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Abstract. It was conjectured that there are no hyperharmonic integers
h
(r)
n except 1. In 2020, a disproof of this conjecture was given by showing the

existence of infinitely many hyperharmonic integers. However, the correspond-
ing proof does not give any general density results related to hyperharmonic
integers. In this paper, we first get better error estimates for the counting func-
tion of the pairs (n, r) that correspond to non-integer hyperharmonic numbers
using sums on gaps between consecutive prime numbers. Then, based on a
plausible assumption on prime powers with restricted digits, we show that
there exist positive integers n such that the set of positive integers r where
h
(r)
n ∈ Z has positive density. Apart from that, we also obtain exact densities

of sets {r ∈ Z>0 : h
(r)
33 ∈ Z} and {r ∈ Z>0 : h

(r)
39 ∈ Z}. Finally, we give the

smallest hyperharmonic integer h
(r)
n greater than 1, which is obtained when

n = 33 and r = 10 667 968.

1. Introduction

Any partial sum of the harmonic series is called a harmonic number. More precisely,
the n-th harmonic number is the sum of the reciprocals of the first n positive integers,
namely

hn :=

n∑
k=1

1

k
.

In 1915, Theisinger [32] proved that hn is never an integer, when n > 1. Moreover,
Kürschák [23] deduced that for any different positive integers m,n ≥ 1, the correspond-
ing difference of harmonic numbers hm − hn is also a non-integer rational number.

A generalization of harmonic numbers was introduced by Conway and Guy in [8].
They defined the n-th hyperharmonic number of order r as

h(r)n :=

n∑
k=1

h
(r−1)
k , (1)

for given natural numbers n, r ≥ 1, with the initial case h(1)n = hn. In the same book,
they also showed that hyperharmonic numbers satisfy the following equality.

h(r)n =

(
n+ r − 1

r − 1

)
(hn+r−1 − hr−1). (2)
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These numbers share lots of analytic and arithmetic properties. For instance, it can be
obtained using (2) that h(r)n �r n

r−1 log n, when r is fixed. A finer estimate was given
in [17] and it was shown that for any given natural numbers r and ` and sufficiently large
n, we have

h(r)n =
nr−1 log n

(r − 1)!
+

(γ − hr−1)nr−1

(r − 1)!
+

r−2∑
k=0

(
ar,kn

k log n+ br,kn
k
)

+

`−1∑
j=1

cr,j
nj

+Or,`
(

1

n`

)
,

where γ denotes the Euler-gamma constant and ar,k, br,k, cr,j are explicitly computable
constants for 0 ≤ k ≤ r − 2 and 1 ≤ j ≤ ` − 1. On the arithmetic side, Mező [26]
investigated the integrality property of hyperharmonic numbers. In particular, he showed
that h(r)n is not an integer for n > 1 and r ∈ {2, 3}. This result of Mező was extended
in [3, 4, 14] and it was proved that almost all hyperharmonic numbers are not integers.
Namely, if S(x) denotes the number of (n, r) tuples with h

(r)
n is not an integer where

1 ≤ n, r ≤ x, then S(x) ∼ x2. Recently, this type of density result was improved in [1]
and the current best known estimate is

S(x) = x2 +OA

(
x

80
59

(log x)A

)
, (3)

for any A > 0. Here, the implied constant in the error term depends only on A. Moreover,
using some certain conjectures related to primes in short intervals, one can also obtain
better error terms in (3). For instance, it was shown in [1] that the estimate

S(x) = x2 +O
(
x log3 x

)
(4)

holds under Crámer’s conjecture which states that there is an absolute positive constant
c such that the interval (x−c log2 x, x] contains a prime number, for all sufficiently large x.

In this note, we give better estimations on the number of exceptional (n, r) tuples
for which the corresponding hyperharmonic number h(r)n is an integer. We improve the
previous error term in (3) unconditionally. Also, to obtain a better conditional result,
we use a slightly weaker version of the Riemann hypothesis which is called the Lindelöf
hypothesis. It asserts that for any given ε > 0 the Riemann zeta function satisfies
ζ(1/2 + it) = Oε (tε) (see for instance [27, Chapter 10]). Furthermore, we obtain the
same error term in (4) under the Riemann hypothesis.

Theorem 1.1. Let S(x) = |{(n, r) ∈ [1, x] × [1, x] : h
(r)
n /∈ Z}|. For any ε > 0 we

have

S(x) = x2 +Oε
(
x

631
531+ε

)
unconditionally. Additionally, if we assume the Lindelöf hypothesis, we get

S(x) = x2 +Oε
(
x1+ε

)
.
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Moreover, conditionally on the Riemann hypothesis, we have that

S(x) = x2 +O
(
x log3 x

)
.

Note that the order of the magnitude in the error term is

631

531
≈ 1.18833 < 1.35594 ≈ 80

59

which can be seen as a considerable improvement in the exponent. According to previ-
ously mentioned results, it seemed unlikely to have any hyperharmonic integers. However,
it was already shown in [31] that there are infinitely many hyperharmonic integers when
n = 33. Here, we extend this result and find sets of r values with h

(r)
n ∈ Z such that

their densities are positive when n = 3P η where η ∈ {1, 2, 3} and P is a prime of the
form ±1 + 12` for some ` ∈ Z>0 such that the ternary representation of P η does not
contain any twos in it. It is better to note that these types of integers are studied exten-
sively [5, 9–13, 19, 20, 24, 25]. Especially, the work of Maynard [24] contains estimates on
the set of prime numbers with restricted digits when written in base q for any sufficiently
large q. However, the existence of infinitely many primes with missing digits is still an
open problem when these primes are written in ternary.

Theorem 1.2. Let P be a prime number such that P ≡ ±1 (mod 12) . Also, assume
that

P η =

β∑
i=0

P
(η)
i 3i ∈ (3β , 8 · 3β−1),

with β ≥ 2, η ∈ {1, 2, 3} and

P
(η)
i ∈ {0, 1} when i ∈ Z ∩ [1, β − 2].

(?)

Then, there exists an integer r ∈ [1, (3P η)!] such that R ≡ r (mod (3P η)!) implies that
h
(R)
3Pη ∈ Z. Moreover, let Rn denote the set of r values where h(r)n ∈ Z for a given positive

integer n. Then, for any n = 3P η for which P η satisfies the condition (?) for some

η ∈ {1, 2, 3}, the set Rn has density which is greater than or equal to
1

n!
.

As a corollary of Theorem 1.2, we get that the densities of the sets R33 and R39 are
at least

1

33!
≈ 1.1516 · 10−37 and

1

39!
≈ 4.90247 · 10−47, (5)

respectively, since the primes 11 and 13 satisfy condition (?). Besides, doing some com-
putations and using the prescribed techniques in this note, we obtain exact densities of
these sets. In fact, these computations yield the structure of the smallest hyperharmonic
integer.

Theorem 1.3. The smallest hyperharmonic integer h(r)n greater than 1 is equal to

300928717281136440498412577870862718814115971855972181389310118886033219503

464826118726226835455760805858527661106437699477935943027282634474202043452

3221316911052660055855963776173497027117,
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and it is obtained when n = 33 and r = 10 667 968.

Before proving our results, we mention some of the known facts related to non-integer
hyperharmonic numbers which can be obtained from [14, Theorems 1, 2 and 4].

Fact 1.4. Let n > 1 and α, r ≥ 1 be integers. If

1. r ≤ 20 001, or

2. n ≤ 32, or

3. n is even, or

4. r is odd, or

5. n is a prime power, or

6. n is of the form 3pα, for some prime number p ≡ ±5 (mod 12), or

7. n is of the form 5pα, for some prime number p which is congruent to one of the
following

7, 11, 13, 14, 19, 21, 22, 23, 26, 28, 31, 33, 38, 39, 41, 42,

44, 46, 52, 53, 56, 57, 61, 62, 63, 66, 67, 69, 76, 78, 79, 82, (mod 145) ,

83, 84, 88, 89, 92, 93, 99, 101, 103, 104, 106, 107, 112,

114, 117, 119, 122, 123, 124, 126, 131, 132, 134, 138

then the corresponding hyperharmonic number h(r)n is not an integer. Moreover, there is
a constant C ∈

(
0, 12
)
such that for any sufficiently large integer n and for any r ≤ Cn1.475

we have h(r)n /∈ Z.

In this note, we deal with the values of n which do not satisfy the conditions of
Fact 1.4. We denote by N the set of all such exceptional natural numbers. Thanks to
SageMath [29], the first few values of N are

N = {1, 33, 39, 45, 63, 69, 77, 85, 91, 99, 105, 111, 117, 119, 133, 135, 141, 143, 145, . . .}. (6)

The structure of this paper can be explained as follows. In Section 2, we prove
some general facts related to hyperharmonic numbers. After that, we give a proof of
Theorem 1.1 using certain type of sums on the differences of consecutive prime numbers
in Section 3. Also, for some specific integers n ∈ Z>0, a set of positive density that
consists of positive integers r which lead to integer values of h(r)n will be introduced in
Section 4. Moreover, we do the corresponding computations to find exact densities of
sets {r ∈ Z>0 : h

(r)
33 ∈ Z} and {r ∈ Z>0 : h

(r)
39 ∈ Z}, and this will be mentioned in Section

5. Finally, we determine the smallest hyperharmonic integer and its (n, r) value.

1.1. Notation
In this note, p always denotes a prime number unless specified. Usually, the p-ary

representation of a natural number n is given as (nm−1, . . . , n0)p where m =
⌈
logp n

⌉
.
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Also, we use the νp (n) notation to represent the p-adic valuation of a natural number n,
that is, for a given n ∈ Z we denote

νp (n) :=

{
m, if pm | n, but pm+1 - n,
∞, if n = 0.

Next, we extend this notation to a rational number q = a/b by setting νp(q) = νp(a) −
νp(b) where a, b ∈ Z. Moreover, Fq always denotes the finite field with q elements. Apart
from that, let g : R→ R be a function and suppose that g(x) > 0 for x ≥ d, where d is a
real number. We write f(x) = O (g(x)), or f(x)� g(x), if there exists a constant c > 0

such that

|f(x)| ≤ cg(x), for all x ≥ d. (7)

Also, the notation f(x) = O` (g(x)) indicates that the constant c > 0 given in (7) may
depend on `. Moreover, we say that f(x) is asymptotic to g(x), denoted by f(x) ∼ g(x),

if lim
x→∞

f(x)

g(x)
= 1. Furthermore, we follow the same notation given in [14, Sections 1 and

3]: let I(n, r) = {r, . . . , n+ r − 1}. For any prime p and a finite set S in Z, define

µp (S) := max{νp (a) : a ∈ S} and Mp (S) :=
∣∣∣S ∩ pµp(S)Z∣∣∣ . (8)

Finally, for any set S in Z and any natural number n > 1 we write

RS (n) := {r ∈ Z>0 : νp

(
h(r)n

)
≥ 0 for any p ∈ P ∩ S},

where P denotes the set of all prime numbers. If we let Rp (n) := R{p} (n) , then we see
that

RS (n) =
⋂
p∈S

Rp (n) .

