
Diagram-free approach for convergence of trees based
model in Regularity Structures

October 4, 2023

Yvain Bruned1, Usama Nadeem2

1 IECL (UMR 7502), Université de Lorraine
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Abstract
In this work, we translate at the level of decorated trees some of the crucial
arguments which have been used by P. Linares et al. in their recent paper to propose
a diagram-free approach for the convergence of the model in regularity structures.
This allows us to broaden the perspective and enlarge the scope of singular SPDEs
covered by this approach. It also sheds new light on algebraic structures introduced
in the foundational paper of Martin Hairer on regularity structures which was used
later for recursively described renormalised models.
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1 Introduction

Solutions of singular stochastic partial differential equations (SPDEs) are given as
expansions with stochastic iterated integrals coming from the iteration of Duhamel’s
formula. Both regularity structures introduced in [15] and Para-controlled calculus
in [14] are based on this idea. Then, the main task that remains is to construct
such iterated integrals as containing distributional products of the singular SPDEs
considered. This is a challenging problem but the advent of algebraic structures
like Hopf algebras that organise the tremendous computations involved, have made
the task easier. In the context of regularity structures, one works with local
objects, by which we mean recentred iterated integrals that need to be renormalised.
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Recentring and renormalisation have since been understood via two Hopf algebras
in cointeraction in [6]. This paved the way for a general convergence theorem in [10]
and together with [5] it provides a general black box for treating singular SPDEs.
In the discrete setting, one is far from a general convergence result, but progress
(see [13, 12, 8]) has been made by building upon the convergence result obtained
in [16] with the use of discrete regularity structures in [11]. Let us mention that
the most general result is given in [8] where the authors treat the generalised KPZ
equation - one of the most challenging singular SPDEs. All of these approaches are
based on renormalising Feynman diagrams obtained from decorated trees which are
combinatorial codings for iterated integrals. The renormalisation implemented is
close in spirit to the BPHZ renormalisation [4, 18, 23].

Recently, a different approach [20] has been proposed in the context of regularity
structures, which is based on coding that replaces decorated trees with multi-indices
[22, 21, 19]. Multi-indices can be understood as a way of compressing information
and collecting decorated trees sharing some features under the umbrella of the same
symbol. With such an approach, one has no direct access to a specific iterated
integral and therefore the authors developed in [20] a diagrammatic-free approach
for the convergence which relies on the inductive construction of multi-indices.
Another key idea in their construction is to use a spectral gap inequality that allows
them to connect the p-th moment of a stochastic integral to one of its Malliavin
derivative. This approach is quite promising but thus far has only been affected on
the stochastic quasilinear parabolic equation.

In this work, we want to push forward this convergence result to a high degree
of generality by applying these ideas to decorated trees. The scope will now be
any subcritical equation as described in [15], made possible by providing general
algebraic formulae at the level of decorated trees that were written in a specific
case for multi-indices in [20]. We reiterate that deriving these formulae is the main
contribution of our paper which when combined with the analytic estimates from
[20], one can obtain a general convergence result which provides an alternative
Black Box for singular SPDEs based on recursive arguments, where the model is
constructed with a preparation maps introduced in [9] and the renormalised equation
is as given in [1]. This reveals a major simplification, as a lighter combinatorial
structure is used in comparison to [6]. Let us mention a different approach for
decorated trees in [17] introduced a few months after our work. The authors prove a
general convergence result inspired also by [20]. They redo entirely the analytical
part by introducing pointed Besov modelled distributions. For the algebraic part,
they do not use preparation maps and there is not an obvious correspondence with
the key algebraic identities of [20]. It is also not clear whether the quasi-linear case
is covered by their approach, whereas our work the identities obtained are in the
quasi-linear context. Just before the work [17], another work by the first author
[3] presented a simple proof of the convergence of the renormalised model for the
generalised KPZ equation. It uses also the spectral gap inequality but it based
on diagrammatic approach following recent advances in [8] and also using some
algebraic identities of this work such as Proposition 4.1.
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The other impact of this work is the unification of the various combinatorial
approaches such as decorated trees and multi-indices by showing ideas in one
structure appear also naturally in the other. This programme has been started in
[7] where it has been shown that a common post-Lie structure is at the origin of
the Hopf algebras used for singular SPDEs. The result can be described in both
languages: decorated trees and multi-indices.

Let us be more specific about the main ideas of this paper. Solutions u of local
subcritical SPDEs are locally described by

u(y) − u(x) =
∑
τ∈T

uτ (x)(Πxτ )(y),

where (Πxτ )(y) are stochastic iterated integrals recentred around the point x, T is
a combinatorial set parametrising the iterated integrals - that can comprise either
decorated trees [15, 6] or multi-indices [22, 21] - and the uτ (x) are some kind of
derivatives. Then, the theory of regularity structures provides a reexpansion map
Γxy that allows us to move the recentring:

Πy = ΠxΓxy.

