoming edges, one in the upper half-plane and the other in the lower half-plane.10

Hence, this graph satisfies condition (2) in Lemma 4.1. Then we may have two problems11

that12

(i) a −-labeled edge is in the upper half-plane or a +-labeled edge is in the lower13

half-plane, and14

(ii) two edges connecting the adjacent two vertices have labels + and v, or v and −,15

respectively.16

We consider the first problem, and we may show only the case of −-labeled edge in the17

upper half-plane. This situation looks like:18
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Then we apply the following deformation1

Next, we consider the second problem. We may show only the case that two labels are2

+ and v, respectively. Suppose that such two edges connect the adjacent vertices w and3

u, then the situation looks like:4

Then we apply the following deformations:5

From the above, the proof of Theorem 1.1 is complete.6

Example 4.6. Figure 22 shows the application of the algorithm to the virtual knot 3.17

in the list1 by Jeremy Green. Its last figure is a diagram of V F representing 3.1. The top8

and bottom paths must be labeled by x from the definition. However, other than those9

edges, gray edges can be labeled by either x or v.10

Since a virtual link is an immersion of circles, its orientation is induced from the one of11

each circle. Jones defined a subgroup −→F of F which is called oriented Thompson’s group.12

This group consists of all pairs of binary trees whose Γ-graphs are 2-colorable, and its13

element yields an oriented link. Aiello [1] proved Alexander’s theorem for the oriented14

case by using another local move. From [8, Lemma 4.1], we are able to define a subgroup15
−−→
V F of V F consisting of all diagrams whose Thompson graphs are 2-colorable. Moreover,16

by using Aiello’s move, the oriented version of Theorem 1.1 can be proved similarly.17

Theorem 4.7. Any oriented virtual link can be obtained from an element in −−→V F .18

1http://www.math.toronto.edu/~drorbn/Students/GreenJ/

http://www.math.toronto.edu/~drorbn/Students/GreenJ/
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Figure 22

Finally, Golan and Sapir [8] showed that oriented Thompson’s group −→F is isomorphic1

to the Brown–Thompson group F (3), which is a diagram group especially. In general, a2

subgroup of the diagram group is not always a diagram group, and thus there is a natural3

problem whether −−→V F is a diagram group or not.4
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