2. General Facts Related To Hyperharmonic Numbers

Before getting into details, we give some of the general facts related to hyperharmonic
numbers. For this purpose, we first mention an easy consequence of (2) which is also
proved in [2, Lemma 2.1].

Lemma 2.1. Let n be a positive integer and

fn(x) =

n−1∏
i=0

(x+ i). (9)

Then, for any positive integer r we have

h(r)n =
f ′n(r)

n!
,

where f ′n(x) denotes the derivative of the polynomial fn(x).
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Proof. Observe that log fn(x) =

n−1∑
i=0

log(x + i). Taking the derivative of both sides

yields

f ′n(x)

fn(x)
=

n−1∑
i=0

1

x+ i
.

By (2), we conclude that

h(r)n =

(
n+ r − 1

r − 1

)(
1

r
+

1

r + 1
+ · · ·+ 1

n+ r − 1

)
=
fn(r)

n!
· f
′
n(r)

fn(r)
=
f ′n(r)

n!
,

as desired. �

Remark 2.2. By [6, Theorem 2], one can see that f ′n(r) =

[
n+ r

r + 1

]
r

, where
[
a

b

]
r

denotes the r-Stirling number of the first kind which is given in [6, Definition 2].

As a result, we get the following consequence of Lemma 2.1 which can be also found
in [2, Proposition 4.1].

Corollary 2.3. Let n and r be positive integers. For any k ∈ Z≥0, the difference
h
(r+k·n!)
n − h(r)n is an integer. In particular, h(r)n is an integer if and only if h(r+k·n!)n ∈ Z

for any non-negative integer k.

Proof. Let fn(x) ∈ Z[x] be the polynomial that is introduced in (9). Also, write

f ′n(x) =

n−1∑
i=0

aix
i for some ai ∈ Z. Then by Lemma 2.1, for any k ∈ Z≥0 we have

h(r+k·n!)n − h(r)n =
f ′n(r + kn!)− f ′n(r)

n!

=
1

n!
·
n−1∑
i=0

ai
(
(r + kn!)i − ri

)
=

1

n!
·
n−1∑
i=0

aikn!
(
(r + kn!)i−1 + · · ·+ ri−1

)
=

n−1∑
i=0

aik
(
(r + kn!)i−1 + · · ·+ ri−1

)
,

which indiates that h(r+k·n!)n − h(r)n ∈ Z. The second part follows immediately. �

To obtain a non-negative p-adic valuation, we will use the following fact which is
already given in [31, Lemma 3].

Fact 2.4. For any given positive integers n and r, the corresponding hyperharmonic
number h(r)n is an integer if and only if νp

(
h
(r)
n

)
≥ 0 for all prime numbers p ≤ n.
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Remark 2.5. Using Fact 2.4, we see that, for a fixed n, there exists r with h(r)n ∈ Z
if and only if

⋂
p≤n

Rp (n) 6= ∅.

We will give a consequence of [14, Lemma 12] which will be useful to obtain equivalent
conditions for a non-negative p-adic valuation of a hyperharmonic number when a certain
prime number p is specified.

Corollary 2.6. Let n and r be given positive integers. For any prime number p, we
have

|I(n, r) ∩ pZ| ∈
{⌊

n

p

⌋
,

⌊
n

p

⌋
+ 1

}
.

Moreover, if p divides n, then |I(n, r) ∩ pZ| =
⌊
n

p

⌋
.

Now, we can state the necessary and the sufficient conditions to obtain νp
(
h
(r)
n

)
≥ 0

for any prime number p and positive integers n, r.

Lemma 2.7. Assume that n and r are given positive integers. Let k =

⌊
n

p

⌋
and

c =

⌈
r

p

⌉
where p is a given prime.

(i) If |I(n, r) ∩ pZ| = k, then νp
(
h
(r)
n

)
≥ 0 if and only if νp

(
h
(c)
k

)
≥ 1.

(ii) If |I(n, r) ∩ pZ| = k + 1, then νp
(
h
(r)
n

)
≥ 1 if and only if νp

(
(k + 1)h

(c)
k+1

)
≥ 1.

Moreover, νp
(
h
(r)
n

)
≥ 0 is equivalent to νp

(
(c+ k)h

(c)
k

)
≥ 0 when |I(n, r)∩pZ| = k+ 1.

Proof. For any n ∈ Z>0, let fn(x) be the polynomial defined in (9). By Corollary 2.6,
we know that either |I(n, r)∩pZ| = k, or |I(n, r)∩pZ| = k+ 1 holds. In the former case,
we have

h(r)n =
A

B
· cp · (c+ 1)p · · · (c+ k − 1)p

p · 2p · · · kp

(
1

p

k−1∑
i=0

1

c+ i
+ q

)
(10)

=
A

B
· fk(c)

k!

(
1

p
· f
′
k(c)

fk(c)
+ q

)
=
A

B
· f
′
k(c)

p · k!
+
A

B
· fk(c)

k!
· q,

where q ∈ Q, A,B ∈ Z and νp (A) = νp (B) = 0 ≤ νp (q) . By the non-Archimedean
property and Lemma 2.1, we see that

νp

(
h(r)n

)
≥ min

{
νp

(
f ′k(c)

p · k!

)
, νp

(
fk(c)

k!
· q
)}

= min

{
νp

(
h
(c)
k

)
− 1,

fk(c)

k!
· q
}
,

and the equality holds when the p-adic valuations on the right hand side are different.

Observe that νp
(
fk(c)

k!
· q
)
≥ 0 as

fk(c)

k!
=

(
c+ k − 1

k

)
∈ Z. Hence, the necessary

and the sufficient condition to obtain a non-negative p-adic valuation for h(r)n is to have
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νp

(
h
(c)
k

)
≥ 1, when |I(n, r) ∩ pZ| = k.

Similarly, if |I(n, r) ∩ pZ| = k + 1, then we have

h(r)n =
A

B
· cp · (c+ 1)p · · · (c+ k)p

p · 2p · · · kp

(
1

p

k∑
i=0

1

c+ i
+ q

)

=
A

B
· p · fk+1(c)

k!

(
1

p
·
f ′k+1(c)

fk+1(c)
+ q

)
=
A

B
·
f ′k+1(c)

k!
+
A

B
· pfk+1(c)

k!
· q

for some q ∈ Q and A,B ∈ Z, where νp (A) = νp (B) = 0 ≤ νp (q) . This indicates that

h(r)n =
A

B
·

(k + 1)f ′k+1(c)

(k + 1)!
+
A

B
· p(k + 1)fk+1(c)

(k + 1)!
· q

=
A

B
· (k + 1)h

(c)
k+1 + p(k + 1) ·

(
c+ k

k + 1

)
q.

Again, by the non-Archimedean property, we see that

νp

(
h(r)n

)
≥ min

{
νp

(
(k + 1)h

(c)
k+1

)
, νp

(
(k + 1) ·

(
c+ k

k + 1

)
q

)
+ 1

}
. (11)

Note that νp
(

(k + 1) ·
(
c+ k

k + 1

)
q

)
+ 1 ≥ 1, as (k + 1)

(
c+ k

k + 1

)
∈ Z and νp (q) ≥ 0.

Hence, by (11), we conclude that νp
(
h
(r)
n

)
≥ 1 if and only if νp

(
(k + 1)h

(c)
k+1

)
≥ 1 when

|I(n, r) ∩ pZ| = k + 1. Similarly, it can be seen that

νp

(
h(r)n

)
≥ 0 is equivalent to νp

(
(k + 1)h

(c)
k+1

)
≥ 0. (12)

To see the last part, observe that

f ′k+1(x) =

(
(x+ k) ·

k−1∏
i=0

(x+ i)

)′
=

k−1∏
i=0

(x+ i) + (x+ k) ·

(
k−1∏
i=0

(x+ i)

)′
= fk(x) + (x+ k) · f ′k(x)

holds, by the definition of fn(x). This yields

(k + 1)h
(c)
k+1 =

f ′k+1(c)

k!
=
fk(c)

k!
+

(c+ k)f ′k(c)

k!

=

(
c+ k − 1

k

)
+ (c+ k)h

(c)
k .

Similar arguments show that the necessary and the sufficient condition to obtain a non-

negative p-adic valuation for (k+1)h
(c)
k+1 is to have νp

(
(c+ k)h

(c)
k

)
≥ 0, as

(
c+ k − 1

k

)
∈

Z. �

It is better to note that a part of Lemma 2.7 is also mentioned in [14, Section 5].
In particular, it is shown that the condition |I(n, r) ∩ pZ| = k + 1 together with k < p
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implies that νp
(
h
(r)
n

)
≥ 0 where k is defined as in Lemma 2.7. Here, we give a criterion

which also covers this fact in a more general setting.

Remark 2.8. Notice that when νp
(
h
(c)
k

)
≥ 1, we have νp

(
h
(r)
n

)
≥ 0. To see this,

first assume that |I(n, r) ∩ pZ| = k + 1. In that case, νp
(

(c+ k)h
(c)
k

)
≥ 1, as c+ k ∈ Z.

This shows that νp
(
h
(r)
n

)
≥ 0 when |I(n, r) ∩ pZ| = k + 1, and the other case follows

immediately from Lemma 2.7.

Now, we give a generalization of Babbage’s and Wolstenholme’s theorems which can
be found in [7], [15, Lemma 2.2] and [16, Lemma 2.1].

Lemma 2.9. For any prime number p ≥ 3, let {a1, a2, . . . , ap−1} be a set such that

ai ≡ i (mod p) for each i ∈ {1, 2, . . . , p− 1}. Then, the sum
p−1∑
i=1

1

ai
has a positive p-adic

valuation. Moreover, for any non-negative integer a ≥ 0 and prime p ≥ 5, we have

νp

(
p−1∑
i=1

1

ap+ i

)
≥ 2.

Proof. Note that the sum

p−1∑
i=1

1

ai
≡

p−1∑
i=1

ai
−1 (mod p) .

Since ai ≡ i (mod p) for each i ∈ {1, 2, . . . , p− 1}, this sum is also congruent to

p−1∑
i=1

1

ai
≡ (p− 1)p

2
(mod p) ,

which indicates that νp

(
p−1∑
i=1

1

ai

)
≥ 1. The second part follows from [16, Lemma 2.1]. �

Next, we obtain the following corollary which is a combination of Lemmas 2.7 and
2.9.

Corollary 2.10. For a given prime number p ≥ 3, let n = kp and r = (c−1)p+j for
some c ∈ Z>0 and j ∈ {1, 2, . . . , p}. Then, νp

(
h
(r)
n

)
≥ α if and only if νp

(
h
(c)
k

)
≥ α+1,

for any α ∈ {0, 1}. Also, if p ≥ 5 and j ∈ {1, p}, then νp

(
h
(r)
n

)
≥ β if and only if

νp

(
h
(c)
k

)
≥ β + 1, for any β ∈ {0, 1, 2}.