The collection of these two maps (Πx, Γxy) is what is referred to as a model [15,
Def. 3.1], and it defines the topology upon which one wants to pass to the limit for
constructing solutions of singular SPDEs. Indeed, the rough noise in the equation
is replaced by a mollified version depending on a small parameter ε, and one
considers the mollified model (Π(ε)

x , Γ(ε)
xy) with the goal of eventually repealing

the mollification. This model reflects the ill-defined distributional products of a
singular SPDE and therefore fails to converge without an appropriate renormalisation.
This renormalisation is implemented recursively by the choice of a preparation
map R satisfying some suitable local properties, which allows one to consider the
renormalised model denoted by (ΠR

x , ΓR
xy). In [20], the authors solve quasilinear

parabolic equations of the form:

(∂t − ∂2
x)u = a(u)∂2

xu + ξ, (1.1)

driven by a stationary noise ξ that is assumed to satisfy the spectral gap inequality -
see [20, Ass. 2.1]. The central quantity of interest in their approach is Π−

x , which is
identified as the negative-degree part of their model. One can refer to [20, Eq. 2.18]
for the proper expression, but on the regularity structures side, this corresponds
to applying ΠR

x to the non-linearity in (1.1). We may use these interchangeably,
being mindful of the correspondence between decorated trees and the multi-index
that encodes them. The significance of this object in their argument lies in the fact
that a Schauder estimate of Π−

x in base point x - which they represent by Πx and
corresponds to ΠR

x I(·) on the regularity structures side - can solve the renormalised
version of (1.1), provided that one has control of the p-th moments of Π−

x . To
gain this control of the p-th moments of Π−

x the authors appeal to the spectral gap
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inequality, which reduces the problem to controlling the first moment of Π−
x and the

p-th moment of its Malliavin derivative δΠ−
x [ξ]. Indeed, one has

(
E|Π−

x |p
) 1

p ≲
∣∣EΠ−

x

∣∣+ E
(
∥δΠ−

x ∥p
⋆

) 1
p ,

where ∥·∥⋆ is a suitable functional norm. Control of |EΠ−
x | is easier of the two tasks;

it is a consequence of the implementation of the BPHZ renormalisation procedure.
For the control of the latter, the task is made difficult however by the fact that one
sees divergent constants in Π−

x . One hopes that δc = 0 should kill the constants but
the configuration in which c appear keeps this from happening. The way out is to
evaluate at the diagonal and then taking the Malliavin derivative. This extricates
δΠ− from the divergent constants but has the unwanted effect of restricting it to the
diagonal, motivating the need to recentre. The natural candidate map to affect this is
Γxy, which in their paper is written on the dual side as Γ∗

xy. This leads the authors
to the identity

δΠ−
y (x) − δΓ∗

yxΠ−
x

=
∑
k≥0

zkΠk
y(x)∂2

1

(
δΠy − δΠy(x) − (δΓ∗

yxΠx)
)

+ δξϵ(x)1,

where the left-hand side is just an application of Leibniz rule to δ
(
Γ∗

xyΠ−
y

)
. The

expression δΠy −δΠy(x)− (δΓ∗
yxΠx) is recognised as having the potential to locally

describe δΠ−
y (x) − δΓ∗

yxΠ−
x but it is involved in a possibly ill-defined product with

Πk
y . To circumvent this, the authors replace δΓ∗

yx with an endomorphism dΓ∗
yx

which enforces a particular bound on δΠy − δΠy(x) − (δΓ∗
yxΠx), leading to the

identity:

δΠ−
y (x) − dΓ∗

yxΠ−
x (1.2)

=
∑
k≥0

zkΠk
y(x)∂2

1

(
δΠy − δΠy(x) − (dΓ∗

yxΠx)
)

+ δξϵ(x)1.

The map dΓ∗
yx is algebraically similar to δΓ∗

yx, and in fact they are chosen so that
they agree on planted trees. In a similar vein the authors derive the following
expression

Q
(
δΠ−

x − dΓ∗
xzQΠ−

z

)
(z) = Q

∑
k≥0

zkΠk
x(z)∂2

x(δΠx − dΓ∗
xzQΠz)(z)

+ δξε(z),
(1.3)

where Πx corresponds to the model applied to terms from the right hand side of the
equation which have been integrated, ξε is the mollified space-time white noise, Q
is a projection that considers only the most singular terms in the expansion, zk is an
abstract variable that keeps track of the exponent k in Πk

x(z). A crucial observation
about the formula (1.3) is the absence of any renormalisation term: the authors
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of [20] described it as a c-free formula. The main contribution of this work is to
recover this formula at the level of decorated trees and to extend it to a large class of
models. This is done by considering two vector spaces of decorated trees, one T0
coming from the right hand side of a singular SPDEs and the other T1 is such that
one instance of the noise ξ inside an element of T0 is replaced by an infinitesimal
perturbation δξ. Formally, we define a Malliavin derivative DΞ : T0 → T1 at the
level of decorated trees (see Definition 2.2). Then, we introduce two renormalised
models on decorated trees in (3.9): ΠR,0

x taking into account δξ when computing
the length of Taylor expansion for the recentering and ΠR,1

x that treats δξ as it would
be ξ, and as a result produces shorter Taylor expansions. The map DΞ, we prove
in Theorem 4.1 allows us to give a combinatorial meaning to the fundamentally
analytical Malliavin derivative δΠR,1:

δΠR,1 = ΠR,1DΞ.