Proof. First, observe that c =

⌈
r

p

⌉
. Since p | n, we have |I(n, r)∩pZ| = k by Corollary
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2.6. Similar to (10) in the proof of Lemma 2.7, we see that

h(r)n =
A

B

(
c+ k − 1

k

)( p−1∑
s=j

1

(c− 1)p+ s
+

1

p

k−1∑
i=0

1

c+ i
+

k−1∑
i=0

p−1∑
`=1

1

(c+ i)p+ `

+

j−1∑
t=1

1

(c+ k − 1)p+ t

)
,

(13)

where νp (A) = νp (B) = 0. By Lemma 2.9, we obtain that

νp

(
k−1∑
i=0

p−1∑
`=1

1

(c+ i)p+ `

)
≥ 1, (14)

for any odd prime p, and

νp

(
k−1∑
i=0

p−1∑
`=1

1

(c+ i)p+ `

)
≥ 2, (15)

when p ≥ 5. Also, the same lemma implies

νp

p−1∑
s=j

1

(c− 1)p+ s
+

j−1∑
t=1

1

(c+ k − 1)p+ t

 ≥ 1. (16)

Note that (16) becomes

νp

p−1∑
s=j

1

(c− 1)p+ s
+

j−1∑
t=1

1

(c+ k − 1)p+ t

 ≥ 2, (17)

when j ∈ {1, p} and p ≥ 5, by Lemma 2.9. Hence, if we rewrite (13), we get that

h(r)n =
A

B

(
c+ k − 1

k

)
·
(

1

p

f ′k(c)

fk(c)
+ q

)
=
A

B
·
h
(c)
k

p
+
A

B

(
c+ k − 1

k

)
· q, (18)

where

q =

p−1∑
s=j

1

(c− 1)p+ s
+

j−1∑
t=1

1

(c+ k − 1)p+ t
+

k−1∑
i=0

p−1∑
`=1

1

(c+ i)p+ `
.

Combining (14) and (16), we deduce that νp (q) ≥ 1 by the non-Archimedean property
of the p-adic valuation. In that case, for any α ∈ {0, 1} we have νp

(
h
(r)
n

)
≥ α if and

only if νp
(
h
(c)
k

)
≥ α+ 1 by (18), as νp (A) = νp (B) = 0 and

(
c+ k − 1

k

)
∈ Z. Similarly,

if j ∈ {1, p} and p ≥ 5, then νp (q) ≥ 2 by (15) and (17). Thus, for any β ∈ {0, 1, 2}, the
necessary and the sufficient condition to obtain νp

(
h
(r)
n

)
≥ β is to have νp

(
h
(c)
k

)
≥ β+1,

by equation (18). �

Remark 2.11. Note that we cannot take β > 2 in Corollary 2.10, as
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νp

((
c+ k − 1

k

)
q

)
= 2 may hold.

Using Lemma 2.7, we get necessary congruences for r to obtain a non-negative p-adic
valuation for h(r)n , when

√
n < p < n.

Proposition 2.12. For any positive integer n, let p be a prime number such that
√
n < p < n. Define k =

⌊
n

p

⌋
. Assume that fk(x) is defined as in (9). Then νp

(
h
(r)
n

)
≥

0 if and only if

(2.12.1) r ≡ 1−b (mod p) for some b ∈ {1, . . . , np} where n ≡ np (mod p) and 0 < np < p,
or

(2.12.2) r ≡ (s− 1)p+ j
(
mod p2

)
where s is a root of f ′k(x) modulo p and j ∈ {1, . . . , p}

holds.

Proof. Take any positive integer n and a prime number p such that
√
n < p < n holds.

Then, observe that k =

⌊
n

p

⌋
≤ n

p
< p. This indicates that for any z ∈ Z≥1 we have

νp

(
h
(z)
k

)
≥ 0, (19)

as h(z)k =
f ′k(z)

k!
by Lemma 2.1, and νp (k!) = 0.

Now, suppose that νp
(
h
(r)
n

)
≥ 0. Recall by Corollary 2.6 that there are two pos-

sibilities for |I(n, r) ∩ pZ|: it is either equal to k or k + 1. We first assume that

|I(n, r) ∩ pZ| = k. Let c =

⌈
r

p

⌉
. By Lemma 2.7, we know that νp

(
h
(c)
k

)
≥ 1.

In that case, νp (f ′k(c)) ≥ 1 + νp (k!) where f ′k(x) is the derivative of the polynomial
fk(x) = x(x + 1) · · · (x + k − 1). As k < p for p ∈ (

√
n, n), we see that νp (f ′k(c)) ≥ 1.

This implies that there is a root s of f ′k(x) modulo p such that c =

⌈
r

p

⌉
≡ s (mod p) .

In other words, there exists an integer ` such that

s− 1 + `p <
r

p
≤ s+ `p. (20)

This is also equivalent to the fact (s − 1)p + `p2 + 1 ≤ r ≤ sp + `p2, as r ∈ Z. Hence,
r ≡ (s− 1)p+ j

(
mod p2

)
for some j ∈ {1, . . . , p}.

Next, suppose that νp
(
h
(r)
n

)
≥ 0 and |I(n, r) ∩ pZ| = k + 1. By Corollary 2.6, we

see that p - n. So in that case, we can say that n = kp + np for some 0 < np < p.

Also, let r = cp + (1 − b) where 0 ≤ b − 1 < p. Observe that if |I(n, r) ∩ pZ| = k + 1,
then r ≤ cp ≤ (c + k)p ≤ n + r − 1 = (c + k)p + (np − b). The last inequality yields
b ≤ np. Moreover, we have 1 ≤ b. Thus, we deduce that r ≡ 1 − b (mod p) for some
b ∈ {1, . . . , np}, where n ≡ np (mod p).
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For the other direction, assume that (2.12.1) or (2.12.2) holds. In the latter case, we
see that r ≡ (s− 1)p+ j + `p2 for some j ∈ {1, . . . , p} and ` ∈ Z. This indicates that the

inequalities in (20) hold, which is also equivalent to have c =

⌈
r

p

⌉
≡ s (mod p) . Hence,

we obtain that νp (f ′k(c)) ≥ 1 where fk(x) = x(x+1) · · · (x+k−1). Note that νp (k!) = 0,
as k < p. Gathering this with Lemma 2.1 yields νp

(
h
(c)
k

)
= νp (f ′k(c)) − νp (k!) ≥ 1. As

a result, we deduce νp
(
h
(r)
n

)
≥ 0 by Remark 2.8.

Finally, if r ≡ 1 − b (mod p) for some b ∈ {1, . . . , np} where n ≡ np (mod p) and
0 < np < p, then we can write n = kp+np. This implies that 0 ≥ 1−b ≥ 1−np > −(p−1).

If r = zp+ (1− b) for some z ∈ Z, then we get that zp− (p− 1) < r ≤ zp. This indicates

that z =

⌈
r

p

⌉
= c. So consider n + r − 1 = (c + k)p + (np − b) ≥ (c + k)p > cp ≥ r, as

k ≥ 1. Hence, we have |I(n, r) ∩ pZ| = k + 1. By (19) we know that νp
(
h
(c)
k

)
≥ 0, as

k < p. Using this and Lemma 2.7, we conclude that νp
(
h
(r)
n

)
≥ 0, as c+ k ∈ Z. �

Remark 2.13. For any n ∈ N where N is defined in (6), the condition k < p is
equivalent to

√
n < p for any p ∈ P. To see this, first take any prime p >

√
n. Clearly,

we have k =

⌊
n

p

⌋
≤ n

p
< p. Also, if k =

⌊
n

p

⌋
< p, then

n

p
≤ p, as p ∈ Z. Hence, n ≤ p2,

and since n ∈ N we have n 6= p2. Thus,
√
n < p is equivalent to the fact that k < p for

n ∈ N.

Remark 2.14. Observe that if we take a prime p satisfying
n

2
< p < n, then it is

enough to check the condition (2.12.1). To see this, first note that k = 1 as 1 <
n

p
< 2.

Therefore, p - n and f ′k(x) = 1. This indicates that f ′k(x) cannot have any roots modulo
p. Hence, we get that

R(n2 ,n) (n) =
{
r ∈ N>0 : r ≡ 1− b (mod p) , b ∈ {1, . . . , np}, p ∈ P ∩

(n
2
, n
)}

.

Remark 2.15. If p | n and
√
n < p < n, then it is enough to consider the case

(2.12.2), since |I(n, r)∩ pZ| is always equal to k as it is given in Corollary 2.6. Note that
there can be at most one such prime number p | n. Therefore, if P denotes this prime,
then we deduce that

RP (n) =

{
r ∈ N>0 :

r ≡ (s− 1)P + j
(
mod P 2

)
,

f ′k(s) ≡ 0 (mod P ) , j ∈ {1, . . . , P}

}
,

by Proposition 2.12.

Finally, we mention the following consequence of Proposition 2.12 which is also given
in [2, Remark 3.8].

Corollary 2.16. For any given integer n ≥ 4, let p(n) denote the greatest prime
that is less than n. Then, νp(n)

(
h
(r)
n

)
≥ 0 if and only if there is an integer t such that

r ∈ ((t+ 1)p(n) − n, tp(n)].
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Proof. By the well known Bertrand’s Postulate, we see that
n

2
< p(n) < n for any n ≥ 4.

So by Remark 2.14, we obtain that νp(n)

(
h
(r)
n

)
≥ 0 if and only if r ≡ 1− b

(
mod p(n)

)
for some b ∈ {1, . . . , np(n)} where n ≡ np(n)

(
mod p(n)

)
and 0 < np(n) < p(n). This

is also equivalent to the fact that there exists an integer t such that r = 1 − b + tp(n)

where b ∈ {1, . . . , n − p(n)}, as p(n) ∈
(n

2
, n
)

and np(n) = n − p(n). In other words,

(t+ 1)p(n)−n < r ≤ tp(n), since t and p(n) are integers. Thus, we prove the corollary. �

3. Upper Bounds on the Number of Hyperharmonic Integers

In order to obtain a better error term for S(x), it is enough to estimate an upper
bound on the possible number of hyperharmonic integers h(r)n where (n, r) ∈ [1, x]× [1, x].

To do this, we will use [18, Theorem 1] and [33] where the latter one depends on the
Lindelöf Hypothesis. In addition, using a celebrated result of Selberg [30, Theorem 3]
together with Bertrand’s Postulate we get the following fact.

Fact 3.1. Let ε > 0 be given. If pk denotes the k-th prime number, then we have∑
pk≤x

(pk+1 − pk)2 �ε x
23
18+ε. (21)

Moreover, the Lindelöf Hypothesis implies that∑
pk≤x

(pk+1 − pk)2 �ε x
1+ε. (22)

Finally, if we assume the Riemann Hypothesis, then we obtain that∑
pk≤x

(pk+1 − pk)2

pk
� log3 x. (23)

Now, we prove Theorem 1.1 from the introduction.

Proof of Theorem 1.1. For any n ≤ x, define the exceptional set of r ≤ x values as
En(x) = |{r ≤ x : h

(r)
n ∈ Z}|. Observe that En(x) = 0 when n /∈ N, by Fact 1.4. So,

the definition of S(x) implies that

S(x) +
∑
n≤x
n∈N

En(x) = bxc2 = x2 +O (x) . (24)

This indicates that

S(x) = x2 +O

x+
∑

N<n≤x
n∈N

En(x)

 ,

for any positive integer N. By Fact 1.4, we know that there is a constant C ∈
(
0, 12
)

such that for any sufficiently large integer n and any r ≤ Cn1.475 the corresponding
hyperharmonic number h(r)n is not an integer. Therefore, take N sufficiently large so
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that h(r)n /∈ Z for any n > N and r ≤ Cn1.475. Choose X = C0x
1/1.475 where C0 =

C−1/1.475 > 0. Then, n ≥ X yields h(r)n /∈ Z, as r ≤ x ≤ Cn1.475. Hence,

S(x) = x2 +O

x+
∑

N<n<X
n∈N

En(x)

 . (25)

Denote the greatest prime that is less than or equal to n as p(n). Note that the inequality

En(x) ≤ |{r ≤ x : νp(n)

(
h(r)n

)
≥ 0}|

is satisfied. By Corollary 2.16 we obtain that νp(n)

(
h
(r)
n

)
≥ 0 if and only if there exists

an integer t such that r ∈ ((t+ 1)p(n) − n, tp(n)]. Hence, we see that

En(x) ≤
∑
r≤x

ν
p(n)(h(r)

n )≥0

1 ≤
bx/p(n)c+1∑

t=1

tp(n)∑
r=(t+1)p(n)−n+1

1. (26)

Since t ∈ Z, the set Z ∩ ((t+ 1)p(n) − n, tp(n)] contains exactly n− p(n) many elements.
Define ∆(n) := n−p(n). Observe that ∆(n) 6= 0, as n ∈ N. Therefore, by inequality (26)
we have

∑
N<n<X
n∈N

En(x) = O

∑
n≤X

bx/p(n)c+1∑
t=1

∆(n)


= O

∑
n≤X

x∆(n)

p(n)

 = O

x∑
n≤X

n− p(n)

p(n)

 , (27)

as p(n) < n ≤ X < x for sufficiently large x. Now, observe that

∑
n≤X

n− p(n)

p(n)
≤

∑
2≤pk≤X

∑
pk<n≤pk+1

n− pk
pk

≤
∑

2≤pk≤X

(pk+1 − pk)2

pk
, (28)

where pk denotes the k-th prime number. If we let T (X) =
∑
pk≤X

(pk+1 − pk)2, then by

the partial summation we get that

∑
2≤pk≤X

(pk+1 − pk)2

pk
=
T (X)

X
+

∫ X

2

T (y)

y2
dy +O (1) . (29)

By (21) in Fact 3.1, we know that T (X) �ε X
23
18+ε for any ε > 0. In that case, (29)

becomes ∑
2≤pk≤X

(pk+1 − pk)2

pk
�ε X

5
18+ε +

∫ X

Y

yε−
13
18 dy �ε X

5
18+ε, (30)
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for any fixed Y ∈ [2, X]. Assembling (28) and (30), we obtain

∑
n≤X

n− p(n)

p(n)
�ε X

5
18+ε. (31)

Since X = C0x
1/1.475 for some C0 > 0, we get that∑

N<n<X
n/∈P

En(x)�ε x · x
5
18 ·

40
59+ε

by feeding (31) into (27). Thus, the first result of the theorem follows by (25). Similarly,
when we assume the Lindelöf Hypothesis, we have T (x) �ε x

1+ε by (22) in Fact 3.1.
Using (29), we observe that

∑
2≤pk≤X

(pk+1 − pk)2

pk
�ε X

ε +

∫ X

Y

yε−1dy �ε X
ε, (32)

where Y ∈ [2, X] is fixed. Gathering (32) together with (27) and (28) indicates that∑
N<n<X
n/∈P

En(x)�ε x
1+ε.

Hence, we deduce the second part of the theorem by (25). Finally, suppose the Riemann
hypothesis holds. Combining (25), (27) and (28) together with (23) in Fact 3.1 yields
the last part of the theorem. �

4. A Lower Density Result related to Hyperharmonic Integers

In this section, we deal with the positive integer values of r for which νp
(
h
(r)
n

)
≥ 0

when n ∈ N and p ∈ P are fixed. For this purpose, we first recall some basic facts related
to p-adic valuations of the binomial coefficients.

Remark 4.1. By (8), it can be deduced that⌊
logp n

⌋
≤ µp (I(n, r)) ≤

⌊
logp(n+ r − 1)

⌋
(33)

This fact is also mentioned in [14, Lemma 15]. Also by [14, Proposition 17], we know
that for any prime number p we have

µp (I(n, r)) = max {i ∈ {0, 1, . . . , u} : si > r′i}, (34)

where n = (nm−1, . . . , n0)p, r − 1 = (r′v−1, r
′
v−2, . . . , r

′
0)p and n + r − 1 = (su, . . . , s0)p

when u = max{m, v}. Moreover, it is known by the same proposition that

νp

((
n+ r − 1

r − 1

))
≤ µp (I(n, r)) . (35)

As it is given the proof of [14, Proposition 17] the equality in (35) holds if and only
if we obtain a carry at each step i ∈ {0, 1, . . . , µp (I(n, r)) − 1} in the addition of n =
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(nm−1, . . . , n0)p and r−1 = (r′v−1, r
′
v−2, . . . , r

′
0)p. This fact can be obtained by either [21]

or [22, p. 116] where it is proved that the p-adic valuation of the binomial coefficient
given in (35) is equal to the number of carries that occur in the addition of n and r − 1

when they are in their p-ary representations.

4.1. The necessary and sufficient condition for ν2
(
h(r)
n

)
≥ 0 when n is

odd
Before obtaining the exact form of r for which νp

(
h
(r)
n

)
≥ 0, when p = 2 and n is

odd, we prove the following lemma.

Lemma 4.2. For any positive integers n and r, and a prime number p, the necessary
and the sufficient condition to obtain

νp

((
n+ r − 1

r − 1

))
= µp (I(n, r)) (36)

is to have a carry at each step i = 0, 1, . . . ,m− 2 after the addition of n and r− 1 where
n = (nm−1, . . . , n0)p and r − 1 = (r′v−1, r

′
v−2, . . . , r

′
0)p.

Proof. Let p ∈ P be given. Assume that n = (nm−1, . . . , n0)p and r − 1 =

(r′v−1, . . . , r
′
0)p. By Remark 4.1, we see that equality (36) holds if and only if the

number of carries that occur in the addition of n and r − 1 is equal to µp (I(n, r)) .

Recall that the number of carries that can occur in the addition of n and r − 1 is at
most µp (I(n, r)) by (35) in Remark 4.1. Also, we know by (34) that µp (I(n, r)) =

max {i ∈ {0, 1, . . . , u} : si > r′i} where n + r − 1 = (su, . . . , s0)p and u = max{m, v}.
These facts indicate that a carry must occur after the addition of the digits ni and
r′i for i ∈ {0, 1, . . . , µp (I(n, r)) − 1}, as (36) holds. Therefore, the sufficiency part is
trivial by (33) in Remark 4.1, as m − 1 =

⌊
logp n

⌋
≤ µp (I(n, r)). For the other direc-

tion, suppose that a carry occurs after the addition of each step i ∈ {0, 1, . . . ,m − 2},
but there are at most µp (I(n, r)) − 1 carries in the addition of n and r − 1. Ob-
serve that µp (I(n, r)) ≥ m, since the number of carries that occured in the addi-
tion is at least m − 1 by the assumption. Moreover, by the assumption, there is a
w ∈ {m − 1, . . . , µp (I(n, r)) − 1} such that a carry does not occur after the addition
r′w and nw. Note that a carry cannot occur in the k-th entry when k ≥ µp (I(n, r)) due
to (34) in Remark 4.1. Now, take the smallest such w ∈ {m−1, . . . , µp (I(n, r))−1} and
consider j ∈ {w+1, . . . , µp (I(n, r))−1}, if Z∩ [w+1, µp (I(n, r))−1] is non-empty. Since
nj = 0 for all j ∈ {w + 1, . . . , µp (I(n, r)) − 1} ⊆ {m, . . . , µp (I(n, r)) − 1} and a carry
does not occur at step w, we see that sj = r′j for j ∈ {w + 1, . . . , µp (I(n, r))− 1} where
n+r−1 = (su, . . . , s0)p. Also, notice that sw > r′w holds by the choice of w, since a carry
occurs in the (w − 1)-st step. By (34) in Remark 4.1, we deduce that w = µp (I(n, r))

which is impossible, as w ∈ {m − 1, . . . , µp (I(n, r)) − 1}. Thus, we conclude that if a
carry occurs at each i-th step where i ∈ {0, 1, . . . ,m − 2}, then there are µp (I(n, r))

many carries occur in the addition of n and r − 1. �

Now, we can get the exact structure of r which gives ν2
(
h
(r)
n

)
≥ 0 when an odd

natural number n > 2 is given.

Proposition 4.3. Let n > 2 be an odd natural number. Also, assume that n =
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(nm−1, . . . , n0)2 is the binary representation of n where m = dlog2 ne. Define the set

E2 (n) :=

{
0 < e ≤ 2m :

e− 1 = (em−1, . . . , e0)2, e0 = 1,

and ei = 1 when ni = 0

}
∪ {0}. (37)

For any A ≥ 0 and e ∈ E2 (n) with (A, e) 6= (0, 0), we have ν2
(
h
(r)
n

)
≥ 0 if and only if

r = A · 2m + e. In particular, if r ≡ 0
(
mod 2m−1

)
, then ν2

(
h
(r)
n

)
≥ 0.

Proof. We will follow the same idea in the proof of [31, Proposition 4]. By [16, Corollary
3.7], we know that ν2

(
h
(r)
n

)
≤ 0. Also, by equation (2) we observe that ν2

(
h(r)n

)
=

ν2

((
n+ r − 1

r − 1

))
+ ν2 (hn+r−1 − hr−1) . So, ν2

(
h
(r)
n

)
≥ 0 is satisfied if and only if

ν2

((
n+ r − 1

r − 1

))
= −ν2 (hn+r−1 − hr−1) .

Assume that θ = µ2 (I(n, r)). This indicates that there is an odd integer c such that
c ·2θ ∈ I(n, r). Therefore, (c−1)2θ, (c+ 1)2θ /∈ I(n, r) holds, since (c−1) and (c+ 1) are

even. This implies that M2 (I(n, r)) = 1. Hence, hn+r−1 − hr−1 =
1

c2θ
+ Q is satisfied

for some Q ∈ Q where ν2 (Q) ≥ −(θ − 1). The non-Archimedian property of 2-adic
valuation shows that ν2 (hn+r−1 − hr−1) = −θ. Thus, the inequality ν2

(
h
(r)
n

)
≥ 0 holds

if and only if ν2
((

n+ r − 1

r − 1

))
= θ = µ2 (I(n, r)). By Lemma 4.2, note that the latter

fact is also equivalent to obtaining a carry at each step i ∈ {0, 1, . . . ,m − 2} in the
binary addition of n and r − 1. We now show that letting r = A · 2m + e, for any A ≥ 0

and e ∈ E2 (n) that gives r > 0, is necessary and sufficient to obtain m− 1 carries after
the addition of the first m− 1 digits.