We will further show that the two models are connected via a map ∆̂0 which is close
to the way the renormalisation was handled in [15]. It is defined recursively following
ideas developed in [9] in Proposition 3.8. The following identity encapsulates this
relationship:

ΠR,1
x =

(
ΠR,0

x ⊗ fR,0
x

)
∆̂0. (1.4)

The map ∆̂0 here links the two models essentially by curtailing the excess terms in
the Taylor expansions under ΠR,0

x and fR,0
x is a map into reals, defined via ΠR,0

x .
From this identity, one is able to define dΓyx on decorated trees in Definition 4.3:

dΓR
yx = Q0

(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0DΞ, (1.5)

where Q0 projects to zero decorated trees with at least one noise δξ and ΓR,0
yx is the

reexpansion map for ΠR,0
x . With this definition and by putting an assumption on

the renormalisation (Assumption 2), we provide a version of (1.3) on decorated
trees in Theorem 4.6 together with Corollary 4.7. The model for the quasilinear
equation is a peculiar one because in it one sees terms containing ∂2

xK - where K is
the heat kernel. These do not lend well to the analysis, because there is no gain of
regularity by convolving with the kernel ∂2

xK. However, for other models satisfying
Assumption 3 like the generalised KPZ equation and the φ4

3, we are able to provide
a stronger statement in Theorem 4.5, for every τ ∈ T0(

ΠR,1
y dΓR

yxτ
)

(y) =
(
δΠR,1

x τ
)

(y). (1.6)

To gain control of (1.2), the authors appeal to a reconstruction argument, which
involves constructing a distribution F for a family of distributions {Fz}z , indexed
by spacetime, such that near the diagonal F (z) ≈ Fz(z) in a suitable sense. This
reconstruction necessitates (amongst other things) control of the so-called ”continuity
expression” identity:

dΓ∗
xy − dΓ∗

xzΓ∗
zy. (1.7)
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In Proposition 4.9, we rewrite this identity in terms of γR,0
xy that characterise ΓR,0

xy .
Once control of the (1.2) is had, one is able to construct the rough path increment of
δΠx and control it. In particular, they prove that the rough path increment of δΠx:

δΠx − δΠx(z) − dΓ∗
xzΠz, (1.8)

relates to the rough path increment of δΠ−
x via an integral representation. In

Proposition 4.8, we explain how this identity translates to decorated trees. Control
of these two rough path increments can then be leveraged to get control of p-th
moments of δΠ−

x .
Let us now outline the paper by summarising the content of its sections. In

Section 2, we recall the basics of decorated trees and illustrate the rules associated
with singular SPDEs for constructing those trees. Then, we mention one crucial
assumption for the renormalised quasilinear equation (see Assumption 2) that will
be used in the sequel. We also consider decorated trees with two different noises for
encoding Malliavin derivatives. We introduce this derivative DΞ at the level of the
trees - see Definition 2.2. We conclude the section with the important Assumption 3
on the positive degree of branches containing a Malliavin derivative. This is crucial
in establishing the aforementioned algebraic identities. In Section 3, we introduce
renormalised models based on two different degrees which differ on whether they
take into account the Malliavan derivative on the noise or not. The renormalisation
is introduced via a preparation map in Definition 3.3 that provides a recursive
definition of the model. Here, we follow the construction given in [9, 1]. The main
novelty of the section is to explain how to move from one model to the other given in
Proposition 3.8. The proof is based on a recursive map ∆̂0 which has been originally
introduced in the context of renormalisation see [15, 9]. Finally, in Section 4 we
show how the previously built machinery can be used to bridge the gap between the
approaches [15] and [20]. Namely, we propose algebraic counterparts on decorated
trees, to the objects employed in [20] - see Proposition 4.1 and Definition 4.3 -
before showing how they can be used to reproduce some of the most important
identities used in [20]. These identities are presented in Proposition 4.9, Theorem 4.5
Theorem 4.6, Corollary 4.7 and Proposition 4.8.
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2 Decorated Trees

We begin naturally by explicating on decorated trees, the main combinatorial
structure used in SPDEs, which were first systematically described in this context in
[6].

We pick three symbols I, Ξ0, and Ξ1 and define with it, a set of edge decorations
D := {I, Ξ0, Ξ1} ×Nd+1. The first of the symbols I represents convolution with
a kernel that comes from the differential operator of the equation one is interested in,
and the symbols Ξ0, Ξ1 represent the noise term and an infinitesimal perturbation
of it. When working with a system of SPDEs with more than one kernel and noise,
one can augment Dwith new symbols (and symbol pairs) for the extra kernels and
noises.

Definition 2.1 A decorated tree over D is a 3-tuple of the form τn
e = (τ, n, e)

where τ is a non-planar rooted tree with node set Nτ and edge set Eτ . The maps
n : Nτ → Nd+1 and e : Eτ → D are node and edge decorations, respectively.

We use T to denote the set of decorated trees and T is its linear span. We define
a binary tree product by

(τ, n, e) · (τ ′, n′, e′) = (τ · τ ′, n + n′, e + e′) , (2.1)

where τ · τ ′ is the rooted tree obtained by identifying the roots of τ and τ ′. The
sums n + n′ mean that decorations are added at the root and extended to the disjoint
union by setting them to vanish on the other tree. Each edge and vertex of both trees
keeps its decoration, except the roots which merge into a new root decorated by the
sum of the previous two decorations.

(i) An edge decorated by (I, a) ∈ D is denoted by Ia. The symbol Ia is also
viewed as the operation that grafts a tree onto a new root via a new edge with
edge decoration a. The new root at hand remains decorated with 0.

(ii) An edge decorated by (Ξi, 0) ∈ D is denoted by Ξi, for i ∈ {0, 1}.
(iii) A factor Xk encodes a single node •k decorated by k ∈ Nd+1. We write

Xi, i ∈ {0, 1, . . . , d}, to denote Xei . Here, we have denoted by e0, ..., ed the
canonical basis of Nd+1. The element X0 which encodes •0, will be denoted by
1. The space of all the monomials Xk will be denoted by T̄ , and its linear span
by T̄.