So first, we assume that r = A · 2m + e > 0 for some A ≥ 0 and e ∈ E2 (n). If
e = 0, then A 6= 0. In that case, r − 1 = (A − 1)2m + (2m − 1). Also, suppose that
A− 1 = (A′`−1, . . . , A

′
0)2 is the binary representation of A− 1, for some ` ∈ Z>0. In that

case, we have

r − 1 = (A′`−1, . . . , A
′
0,1, 1 , . . . , 1 , 1)2

n = ( 0 , . . . , 0 ,1, nm−2, . . . , n1, 1)2.

Observe that a carry occurs after the addition of r′i and ni for every i ∈ {0, 1, . . . ,m−2}.

By Lemma 4.2, we get that ν2
((

n+ r − 1

r − 1

))
= µ2 (I(n, r)). This yields ν2

(
h
(r)
n

)
≥ 0.

Also, when e > 0 and r = A·2m+e, we have r = A·2m+(e−1). If A = (A`−1, . . . , A0)2
for some positive integer `, then

r − 1 = (A`−1, . . . , A0, em−1, em−2, . . . , e1, 1)2

n = ( 0 , . . . , 0 , 1 , nm−2, . . . , n1, 1)2.
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Observe that we obtain a carry after adding the very first digits n0 = 1 and e0 = 1. Take
any i ∈ {1, . . . ,m− 2}. Assume that there is a carry after the addition of j-th digits for
any j ∈ {0, . . . , i− 1} and consider the i-th digit. If ni = 0, then by the definition of the
set E2 (n) we know that ei = 1 as e ∈ E2 (n). Since there is a carry that occurs in the
(i − 1)-st digit, we see that a carry also occurs in the i-th digit. If ni = 1, then we do
not have any condition on ei ∈ {0, 1}. Again, since a carry occurs in the (i− 1)-st digit,
we obtain a carry from the addition of ni and ei as ni = 1. Hence, we deduce that we
obtain carries from the firstm−1 digits, and by Lemma 4.2 we deduce that ν2

(
h
(r)
n

)
≥ 0.

For the sufficiency part, assume that r is not of the given form, namely r = A ·2m+B

where A ∈ Z≥0 and B /∈ E2 (n) for some 0 < B < 2m. If B − 1 = (Bm−1, . . . , B0)2 then
either B0 = 0, or there exists an i ∈ {1, . . . ,m−2} such that ni = Bi = 0. In either case,
we cannot obtain any carry after the addition of ni and Bi, where i ∈ {0, . . . ,m − 2}.

Thus, we conclude by Remark 4.1 and Lemma 4.2 that ν2
((

n+ r − 1

r − 1

))
< µ2 (I(n, r));

and hence ν2
(
h
(r)
n

)
< 0.

Finally, we note that 2m−1, 2m ∈ E2 (n) for any odd natural number n, where m =

dlog2 ne; and this gives the last part of the proposition. �

4.2. Sufficient conditions to obtain νp
(
h(r)
n

)
≥ 0 where n is not a multiple

of p
As we know from Fact 2.4, it is enough to obtain non-negative p-adic valuations for

all primes p ≤ n. So, we now introduce a sufficient condition to have νp
(
h
(r)
n

)
≥ 0 for

all primes p - n.

Lemma 4.4. For any positive integers n and r, and a prime number p, we have

νp

(
h(r)n

)
≥ min {νp (r)− νp (n!) ,−νp (n)} .

In particular, νp
(
h
(r)
n

)
≥ 0 if and only if νp (r) ≥ νp ((n− 1)!) when p - n.

Proof. By the definition of fn(x), we see that

f ′n(x) =

(
x ·

n−1∏
i=1

(x+ i)

)′
=

n−1∏
i=1

(x+ i) + x ·

(
n−1∏
i=1

(x+ i)

)′
= fn−1(x+ 1) + xf ′n−1(x+ 1).

Note that the constant term of f ′n(x) is (n − 1)!. This implies that r | f ′n(r) − (n − 1)!.

Also by Lemma 2.1, we deduce that

νp

(
h(r)n

)
= νp

(
f ′n(r)

n!

)
= νp

(
f ′n(r)− (n− 1)!

n!
+

1

n

)
≥ min {νp (r)− νp (n!) ,−νp (n)} . (38)

The last part can be obtained by inequality (38) unless p | n. �
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Remark 4.5. Let n ∈ N and p ∈ (
√
n, n) with p - n. Instead of taking νp (r) ≥⌊

n

p

⌋
= νp (n!), it is enough to have r ≡ 0 (mod p) by Proposition 2.12 in order to obtain

νp

(
h
(r)
n

)
≥ 0.

4.3. A non-negativity criterion for ν3
(
h
(r)
3N

)
when 3 - N

To show Theorem 1.2, we first need an auxiliary lemma.

Lemma 4.6. Let n ∈ {4, 5, 6, 7, 8} and

T =

{
(4,3), (4, 12), (4, 21), (5, 2), (5, 3), (5, 11), (5, 12), (5, 20),

(5, 21), (6, 10), (6, 11), (6, 12), (7, 1), (7, 20), (8, 10)

}
. (39)

Then, for any positive integer r, we have ν3
(
h
(r)
n

)
≥ 1 if and only if r ≡ tn (mod 27)

for some (n, tn) ∈ T.

Proof. Let n ∈ {4, 5} be given. By SageMath [29], we observe that the only root of
f ′4(x) in modulo 9 is congruent to 3 (mod 9), where fn(x) is given in (9). Similarly, we
get that 2 and 3 are the only roots of the polynomial f ′5(x) modulo 9. Note that for
any n ∈ {4, 5} and (n, tn) ∈ T we have either t4 ≡ 3 (mod 9) or t5 ≡ a (mod 9) where
a ∈ {2, 3}. This indicates that the set {tn (mod 9) : (n, tn) ∈ T} contains only the roots
of the polynomial f ′n(x) modulo 9, for any given n ∈ {4, 5}. Since f ′n(x) is a polynomial
with integer coefficients, we see that the congruence r ≡ tn (mod 9) is equivalent to
have ν3 (f ′n(r)) ≥ 2. Also, note that ν3 (n!) = 1, when n ∈ {4, 5}. Therefore, we get by
Lemma 2.1 that ν3

(
h
(r)
n

)
= ν3 (f ′n(r))− ν3 (n!) ≥ 1.

For the second case, take n ∈ {6, 7, 8}. Computations show that the set
{tn (mod 27) : (n, tn) ∈ T} is the set of all roots of the polynomial f ′n(x) modulo
27, where fn(x) = x(x + 1) · · · (x + n − 1). Similar to the previous case, ν3 (f ′n(r)) ≥ 3

holds if and only if r ≡ tn (mod 27), as f ′n(x) ∈ Z[x]. Combining this with Lemma 2.1
yields ν3

(
h
(r)
n

)
= ν3 (f ′n(r))− ν3 (n!) ≥ 1, as ν3 (n!) = 2 for n ∈ {6, 7, 8}. �

Remark 4.7. One can observe by SageMath [29] that for any n ∈ {4, 5} we have
f ′n(tn) ≡ 0 (mod 27) if and only if (n, tn) ∈ {(4, 12), (5, 3), (5, 20)}, where fn(x) =

x(x+ 1) · · · (x+n− 1). In that case, the condition r ≡ tn (mod 27) is equivalent to have
ν3 (f ′n(r)) ≥ 3, as the derivative of fn(x) is a polynomial with integer coefficients. This
fact will be useful to obtain the exact density of the set {r ∈ Z>0 : h

(r)
39 ∈ Z}.

Next, we give a result related to integers with missing digits in order to obtain a
non-negative 3-adic valuation for some certain hyperharmonic numbers.

Proposition 4.8. Let β ≥ 2 be an integer. Define the set

Nβ :=

{
N = (Nβ , . . . , N0)3 :

3Nβ +Nβ−1 ∈ {3, 4, 5, 6, 7},
∀i ∈ Z ∩ [1, β − 2] Ni 6= 2

}
, (40)

where N = (Nβ , . . . , N0)3 denotes the ternary representation of the positive integer N .
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If 3 - N such that N = (Nβ , . . . , N0)3 and N ∈ Nβ, then there exists a positive integer
r depending on n = 3Nβ + Nβ−1 + 1 such that r ≡ 3βtn

(
mod 3β+3

)
implies that

ν3

(
h
(r)
3N

)
≥ 0 for some (n, tn) ∈ T, where T is given in (39).

Proof. Assume that N ∈ Nβ for some fixed β ≥ 2 and 3 - N . In that case, N can be
written as N = (Nβ , . . . , N0)3 where N0 6= 0, and Ni 6= 2 for all i ∈ {1, . . . , β − 2}. Here,
the set {1, . . . , β− 2} is empty when β = 2. Also, let n = 3Nβ +Nβ−1 + 1, which implies
that n ∈ {4, 5, 6, 7, 8}. Now, take the corresponding tn where (n, tn) ∈ T, and choose
r = 3βtn + 3β+3` for some ` ∈ Z≥0. For any i ∈ {1, . . . , β − 1} define

n1 := N, ni+1 :=
⌊ni

3

⌋
+ 1,

r1 :=
⌈r

3

⌉
, ri+1 :=

⌈ri
3

⌉
.

Since Ni 6= 2 for any i ∈ {1, . . . , β − 2}, we see that

ni = (Nβ , Nβ−1, . . . , Ni + 1)3 =

β∑
j=i+1

Nj3
j−i +Ni + 1, (41)

when i ∈ {1, . . . , β− 1}. Also, we have Ni + 1 ∈ {1, 2}. This indicates that 3 - ni for any
i ∈ {1, 2, . . . , β − 1}. Moreover, we get

nβ = 3Nβ +Nβ−1 + 1 = n. (42)

Apart from that, we obtain

ri = 3β−itn + 3β−i+3`, (43)

for any i ∈ {1, . . . , β − 1}, and

rβ = tn + 27`. (44)

By (41) and (43), note that for any i ∈ {1, . . . , β − 1} the cardinality

|I(ni, ri) ∩ 3Z| =

∣∣∣∣∣∣
3β−i(tn + 33`), . . . ,

β∑
j=i+1

Nj3
j−i +Ni + 3β−i(tn + 33`)

 ∩ 3Z

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ri, ri + 3, . . . , ri + 3

β∑
j=i+1

Nj3
j−i−1


∣∣∣∣∣∣ =

β∑
j=i+1

Nj3
j−i−1 + 1

=

β∑
j=i+2

Nj3
j−(i+1) +Ni+1 + 1 = ni+1, (45)

asNi ∈ {0, 1} and 3 | ri. Using (45) together with Lemma 2.7, we derive that ν3
(
h
(ri)
ni

)
≥

1 if and only if ν3
(
ni+1 · h(ri+1)

ni+1

)
≥ 1 for any i ∈ {1, . . . , β − 1}, as ni+1 =

⌊ni
3

⌋
+ 1 and

ri+1 =
⌈ri

3

⌉
. Also, since 3 - ni for any i ∈ {1, . . . , β − 1}, it follows that ν3

(
h
(r1)
n1

)
=
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ν3

(
h
(r1)
N

)
≥ 1, as ν3

(
h
(rβ)
nβ

)
≥ 1, by Lemma 4.6, (42) and (44). Finally, observe by

Corollary 2.6 that |I(3N, r) ∩ 3Z| =

⌊
3N

3

⌋
= N . Thus, we deduce by Lemma 2.7 that

ν3

(
h
(r)
3N

)
≥ 0, since ν3

(
h
(r1)
N

)
≥ 1 and r1 =

⌈r
3

⌉
. �

We conclude this subsection with several remarks related to Proposition 4.8.

Remark 4.9. Let β ≥ 2 and N = (Nβ , . . . , N0)3 where Ni 6= 2 for all i ∈ Z∩ [1, β−3].
If 9Nβ+3Nβ−1+Nβ−2 = 24, we can also find a value of r such that ν3

(
h
(r)
3N

)
≥ 0. In fact,

the same idea in the proof of Proposition 4.8 follows when we take t8 ≡ 37 (mod 81) .

Then, one gets ν3
(
h
(3t8)
24

)
≥ 1 using Corollary 2.10, as ν3

(
h
(t8)
8

)
≥ 2.

Remark 4.10. It can be observed that the statement of Proposition 4.8 can be
modified with respect to some general prime q ≥ 3. To this end, let β ≥ 1 and

N (q,t)
β :=

{
N = (Nβ , . . . , N0)q :

Nβ + 1 ∈ J (t)
q ∩ [1, q − 1],

∀i ∈ Z ∩ [1, β − 1] Ni 6= q − 1

}

for some fixed t ∈ Z>0, where J
(t)
q =

{
n ∈ Z>0 : νq

(
h
(t)
n

)
≥ 1
}

which is also defined

in [16]. If J (t)
q is non-empty and N is a positive integer which is not a multiple of q such

that N = (Nβ , . . . , N0)q and N ∈ N (q,t)
β , then there exists a positive integer r depending

on t such that r ≡ qβ+1t
(
mod qβ+3

)
implies that νq

(
h
(r)
qN

)
≥ 0. The same idea in the

proof of Proposition 4.8 works for the proof of this statement. In fact, one can choose
t = 1 and Nβ = q − 2 in the definition of N (q,t)

β in order to obtain a non-empty J (t)
q , as

νq

(
h
(1)
q−1

)
= νq (hq−1) ≥ 1 for q ≥ 3 by Babbage’s theorem. Similar to Proposition 4.8

and Remark 4.9, one can also set conditions on qNβ + Nβ−1 + 1 to extend the possible
choices for N = (Nβ , . . . , N0)q, but we skip the details of such cases here.

Remark 4.11. Note that there are infinitely many positive integers that belong to
the set Nβ for some β ≥ 2, where Nβ is given in (40). To see this, let N =

⋃
β≥2

Nβ .

Take x ∈ [3α+1, 3α+2) sufficiently large so that α ≥ 3. To give a lower bound on the
number of elements in the set N ∩ (a + 12Z) ∩ [1, x] for some fixed a ∈ {0, . . . , 11}, we
first count the possible number of digits for any N ∈ Nβ ∩ (a + 12Z) for some fixed
β ∈ Z∩ [3, α], when N = (Nβ , . . . , N0)3 is written in its ternary representation. Observe
that for any a ∈ {0, . . . , 11}, there exist unique a3 ∈ {0, 1, 2} and a4 ∈ {0, 1, 2, 3}
such that a ≡ a3 (mod 3) and a ≡ a4 (mod 4). Hence, the last digit of any element
N ∈ Nβ ∩ (a + 12Z) is determined by a3, namely N0 = a3. Also, there are 2 possible
choices for each of the values Ni, as Ni ∈ {0, 1} when i ∈ Z∩ [1, β−2]. After determining
each Ni for i ∈ {0, 1, . . . , β − 2}, one can choose y ∈ {3, 4, 5, 6} so that the congruence

N =

β∑
i=0

Ni3
i = a3 +

β−2∑
i=1

Ni3
i + 3β−1y ≡ a4 (mod 4)

is satisfied. Therefore, there are at least 2β−2 many N values such that N ∈ Nβ ∩ (a+
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12Z). This indicates that the number of elements in N ∩ (a+ 12Z) ∩ [1, x] is at least

α∑
β=3

2β−2 = 2α−1 − 2� xlog3 2,

as α = blog3 xc − 1. The result of this type is also considered in [11] where the basis of
the representation and the corresponding modulus are relatively prime to each other.

4.4. The case n = 3P η where P ≡ ±1 (mod 12) is prime
From now on, we only consider the certain type of integers in N. In particular, we

take the integers of the form n = 3P η where η is a positive integer, P is a prime number
and P ≡ ±1 (mod 12) . Before dealing with the P -adic valuation of h(r)n , we first recall
the definition of fn(x) by (9):

fn(x) =

n−1∏
i=0

(x+ i). (46)

It is mentioned in the proof of [14, Corollary 24] that the polynomial

f ′3(x) = 3x2 + 6x+ 2 = 3(x+ 1)2 − 1 (47)

has a root modulo p if and only if 3 is a square modulo p. This is also equivalent to
have p ≡ ±1 (mod 12) which can be seen by the quadratic reciprocity law. Moreover,
note that the only root of f ′′3 (x) = 6x + 6 is −1 in Fp which is not a root of f ′3(x)

modulo p. Hence, by the well known Hensel’s Lemma (see for instance [28, Theorem
2.23]) we obtain that the polynomial f ′3(x) has a root modulo pα for each α ∈ Z>0, when
p ≡ ±1 (mod 12) . Using this fact together with Corollary 2.10, we extend Lemma 2.7
and Proposition 2.12 simultaneously, when n = 3P η and p = P .

Corollary 4.12. Let n = 3P η for some η ∈ {1, 2, 3} and P ≡ ±1 (mod 12) . Also,
let f ′3(x) be the polynomial given in (47). Assume that sα denotes the root of f ′3(x)

modulo Pα for any α ∈ Z>0. If η ∈ {1, 2} and r ≡ j + (sη − 1)P η
(
mod P 2η

)
for some

j ∈ {1, 2, . . . , P}, then νP
(
h
(r)
n

)
≥ 0. Moreover, if r ≡ 1 + (s3 − 1)P η

(
mod P 2η

)
, then

νP

(
h
(r)
3Pη

)
≥ 0 for any η ∈ {1, 2, 3}.

Proof. First of all, note that P ≥ 11. Therefore, η = 1 implies that P ∈ (
√
n, n). By

Remark 2.15, we get that νP
(
h
(r)
n

)
≥ 0 if and only if r is of the form j+(s1−1)P + `P 2

for some j ∈ {1, 2, . . . , P} and ` ∈ Z≥0. So, let η = 2. Choose r = j + (s2 − 1)P 2 + `P 4

for some ` ∈ Z≥0 and j ∈ {1, 2, . . . , P}. Define

c1 :=
⌈ r
P

⌉
and c2 :=

⌈c1
P

⌉
. (48)

In that case, we have c1 = 1 + (s2 − 1)P + `P 3 and c2 = s2 + `P 2. This indicates that
c2 ≡ s2

(
mod P 2

)
. Hence, we get

νP

(
h
(c2)
3

)
= νP

(
f ′3(c2)

3!

)
= νP

(
3c22 + 6c2 + 2

6

)
≥ 2, (49)
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as P > 6. Also, since c1 = (c2 − 1)P + 1, we see that νP
(
h
(c1)
3P

)
≥ 1 by Corollary 2.10.

Similarly, Corollary 2.10 implies that νP
(
h
(r)
n

)
≥ 0, as r = (c1 − 1)P + j for some

j ∈ {1, 2, . . . , P}.

For the last part of the corollary, observe that the congruence r ≡ 1 + (sη −
1)P η

(
mod P 2η

)
is satisfied for any η ∈ {1, 2}, as s3 ≡ sη (mod P η) by Hensel’s

Lemma. Therefore, we conclude by the first part of this corollary that νP
(
h
(r)
n

)
≥ 0

when n = 3P η and η ∈ {1, 2}. So, assume that η = 3. Take r = 1 + (s3− 1)P 3 + `P 6 for
some non-negative integer `. In addition to definitions of c1 and c2 given in (48), define
c3 :=

⌈c2
P

⌉
. Using these definitions, we get

c1 =
⌈ r
P

⌉
= 1 + (s3 − 1)P 2 + `P 5,

c2 =
⌈c1
P

⌉
= 1 + (s3 − 1)P + `P 4,

c3 =
⌈c2
P

⌉
= s3 + `P 3.

This shows that c3 ≡ s3
(
mod P 3

)
, and similar to (49), we obtain that

νP

(
h
(c3)
3

)
= νP

(
f ′3(c3)

3!

)
= νP

(
3c23 + 6c3 + 2

6

)
≥ 3,

as P > 6 ≥ 5. Since c2 = (c3 − 1)P + 1, c1 = (c2 − 1)P + 1 and r = (c1 − 1)P + 1,
we deduce by Corollary 2.10 that νP

(
h
(c2)
3P

)
≥ 2, νP

(
h
(c1)
3P 2

)
≥ 1 and νP

(
h
(r)
3P 3

)
≥ 0,

respectively. �

Remark 4.13. Observe that there are other values of r such that the corresponding
P -adic valuation of h(r)3Pη is non-negative. For instance, one may take r = s3P

η +

`P 2η for some ` ∈ Z>0 to obtain νP

(
h
(r)
3Pη

)
≥ 0, when η ∈ {1, 2, 3}. However, for

our purposes, it will be enough to deal with positive integer values of r where r ≡
1 + (s3 − 1)P η

(
mod P 2η

)
.

So far, we found some certain conditions for r in order to obtain νp

(
h
(r)
n

)
≥ 0 for

any p ∈ P≤n, where n = 3P η for a prime P ≡ ±1 (mod 12) and η ∈ {1, 2, 3} such that
P η ∈ Nβ and Nβ is given in (40) for some β ≥ 2. This fact will be useful to prove
Theorem 1.2 from the introduction.