Using this symbolic notation any decorated tree τ ∈ T can be represented as:

τ = XkΞl
0Ξm

1

n∏
i=1

Iai(τi), (2.2)

where
∏

i is the tree product, k ∈ Nd+1, l , m ∈ N. In relevant applications, and
particularly for the one we have in mind for this article, a product of noises is not
allowed and one can only consider the cases for which l + m ≤ 1. A planted tree is
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a tree of the form Ia(τ ) meaning that there is only one edge connecting the root to
the rest of the tree. The decomposition (2.2) can be reinterpreted by saying that any
decorated tree admits a unique decomposition into a product of planted trees. We
also introduce abstract derivatives Dp, for p ∈ Nd+1 by requiring that

DpIατ = I(α+p)τ, DpXq =
{

q!
(q−p)!X

q−p q ≥ p

0 otherwise,

and finally extending to all of T , by Leibniz rule. Upon the noises we define the
degree maps deg0 and deg1 by setting

deg0(Ξ0) = deg1(Ξ0) = deg1(Ξ1) = α, deg0(Ξ1) = α + d + 2
2 ,

where α is the space-time regularity of the noise ξ encoded by Ξ0 and the presence
of d+2

2 in deg0(Ξ1) is to keep track of the gain in regularity that comes from taking
a Malliavin Derivative - this point is codified in (4.2). From there the degree maps
are extended to all of the T by decreeing that for j ∈ {0, 1}:

degj(X0) = 2, degj(Xi) = 1, for i ̸= 0,

degj

(∏
i

τi

)
=
∑

i

degj(τi), degj(Iα(τ)) = degj(τ ) + 2 − |α|spar ,

where for a fixed scaling vector s = (s0, . . . , sd) ∈ Nd+1
>0 , and some multi-index

n ∈ Nd+1
≥0 we define the quantity

|n|s :=
d∑

i=0
sini,

and spar = (2, . . . , 1). Notice that this means for a multi-index n, degj(Xn) = |n|spar .
We consider parabolic scaling in this paper - for which reason we fix s = spar -
but everything works for a general scaling, with the obvious modification of the
degree maps on the monomials. In the sequel, we will use a short hand notation
replacing | · |s by | · |. We remark that the ”+2” in the definition of degi(Iα(τ ))
is due to Schauder estimates. In addition to the degree maps, we also define | · |Ξ
as the mapping that outputs the number of noises in a decorated tree, without any
discrimination between Ξ0 and Ξ1.

We suppose we are given a subspace of trees T0 ⊂ T associated with the right
hand side of a singular SPDE defined on the space-time R+ × Rd with the mild
formulation:

u = K ∗ (F (u, ∇u, ...)ξ + G(u, ∇u, ...)), (2.3)

where ∗ is the space-time convolution, ξ is space-time white noise, F and G are
nonlinearities depending on the solution u and its derivatives, and K is the heat
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kernel. The linear span of T0 is denoted by T0. Due to the affine structure of
the noise, the term Ξ0 that encodes ξ does not appear in any meaningful formal
expansion of a potential solution to equation (2.3); this puts a constraint on the way
the decorated trees for this equation are constructed. Such constraints are formalised
through the notion of a normal, complete rule. In lieu of giving a complete exposition
of such rules, we illustrate them on concrete examples, as well as referring the reader
to Section 5 of [6]. So if one considers the quasilinear parabolic equation, written in
a manner commensurate with [6]:

∂tu − ∂2
xu = f (u)∂2

xu + ξ, (t, x) ∈ R+ × R,

then decorated trees associated with this equation can be generated by the following
rules Rqua:

Rqua =
{(∏

i∈I

I(·)
)
I2(·), Ξ

∣∣∣∣∣ I finite set
}

,

where I2 is a short hand notation for I(0,2). This means that given (τi)i∈I , τ with I
finite set and τi, τ ∈ T0, one has(∏

i∈I

I(τi)

)
I2(τ ) ∈ T0, Ξ ∈ T0.

In Section 3, we will introduce renormalisation maps R : T0 → T0 that will ask to
enlarge the set of decorated trees T0 that we started with. For quasilinear equations,
we will find that the following assumptions are sufficient:

Assumption 1 We assume that the preparation map R is such that

RQ0 = Q0R.

Assumption 2 For every τ ∈ T0, we assume that R is such that:

(R − id)

[(∏
i∈I

I(τi)

)
I2(τ )

]
=
∑
i∈J

ci

 ∏
j∈KJ

I(τi,j)

, (2.4)

where J, KJ are finite sets and the trees τi,j belong to T0.

The prototypical example of a preparation map satisfying these assumptions, will be
given in (3.8). This implies that one has to consider the new set of rules in order to
consider terms of the form

∏
i∈I I(τi):

Rc
qua =

{∏
i∈I

I(·),
(∏

i∈I

I(·)
)
I2(·), Ξ

∣∣∣∣∣ I is a finite set
}

.

The fact that now T0 is stable by R means that Rc
qua is complete. Normality ensures

that T0 is stable under the action of the coaction and coproduct introduced in
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Section 3. Let us also provide normal and complete rules for other known models.
The generalised KPZ equation is given by:

∂tu − ∂2
xu = f (u)(∂xu)2 + g(u)ξ, (t, x) ∈ R+ × R.