Proof of Theorem 1.2. Let n = 3P η for some η ∈ {1, 2, 3} and a prime P ≡
±1 (mod 12) . Also, assume that P η = (P

(η)
β , . . . , P

(η)
0 )3 ∈ (3β , 8 · 3β−1) for β ≥ 2, where

(P
(η)
β , . . . , P

(η)
0 )3 denotes the ternary representation of P η. Note that, 3P

(η)
β + P

(η)
β−1 ∈

{3, 4, 5, 6, 7}. Moreover, suppose that

Q = 2m−1 ·
∏

2<p<
√
n

p-n

pνp((n−1)!) ·
∏

√
n<p<n
p-n

p,

r ≡ 0 (mod Q) , (50)
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r ≡ 3βtnβ
(
mod 3β+3

)
, (51)

r ≡ 1 + (s3 − 1)P η
(
mod P 2η

)
, (52)

where s3 is a root of f ′3(x) modulo P 3, nβ = 3P
(η)
β +P

(η)
β−1 +1, tnβ is given in Proposition

4.8 and m = dlog2 ne. By the Chinese Remainder Theorem, we have a unique common
solution modulo 3β+3QP 2η that satisfies congruences (50), (51) and (52), as 3 - PQ
and gcd(P,Q) = 1. Call that solution S

(
mod 3β+3QP 2η

)
. If r ≡ S

(
mod 3β+3QP 2η

)
,

then by Proposition 4.3, Lemma 4.4, Remark 4.5, Proposition 4.8 and Corollary 4.12
we deduce that there exists a value of r such that νp

(
h
(r)
n

)
≥ 0 for any p ∈ P≤n. This

yields by Fact 2.4 that h(r)n is an integer. Hence, Corollary 2.3 indicates h(r+k·n!)n is
an integer for all values of k where r + k · n! > 0. Thus, choosing r ∈ [1, (3P η)!] and
R = r + k · (3P η)! for any k ≥ 0 gives the first part of the theorem, as n = 3P η.

For the last part of the theorem, we know that there exists an r0 ∈ [1, n!] such that
h
(r0)
n ∈ Z when n is of the form 3P η, where P ≡ ±1 (mod 12) is a prime number

satisfying (?) for some η ∈ {1, 2, 3}. Now, define

Rn = {r ∈ [1, n!] : h(r)n ∈ Z}. (53)

Observe that Rn is non-empty. In that case,

Rn ∩ [1, x] =

k−1⋃
j=0

(Rn ∩ (j · n!, (j + 1) · n!]) ∪ (Rn ∩ (k · n!, x]),

where k =
⌊ x
n!

⌋
. For any j ∈ {0, 1, . . . , k − 1}, since h(r0+j·n!)n is also an integer by

Corollary 2.3, we see that the number of elements in the set Rn ∩ (j · n!, (j + 1) · n!] is
equal to |Rn|. This indicates that |Rn ∩ [1, x]| = k · |Rn|+ |Rn ∩ (k · n!, x]| ≥ k|Rn| and
|Rn ∩ [1, x]| ≤ k|Rn|+ (x− kn!). Using these inequalities, we get

|Rn|
n!
− |Rn|

x
=
( x
n!
− 1
)
· |Rn|

x

<
⌊ x
n!

⌋
· |Rn|

x

≤ |Rn ∩ [1, x]|
x

≤
⌊ x
n!

⌋
· |Rn|

x
+

1

x
·
(
x−

⌊ x
n!

⌋
· n!
)

<
|Rn|
n!

+
1

x

(
x+

(
1− x

n!

)
n!
)

=
|Rn|
n!

+
n!

x
.

Since n is fixed, the set Rn has density and it is equal to

|Rn|
n!

. (54)

Thus, we conclude that the density of the set Rn is at least
1

n!
, as Rn is non-empty. �
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Remark 4.14. As one may observe that the last part of Theorem 1.2 is related
with [14, Proposition 9] where it was shown that

lim
n→∞

|{r ≤ x : h
(r)
n /∈ Z}|

x
= 1,

when n = o(x). However, it should be noted that this fact does not contradict with
Theorem 1.2, as n is fixed in Theorem 1.2.

5. Computations & The Smallest Hyperharmonic Integer

In this final section, we first obtain subsets of R33 and R39 whose densities are bigger
than the ones given in (5), where Rn = {r ∈ N : h

(r)
n ∈ Z}. Note by Fact 1.4 that these

are the only n values up to 40 for which the corresponding hyperharmonic number h(r)n
may be an integer.

Proposition 5.1. The density of the set R33 = {r ∈ Z>0 : h
(r)
33 ∈ Z} is equal to

271 666 053 120

2 168 219 346 697 404 000
≈ 1.25294543 · 10−7.

Proof. Let n = 33. In order to find a bigger set of r values, we follow the same idea
in the proof of Theorem 1.2. That is, we find the necessary modular equivalences for
the values of r such that νp

(
h
(r)
33

)
≥ 0 for each p ≤ 33. So first of all, we deal with

the case p = 3. Define r1 =
⌈r

3

⌉
. Since 3 divides 33, ν3

(
h
(r)
33

)
≥ 0 if and only if

ν3

(
h
(r1)
11

)
≥ 1 by Corollary 2.10. Using Corollary 2.6 yields |I(11, r1) ∩ 3Z| ∈ {3, 4}.

Note that |I(11, r1) ∩ 3Z| = 3 if and only if r1 ≡ 1 (mod 3). In this case, by equation
(2), we have

h
(r1)
11 =

A

B
· 3c · 3(c+ 1) · 3(c+ 2)

3 · 6 · 9

(
1

3

2∑
i=0

1

c+ i
+ q

)

=
A

2B
· c(c+ 1)(c+ 2)

9
· f
′
3(c)

f3(c)
+
Ac(c+ 1)(c+ 2)

6B
· q, (55)

where c =
⌈r1

3

⌉
and ν3 (A) = ν3 (B) = 0 ≤ ν3 (q) for some A,B ∈ Z>0 and q ∈ Q.

Observe that f3(x) and f ′3(x) can be obtained from (46) and (47), respectively. Note
that the polynomial f ′3(x) = 3x2 + 6x + 2 does not have any roots in F3. Therefore,
ν3

(
h
(r1)
11

)
= −2 as the 3-adic valuation of the second summand in (55) is greater than

or equal to 0. Thus, we conclude that ν3
(
h
(r)
33

)
< 0, if r1 ≡ 1 (mod 3). Secondly,

r1 ≡ 0, 2 (mod 3) is equivalent to the fact that |I(11, r1) ∩ 3Z| = 4. In that case,
ν3

(
h
(r1)
11

)
≥ 1 if and only if ν3

(
4h

(r2)
4

)
= ν3

(
h
(r2)
4

)
≥ 1 by Lemma 2.7, where

r2 =
⌈r1

3

⌉
. Recall by Lemma 4.6 that ν3

(
h
(r2)
4

)
≥ 1 can be obtained if and only if

r2 ≡ 3 (mod 9) . Note that this can be satisfied if and only if r1 ≡ 7, 8, 9 (mod 27),
as r2 =

⌈r1
3

⌉
. If we combine this fact with r1 ≡ 0, 2 (mod 3), we deduce that
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r1 ≡ 8, 9 (mod 27) . Since r1 =
⌈r

3

⌉
, we conclude that the necessary and the sufficient

condition to obtain ν3
(
h
(r)
33

)
≥ 0 is to have r ≡ 22, 23, 24, 25, 26, 27 (mod 81).

Next, we check the congruences for r to get ν5
(
h
(r)
33

)
≥ 0. Recall by Corollary 2.6

that there are two options for the size of the set I(n, r)∩5Z: it is either |I(n, r)∩5Z| = 6,
or |I(n, r) ∩ 5Z| = 7. Observe that the former case occurs if and only if

r ≡ 1, 2 (mod 5) . (56)

This can be seen by simply counting the elements in I(n, r) which are multiples of 5

when we choose a value for r in modulo 5. So, if r ≡ 1, 2 (mod 5), then by Lemma 2.7
we see that ν5

(
h
(r)
33

)
≥ 0 holds if and only if ν5

(
h
(r1)
6

)
≥ 1, where r1 =

⌈r
5

⌉
. Note that

this is equivalent to have

ν5

(
f ′6(r1)

6!

)
≥ 1 (57)

by Lemma 2.1. In other words, (57) holds if and only if f ′6(r1) ≡ 0 (mod 25) . By
SageMath [29], we get that the only root of the polynomial f ′6(x) in modulo 25 is
congruent to 10 (mod 25) . This indicates that r ≡ 46, 47, 48, 49, 50 (mod 125) is
sufficient to have ν5

(
h
(r1)
6

)
≥ 1, as r1 =

⌈r
5

⌉
. Combining this together with (56),

we deduce that r ≡ 46, 47 (mod 125) implies that ν5
(
h
(r)
33

)
≥ 0. Similarly, we have

|I(n, r) ∩ 5Z| = 7 if and only if r ≡ 0, 3, 4 (mod 5) by (56). By (12) in the proof of
Lemma 2.7, we see that ν5

(
h
(r)
33

)
≥ 0 holds if and only if ν5

(
7h

(r1)
7

)
= ν5

(
h
(r1)
7

)
≥ 0,

where r1 =
⌈r

5

⌉
. In that case, we can use Remark 2.14 to see that ν5

(
h
(r)
33

)
≥ 0

is equivalent to r1 ≡ 0, 4 (mod 5) . The latter case is satisfied if and only if
r ≡ 0, 16, 17, 18, 19, 20, 21, 22, 23, 24 (mod 25). Combining this fact together with
r ≡ 0, 3, 4 (mod 5), we conclude that r ≡ 0, 18, 19, 20, 23, 24 (mod 25) implies
ν5

(
h
(r)
33

)
≥ 0. Thus, there are exactly 32 different values in modulo 125 which leads to

a non-negative 5-adic valuation for h(r)33 .

For the case p = 2, we see that E2 (33) = {32, 64} by the definition of E2 (n) given in
(37). This implies by Proposition 4.3 that r ≡ 0 (mod 32) if and only if ν2

(
h
(r)
33

)
≥ 0.

Finally, we use Proposition 2.12 and Remark 2.14 to obtain the condition on r for the
inequality νp

(
h
(r)
33

)
≥ 0, for p ∈ P ∩ (5, 33]. Thanks to SageMath [29], we get possible

choices for r modulo either p or p2, for each prime p ∈ (
√
n, n) when n = 33. Table 1

contains the number of these congruence classes.

Combining the values in Table 1 together with Proposition 4.3 and the Chinese Re-
mainder Theorem, we see that there are exactly 271 666 053 120 many possible choices
for r in modulo

M = 25 · 34 · 53 ·
∏

√
n<p<n

2

p2 ·
∏

n
2<p<n

p = 2 168 219 346 697 404 000
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Table 1. The number of congruences together with the corresponding
moduli for each p ∈ P ∩ [2, 33], when n = 33.

The prime p The number of possible congruence classes for r Mod
2 1 32

3 6 81

5 32 125

7 37 49

11 22 121

13 97 169

17 16 17

19 14 19

23 10 23

29 4 29

31 2 31

for n = 33. Since M divides 33! = 231 · 315 · 57 · 74 · 113 · 132 · 17 · 19 · 23 · 29 · 31, there
are exactly 271 666 053 120 · (33!/M) many possible choices for r in modulo 33!. This
indicates that

∣∣R33

∣∣ = 271 666 053 120 · (33!/M) where Rn is defined in (53). By (54) in
the proof of Theorem 1.2, we conclude that the density of the set R33 is equal to

271 666 053 120 · 33!

M · 33!
≈ 1.25294543 · 10−7,

as desired. �

A similar result can also be obtained for n = 39, since it is of the form n = 3p where
p ≡ ±1 (mod 12) .