Then, the rules Rc
gKPZ are:

Rc
gKPZ =

{∏
i∈I

I(·),
(∏

i∈I

I(·)
)
I1(·),

(∏
i∈I

I(·)
)
I1(·)I1(·),(∏

i∈I

I(·)
)

Ξ
∣∣∣∣∣ I is a finite set

}
,

where I1 is a short hand notation for I(0,1). For the φ4
3 equation

∂tu − ∆u = u3 + ξ, (t, x) ∈ R+ × R3,

one has

Rc
φ4

3
= {I(·), I(·)I(·), I(·)I(·)I(·), Ξ}.

We denote by T1 the set generated by decorated trees in T0 where at most one
instance of the noise Ξ0 has been replaced by Ξ1. We set T1 to be the linear span of
T1. Given a subset E ⊂ T , we define the following set:

E+,i :=

Xk
∏
j

I+,i
aj

(τj)

∣∣∣∣∣∣ degi(Iaj (τj)) > 0, τj ∈ E, k ∈ Nd+1

.

The new symbol I+,i
aj

has been chosen in order to stress the difference between the
set above and E, which occurs especially when E = T0. There is no constraint on
the product at the root for the decorated trees in T +,i

0 . The i in the superscript of
I+,i

a is meant to emphasise the dependence of the projection on degi. The symbol
can also be extended to any element of T by sending to zero the trees of negative
degree:

I+,i
a (τ ) = 0, degi(Ia(τ )) ≤ 0.

As there is no noise of type Ξ1 in T0, one can perform the following identification
T +,0

0 = T +,1
0 . We denote by T+,i the linear span of T +,i.

We finish this section by defining a natural derivative DΞ that allows us to move
from T0 into T1. It also comes with a natural assumption on the degree of the trees
that contain extra instances of the noise of the form Ξ1.

Definition 2.2 The linear map DΞ : T0 → T1 is defined as the derivation that
turns Ξ0 of a given decorated tree into Ξ1. It can be defined inductively on the tree
structure by requiring

DΞ

(
XkΞ0

n∏
i=1

Iai(τi)

)
= XkΞ1

n∏
i=1

Iai(τi)
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+ XkΞ0

n∑
j=1

Iaj (DΞτj)
∏
i ̸=j

Iai(τi),

and also DΞ(Ξ0) = Ξ1, and DΞ(Xn) = DΞ(1) = 0.

We make the following crucial assumption on the space T0:

Assumption 3 For every τ ∈ T0, we assume that:

DΞτ =
∑

i

Ia′
i
(DΞτ ′

i )τi + Ξ1τ ′, (2.5)

where the τi, τ ′
i , τ ′ belongs to T0 and τ ′ does not have any noise at the root. We

suppose that

deg0(Ia′
i
(DΞτ ′

i )) > 0, (2.6)

where in the later identity, we have made an abuse of notation as deg0 is not
defined for a linear combination of decorated trees. Here, we know that DΞτ ′

i is a
linear combination of decorated trees of the same degree. Therefore, we denote by
deg0(Ia′

i
(DΞτ ′

i )) their degree.

3 Renormalised Models

The first step towards being able to reproduce the arguments in [20] at the level
of trees, is to construct algebraic formulation of the Malliavin Derivatives δΠ and
δΓ employed there, commensurate to decorated trees. For this, we will need the
linear, multiplicative coactions ∆i : Ti → Ti ⊗ T+,i that can be traced back to
Hairer’s seminal paper [15], where these co-actions allowed for the construction of
a regularity structure to which (a modified version) of the noise is lifted.

∆i1 := 1 ⊗ 1, ∆iXj = Xj ⊗ 1 + 1 ⊗ Xj ,

∆0Ξ0 = Ξ0 ⊗ 1, ∆1Ξi := Ξi ⊗ 1,

∆i(Iατ ) := (Iα ⊗ Id)∆iτ +
∑

|ℓ+m|<degi(Iατ )

Xℓ

ℓ! ⊗ Xm

m! I
+,i
α+ℓ+m(τ ).

(3.1)

By construction we have on it a following triangular structure

∆iτ = τ ⊗ 1 +
∑
(τ )

τ (1) ⊗ τ (2) (3.2)

such that degi(τ
(1)) < degi(τ ).

We also supplement these coactions with coproducts ∆+
i : T+,i → T+,i ⊗T+,i.

∆+
i (τ τ̄ ) = ∆+

i (τ )∆+
i (τ̄ )

∆+
i

(
I+,i

α τ
)

=
∑

|ℓ|<degi(Iα(τ ))

(
I

+,i
α+ℓ ⊗ (−X)ℓ

ℓ!

)
∆τ + 1 ⊗ I+,i

α τ.
(3.3)

In the sequel, we will denote T+,0 by T+.
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Remark 3.1 An alternative definition of (3.1) has been introduced in [6] where the
last identity is replaced by

∆i(Iaτ ) := (Ia ⊗ Id)∆iτ +
∑

|ℓ|<degi(Iaτ )

Xℓ

ℓ! ⊗ I
+,i
a+ℓ(τ ).

which corresponds to a change of basis: Ĩ+,i
a+ℓ(τ ) =

∑
m

Xm

m! I
+,i
a+ℓ+m(τ ). We have

chosen the original formulation coming from [15] because one gets simple formulae
for the map ∆̂0 that we introduce in the sequel.

The following proposition will be useful later.

Proposition 3.2 One has for all p ∈ Nd+1

(Dp ⊗ Id)∆0 = ∆0Dp. (3.4)

Proof. The proposition is easily confirmed for {1, Ξ0, Xi} via elementary compu-
tations. The next thing to notice is that the expressions on either side of (3.4) are
multiplicative:

∆0Dp(ττ ′) = (Dp ⊗ Id)∆0(ττ ′) = (Dp ⊗ Id)∆0(τ )(Dp ⊗ Id)∆0(τ ′)

= ∆0Dp(τ )∆0Dp(τ ′).

From here one can extend the result to T once one has the result for planted trees.
For that one checks:

(Dp ⊗ Id)∆0Iατ = (Dp ⊗ Id)
[

(Iα ⊗ Id)∆0τ

+
∑

|ℓ+m|<deg0(Iατ )

Xℓ

ℓ! ⊗ Xm

m! I
+,0
α+ℓ+m(τ )

]
= (I(α+p) ⊗ Id)∆0τ

+
∑

|ℓ+m|<deg0(Iατ )

Xℓ−p

(ℓ − p)! ⊗ Xm

m! I
+,0
α+p+ℓ−p+m(τ )

(ℓ′:=ℓ−p)= (I(α+p) ⊗ Id)∆0τ

+
∑

|ℓ′+m|<deg0(I(α+p)τ )

Xℓ′

(ℓ′)! ⊗ Xm

m! I
+,0
α+p+ℓ′+m(τ )

= ∆0I(α+p)τ = ∆0DpIατ.

The next component needed in our construction of the aforementioned quantities
is that of a preparation map R for the degree degi. Such maps are fundamental
integrants in the construction of renormalisation maps, and as such their utility here,
should not come as a surprise. We recall the relevant definition from [9], where it
was first introduced.
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Definition 3.3 A preparation map is a linear map R : T→ T that fixes polyno-
mials, noises, planted trees, and such that
• for each τ ∈ T there exist finitely many τj ∈ Tand constants λj such that

Rτ = τ +
∑

j

λjτj , with deg1(τj) ≥ deg1(τ ) and |τj |Ξ < |τ |Ξ, (3.5)

• one has
(R ⊗ Id)∆i = ∆iR. (3.6)

• The map R commutes with DΞ in the sense that one has on T0:

RDΞ = DΞR. (3.7)

The commutation property (3.7) is where we differ from the original definition
in the literature. It is meant to reflect the fact that by changing a noise ξ in some tree
into an infinitesimal perturbation of itself δξ, it becomes less singular and therefore
does not require any renormalisation. One natural choice for the preparation map R
is given in [9, 1] by:

R∗
ℓ τ =

∑
σ∈T −

0

ℓ(σ)
S(σ)

σ ⋆ τ, (3.8)

where S(σ) is a symmetry factor associated to σ, T −
0 are elements in T0 with

negative degree using deg0, the associative product ⋆ is related to the dual of ∆i

and ℓ : T −
0 → R, which provides the renormalisation constants, is chosen in such a

manner so that Rℓ has the various properties of a preparation map. The map Rℓ

whose dual map is R∗
ℓ has been first introduced in [9] as an extraction/contraction

procedure of a subtree with negative degree happening at the root. With a preparation
map R fixed, one is able to define the corresponding renormalised model ΠR,i

x for
i ∈ {0, 1} inductively as follows:

ΠR,i
x τ = Π̂R,i

x Rτ, Π̂R,i
x (τ τ̄ ) = (Π̂R,i

x τ ) (Π̂R,i
x τ̄ ),

(Π̂R,i
x (Iaτ ))(y) = (DaK ∗ ΠR,i

x τ)(y)

−
∑

|k|<degi(Iaτ )

(y − x)k

k! (Da+kK ∗ ΠR,i
x τ)(x), (3.9)

where K is now a compactly support function obtained from the kernel associated
with the singular SPDEs considered, with the seed given by:

ΠR,0
x Ξ0 = ξ, ΠR,1

x Ξ0 = ξ, ΠR,1
x Ξ1 = δξ, ΠR,i

x Xk = (· − x)k,

Π̂R,i
x τ = ΠR,i

x τ, for τ ∈ {Ξ0, Ξ1} ∪ T̄ .

This recursive definition was first introduced in [9]. The main idea is that one needs
to cure first a local divergence with R. Then by multiplicativity one iterates R
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deeper inside the iterated integral. Notice that the models depend on the choice of
the degree degi so a difference manifests in the length of the Taylor expansions, in
particular when the noise Ξ1 comes into account, one gets longer Taylor expansions.
One has the following analytical bound:∣∣∣(ΠR,i

x τ
)

(y)
∣∣∣ ≲ |y − x|degi(τ ),

that depends on the choice of degree. The proof is verbatim the same as the one
given in [9].