Proposition 5.2. The density of the set R39 = {r ∈ Z>0 : h
(r)
39 ∈ Z} is equal to

3 025 668 318 167 040

77 737 168 237 142 025 612 000
≈ 3.89217717 · 10−8.

Proof. Assume that n = 39. We apply the same technique in the proof of Proposition
5.1. So, take p = 3. Let r1 =

⌈r
3

⌉
. Then, Corollary 2.10 yields ν3

(
h
(r)
39

)
≥ 0 if and

only if ν3
(
h
(r1)
13

)
≥ 1, as 3 | 39. Also, by Corollary 2.6 we have |I(13, r1) ∩ 3Z| ∈ {4, 5}.

Observe that |I(13, r1) ∩ 3Z| = 4 if and only if r1 ≡ 1, 2 (mod 3). Using equation (2),
we get

h
(r1)
13 =

A

B
· 3c · 3(c+ 1) · 3(c+ 2) · 3(c+ 3)

3 · 6 · 9 · 12

(
1

3

3∑
i=0

1

c+ i
+ q

)

=
A

8B
· f
′
4(c)

9
+
A

B
·
(
c+ 3

4

)
· q, (58)

where fn(x) is given in (46), c =
⌈r1

3

⌉
and ν3 (A) = ν3 (B) = 0 ≤ ν3 (q) for some

A,B ∈ Z>0 and q ∈ Q. By Remark 4.7, we know that ν3 (f ′4(c)) ≥ 3 if and only if
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c ≡ 12 (mod 27) . In that case, ν3
((

c+ 3

4

))
≥ 1 as c ≡ 0 (mod 3) and so ν3

(
h
(r1)
13

)
≥ 1

by equation (58). On the other hand, if c�≡ 12 (mod 27), then either ν3 (f ′4(c)) = 2, or
ν3 (f ′4(c)) ≤ 1 holds. Note by Lemma 4.6 and Remark 4.7 that the former case holds if

and only if c ≡ 3, 21 (mod 27). This implies that ν3
((

c+ 3

4

))
≥ 1 as c ≡ 0 (mod 3).

Hence, we deduce that ν3
(
h
(r1)
13

)
= 0, by equation (58) and the non-Archimedean

property of the 3-adic valuation. Similarly, if c�≡ 12 (mod 27) and ν3 (f ′4(c)) ≤ 1, then

ν3

(
h
(r1)
13

)
< 0 by equation (58), as ν3

((
c+ 3

4

))
≥ 0 for all c ∈ Z≥0. Thus, we see that

c ≡ 12 (mod 27) is equivalent to have ν3
(
h
(r1)
13

)
≥ 1 when r1 ≡ 1, 2 (mod 3). Note that

c ≡ 12 (mod 27) if and only if r1 ≡ 34, 35, 36 (mod 81). Combining this together with
the condition r1 ≡ 1, 2 (mod 3), we deduce that r1 ≡ 34, 35 (mod 81) yields a positive
3-adic valuation for h(r1)13 . Moreover, letting r1 ≡ 0 (mod 3) leads to |I(13, r1)∩ 3Z| = 5.
By Lemma 2.7, we see that ν3

(
h
(r1)
13

)
≥ 1 if and only if ν3

(
5h

(r2)
5

)
= ν3

(
h
(r2)
5

)
≥ 1

where r2 =
⌈r1

3

⌉
. Also by Lemma 4.6, we observe that the congruence r2 ≡ 2, 3 (mod 9)

is equivalent to have ν3
(
h
(r2)
5

)
≥ 1. Note that the case r2 ≡ 2, 3 (mod 9) can be

satisfied as long as r1 ≡ 4, 5, 6, 7, 8, 9 (mod 27). Since we choose r1 ≡ 0 (mod 3) for this
case earlier, we get that r1 ≡ 6, 9 (mod 27) indicates a positive 3-adic valuation for h(r1)13 .
Combining this congruence class with the previous one, namely r1 ≡ 34, 35 (mod 81),
yields that ν3

(
h
(r1)
13

)
≥ 1, when r1 ≡ 6, 9, 33, 34, 35, 36, 60, 63 (mod 81). In other words,

there are exactly 24 possible choices for r modulo 243 for which the corresponding 3-adic
valuation of h(r)39 is non-negative, as r1 =

⌈r
3

⌉
.

Now, we consider the case p = 5. Recall by Corollary 2.6 that |I(39, r)∩ 5Z| ∈ {7, 8}.
Observe that the case |I(39, r)∩5Z| = 7 is equivalent to have r ≡ 1 (mod 5) . By Lemma
2.7, we know that ν5

(
h
(r)
39

)
≥ 0 holds if and only if ν5

(
h
(c)
7

)
≥ 1, where c =

⌈r
5

⌉
.

In that case, we see that ν5
(
h
(c)
7

)
= ν5

(
f ′7(c)

7!

)
≥ 1 by Lemma 2.1. Note that the

latter inequality holds if and only if c is a root of f ′7(x) modulo 25. Using equation
(46) and SageMath [29], we deduce that 9 and 10 are the only roots of the polynomial
f ′7(x) modulo 25. Hence, taking r ≡ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 (mod 125) yields
ν5

(
h
(c)
7

)
≥ 1, as c =

⌈r
5

⌉
. Combining this together with the fact r ≡ 1 (mod 5), we

get that r ≡ 41, 46 (mod 125) implies that ν5
(
h
(r)
39

)
≥ 0. Moreover, if r�≡ 1 (mod 5)

we have |I(39, r) ∩ 5Z| = 8. This indicates by (12) in the proof of Lemma 2.7 that
ν5

(
h
(r)
39

)
≥ 0 if and only if ν5

(
8h

(r1)
8

)
= ν5

(
h
(r1)
8

)
≥ 0, where r1 =

⌈r
5

⌉
. Using

Remark 2.14, we obtain that ν5
(
h
(r1)
8

)
≥ 0 holds if and only if r1 ≡ 0, 3, 4 (mod 5),

as 4 < p < 8 when p = 5. This fact together with the condition r�≡ 1 (mod 5)

implies that r ≡ 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25 (mod 25). In that case, we get
ν5

(
h
(r)
39

)
≥ 0. Combining previous congruence classes with r ≡ 41, 46 (mod 125) yields

that there are exactly 62 values modulo 125 such that the corresponding hyperharmonic
number h(r)39 has a non-negative 5-adic valuation.
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Next, we see that E2 (39) = {26, 28, 30, 32, 58, 60, 62, 64} by (37) in Proposition 4.3.
This indicates by Proposition 4.3 that there are 4 different possible choices for r in
modulo 32. Lastly, we use Proposition 2.12 and Remark 2.14 to get νp

(
h
(r)
39

)
≥ 0 for

p ∈ P ∩ (5, 39], as we did in the proof of Proposition 5.1. By SageMath [29], we obtain
the corresponding number of congruences that is given in Table 2.

Table 2. The number of congruences together with the corresponding
moduli for each p ∈ P ∩ [2, 39], when n = 39.

The prime p The number of possible congruence classes for r Mod
2 4 32

3 24 243

5 62 125

7 28 49

11 76 121

13 26 169

17 97 289

19 37 361

23 16 23

29 10 29

31 8 31

37 2 37

Using Table 2 and the Chinese Remainder Theorem, we see that there are
3 025 668 318 167 040 many possible choices for r in modulo

M = 25 · 35 · 53 ·
∏

√
n<p<n

2

p2 ·
∏

n
2<p<n

p = 77 737 168 237 142 025 612 000

for n = 39. Similar to the proof of Proposition 5.1, there are 3 025 668 318 167 040·(39!/M)

many possible choices for r in modulo 39!, as M divides 39! = 235 · 318 · 58 · 75 · 113 · 133 ·
172 · 192 · 23 · 29 · 31 · 37. This shows that

∣∣R39

∣∣ = 3 025 668 318 167 040 · (39!/M), where
Rn is given in (53). Thus, we conclude that the density of the set R39 is equal to

3 025 668 318 167 040 · 39!

M · 39!
≈ 3.89217717 · 10−8,

by (54) in the proof of Theorem 1.2. �

The smallest hyperharmonic integer h(r)n which we found during our computation is

300928717281136440498412577870862718814115971855972181389310118886033219503

464826118726226835455760805858527661106437699477935943027282634474202043452

3221316911052660055855963776173497027117

which is a 190-digit natural number. In order to obtain this hyperharmonic integer, we
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take

n = 33 and r = 10 667 968. (59)

This result was derived from a partial list of congruence classes for r which are obtained
in the proofs of Propositions 5.1 and 5.2. Note that it can be used to find the smallest
hyperharmonic integer which is given in Theorem 1.3 from the introduction.

Proof of Theorem 1.3. Let R = 10 667 968 and h(r0)n0 be the smallest hyperharmonic in-
teger that is greater than 1. Observe by (59) and the remark before it, we get that
h
(R)
33 ∈ Z and h(R)

33 < 10190. In order to prove the theorem, we first show that r0 ≤ R. So,
assume not. Then, by Fact 1.4, we see that n0 ≥ 33 and r0−2 ≥ R. Using the definition
of hyperharmonic numbers given in (1), we get that

h(r0)n0
=

n0∑
k=1

h
(r0−1)
k > h

(r0−1)
33 =

33∑
k=1

h
(r0−2)
k ≥ h(R)

33 ,

which is impossible by (59). Hence, we have r0 ≤ R. Also, we know by Fact 1.4 that
r0 ≥ 20 002. Now, using (1) we get

h(20 002)
n0

≤ h(r0)n0
≤ h(R)

33 < 10190.

This indicates by (2) that(
n0 + 20 001

20 001

)
· (hn0+20 001 − h20 001) < 10190.

Combining this together with Fact 1.4 implies(
n0 + 20 001

20 001

)
(h20 034 − h20 001) < 10190,

as n0 ≥ 33. If we denote α = h20 034 − h20 001, we obtain(
n0 + 20 001

20 001

)
=

(
n0 + 20 001

n0

)
<

10190

α
. (60)

Using lower bounds on binomial coefficients, we see that(
n0 + 20 001

20 001

)20 001

<
10190

α
.

Computations yield that n0 ≤ 448. Moreover, we know by (60) that

20002n0

n0!
<

(
n0 + 20 001

n0

)
<

10190

α
, (61)

since n0 ≥ 33. Using SageMath [29] we obtain that n0 ≤ 66, as n0 ≤ 448. This indicates
by (6) that n0 ∈ {33, 39, 45, 63}. To find the smallest hyperharmonic integer which is
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greater than 1, it is enough to check the corresponding values of h(r)n for tuples

(n, r) ∈ {33, 39, 45, 63} × [20 002, 10 667 968]

since r0 ≤ R = 10 667 968. Using Fact 1.4, Remark 2.14 and SageMath [29], we conclude
that the smallest hyperharmonic integer h(r0)n0 greater than 1 is equal to

300928717281136440498412577870862718814115971855972181389310118886033219503

464826118726226835455760805858527661106437699477935943027282634474202043452

3221316911052660055855963776173497027117,

and it is obtained when n0 = 33 and r0 = R = 10 667 968. �
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