Remark 3.4 From (3.9), one learns that the multi-index subscript a in Ia(τ )
effectively keeps a count of the derivatives on kernel on the abstract side. In light of
this, and the distributivity of derivatives on convolutions, we have the commutativity
property:

Π̂R,i
x Ia(τ ) = Π̂R,i

x DαI(τ ) = ∂aΠ̂R,i
x I(τ ),

where the second equality is obvious from the properties of the derivative and (3.9).
Furthermore, due to invariance of the preparation map on planted trees, we have that

ΠR,i
x Ia(τ ) = Π̂R,i

x RIa(τ ) = Π̂R,i
x Ia(τ )

= ∂aΠ̂R,i
x I(τ ) = ∂aΠ̂R,i

x RI(τ ) = ∂aΠR,i
x I(τ ). (3.10)

Remark 3.5 The use of a preparation map also allows us to treat the case of a local
renormalisation meaning that we are able to construct the renormalisation for a
model based on kernels K that are non-translation invariant. This was first noticed
in [2] where one can define a preparation map R(·) depending on a given space-time
point and check the same properties listed in Definition 3.3. In this case, we define
the renormalised model as:

(ΠR,i
x τ )(y) = (Π̂R,i

x R(y)τ )(y), (ΠRτ )(y) = (Π̂ R(y)τ )(y).

The only difference with the translation invariant case is the replacement of R by
R(y). In the sequel, all the algebraic identities are robust to this new formulation.
Therefore, the identities that we derive in the end are similar in this framework.

An alternate construction of the renormalised model is due to the relationship
between the (renormalised) model ΠR,i

x and the pre-model ΠR, and the manner in
which ∆i are defined:

ΠR,i
x =

(
ΠR ⊗ fR,i

x

)
∆i, (3.11)

where ΠR the pre-model and fR,i
x are defined by the following recursive formulae:

ΠRτ = Π̂R
Rτ, Π̂R

τ τ̄ = Π̂R
τ Π̂R

τ̄ , (3.12)

(Π̂R
(Iaτ )) = (DaK ∗ ΠRτ).
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with the seed

ΠRΞ0 = Π̂RΞ0 = ξ, ΠRΞ1 = Π̂RΞ1 = δξ,

ΠRXk = Π̂R
Xk = •k,

and

fR,i
x (1) = 1, fR,i

x (Xj) = −xj for j ∈ {0, . . . , d},

fR,i
x (I+,i

a (τ )) = −(DaK ∗ (ΠR,i
x τ ))(x),

(3.13)

respectively, and then are extended multiplicatively. The reader may refer to [15,
Rem. 8.31] for a more thorough explanation.

Remark 3.6 It should be noted that a model in the regularity structure paradigm is
a pair of continuous linear maps (Π, Γ) where the components satisfy certain axioms
(see [15, Def. 2.1]) including Πy = ΠxΓyx. ΠR,i is a renormalised model exactly
in the sense of being the first component in a pair that satisfies the previously cited
axioms. As the exact construction of the corresponding ΓR,i

xy is not necessary we do
not expend any energy in its description, but we do note the utility of the coactions
∆i in its definition:

ΓR,i
yx = (Id ⊗ γR,i

yx )∆i, (3.14)

where γR,i
yx is a character on a particular collection of trees. For a complete exposition,

we refer to the discussion surrounding [15, Eq. 8.17].

Remark 3.7 Notice that (3.14) suggests that the commutativity that the coactions
enjoy with the preparation map, filters through to commutativity with ΓR,i. Indeed
we have due to (3.6)

ΓR,i
yx R = (Id ⊗ γR,i

yx )∆iR (3.15)
= (Id ⊗ γR,i

yx )(R ⊗ Id)∆i

= (R ⊗ Id)(Id ⊗ γR,i
yx )∆i

= RΓR,i
yx .

It is easy to see that this commutativity and ΠR,i
y = ΠR,i

x ΓR,i
yx gives us Π̂R,i

y =
Π̂R,i

x ΓR,i
yx .

Given that the definitions of ΠR,1
x , ΠR,0

x differ only in the length of Taylor
expansions, it is natural to suspect the existence of some mapping that connects ΠR,1

x ,
ΠR,0

x . In the following proposition, we show how a linear coaction ∆̂0 : T→ T⊗T+

from the renormalisation literature can be co-opted to produce a curtailing procedure
that achieves this.
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Proposition 3.8 The following identity holds on T1

ΠR,1
x =

(
ΠR,0

x ⊗ fR,0
x

)
∆̂0, (3.16)

for the map ∆̂0 defined recursively as follows:

∆̂0(•) := • ⊗ 1, for • ∈ {1, Xj , Ξi}, (3.17)

∆̂0(Iaτ ) := (Ia ⊗ Id)∆̂0(τ )

−
∑

deg1(Iaτ )≤|ℓ|

Xℓ

ℓ! ⊗ M+(I+,0
a+ℓ ⊗ Id)∆̂0(τ ), (3.18)

for i ∈ {0, 1} and j ∈ {0, . . . , d}, where M+ is the multiplication map on T+ and
finally extended multiplicativity to all decorated trees in T1.

To prove this proposition, we have to collect a lemma first, and to prove this requisite
lemma, we need the following result which explains the relationship between ∆0
and ∆̂0.

Proposition 3.9 There exists a linear, multiplicative map Γ̂0 on the decorated trees
such that

∆̂0 = (Id ⊗ Γ̂0)∆0. (3.19)

Proof. We begin with the following limited characterisation of Γ̂0,

Γ̂0Xi := 0, Γ̂0τ = τ, for τ ∈ {1, Ξ0, Ξ1}.

It is easy to see then that (3.19) holds true for τ ∈ {1, Xi, Ξ0, Ξ1}. We then extend
the definition above by

Γ̂0

(∑
ℓ

Xℓ

ℓ! I
+,0
a+ℓ (τ )

)
= −1{deg1(Iaτ )≤0}M

+(I+,0
a ⊗ Id)∆̂0(τ ).

In particular the above definition tells us how Γ̂0 maps I+,0
a (τ ), via the change of

base ∑
ℓ

Xℓ

ℓ! I
+,0
a+ℓ (τ ) = Ĩ+,0

a (τ ). (3.20)

Finally, we extend Γ̂0 multiplicatively to all of T0. This multiplicative property of
Γ̂0 is crucial because it endows the right hand side of (3.19) with multiplicativity.

Now the result can be achieved by induction on the size of the trees. We
have already checked the base case on the trees {1, Ξ0, Ξ1, Xi} and due to the
multiplicativity discussed above, we need only to check the equality on Ia(τ ) for
τ ∈ T0. To that end we compute(

Id ⊗ Γ̂0
)
∆0Ia(τ ) = (Ia ⊗ Id)(Id ⊗ Γ̂0)∆0τ
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+
(

id ⊗ Γ̂0
) ∑

|ℓ+m|<deg0(Iaτ )

Xℓ

ℓ! ⊗ Xm

m! I
+,0
a+ℓ+m(τ ).

We can conclude by applying the induction hypothesis on the first term on the right
hand side and the definition of Γ̂0 on the second term.

Remark 3.10 The algebraic property given by Proposition 3.9 is quite remarkable
as it says that ∆̂0 is of the same nature as ∆0 which is a variant of the deformed
Butcher-Connes-Kreimer coproduct. This shows how powerful this formalism is for
encoding various analytical operations. This property has been overlooked in [9] as
one can write a similar formula for ∆M◦ . Indeed, one has

∆M◦
(Iaτ ) = (Ia ⊗ Id)∆M τ −

∑
deg0(Iaτ )≤|ℓ|

Xℓ

ℓ! ⊗ M+(I+
a+ℓ ⊗ Id)∆M τ,

∆M τ = ∆M◦
Rτ.

From this we can write:

∆M◦ = (M◦ ⊗ Γ̂M )∆0, (3.21)

where

Γ̂M

(∑
ℓ

Xℓ

ℓ! I
+,0
a+ℓ (τ )

)
= −1{deg0(Iaτ )≤0}M

+(I+,0
a ⊗ Id)∆M (τ ).

Indeed, one has:

(M◦ ⊗ Γ̂M )∆0Ia(τ ) = (Ia ⊗ Id)(M◦R ⊗ Γ̂M )∆0τ

+
(

id ⊗ Γ̂M

) ∑
|ℓ+m|<deg0(Iaτ )

Xℓ

ℓ! ⊗ Xm

m! I
+,0
a+ℓ+m(τ ).

We conclude by using the induction hypothesis and the fact that R commutes with
∆0:

(M◦R ⊗ Γ̂M )∆0 = (M◦ ⊗ Γ̂M )∆0R = ∆M◦
R.

Given the commutativity that R enjoys with ∆0 and the result we have connecting
∆̂0 to ∆0, one might suspect that the commutativity of R extends to ∆̂0. The
following lemma, which is needed in the proof of Proposition 3.8, proves this
suspicion to be correct.

Lemma 3.11 One has

(R ⊗ id)∆̂0 = ∆̂0R. (3.22)
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Proof. This is an easy consequence of (3.19) and (3.6). Indeed one has

(R ⊗ Id)∆̂0 = (R ⊗ Id)
(

id ⊗ Γ̂0
)
∆0

=
(

id ⊗ Γ̂0
)
(R ⊗ Id)∆0

=
(

id ⊗ Γ̂0
)
∆0R

= ∆̂0R.

Remark 3.12 The commutation property between R and ∆0 provides a new formula
for ∆M coming from (3.21)

∆M = ∆M◦
R =

(
M◦ ⊗ Γ̂M

)
∆0R =

(
M◦R ⊗ Γ̂M

)
∆0 =

(
M ⊗ Γ̂M

)
∆0.

We are now in position to be able to prove the main result of this section.

Proof of Proposition 3.8. For clarity of exposition, let us explain how this proof
differs from other of its sort in this article. As before we follow the programme
of establishing the result on the base symbols, followed by the multiplicity of the
results, from where the result comes inductively once it has been established for
planted trees. What is novel in this particular proof is that due to the way ΠR,i

x and
Π̂R,i

x are intertwined, one has to concurrently establish (3.16), and:

Π̂R,1
x =

(
Π̂R,0

x ⊗ fR,0
x

)
∆̂0,

using one to prove the other. The base case is settled by fixing first τ ∈ {1, Xj , Ξi}
for i ∈ {0, 1}, j ∈ {0, 1, . . . , d} and noticing that:(

Π̂R,0
x ⊗ fR,0

x

)
∆̂0τ =

(
Π̂R,0

x ⊗ fR,0
x

)
(τ ⊗ 1)

= Π̂R,0
x (τ ) ⊗ fR,0

x (1)

= Π̂R,0
x (τ )

= Π̂R,1
x (τ ),

where in the second equality we used fR,0
x (1) = 1, in the third we have identified

the tensor product with a scalar, with multiplication, and finally that Π̂R,i agree on
this choice of τ . Futhermore, as R is invariant on this choice of τ , we also have(

ΠR,0
x ⊗ fR,0

x

)
∆̂0τ = ΠR,1

x (τ ).

For multiplicativity we take τ, τ̄ ∈ {1, Xj , Ξi} with i ∈ {0, 1} and j ∈ {0, 1, ..., d}
and check that

Π̂R,1
x (τ τ̄ ) = Π̂R,1

x (τ )Π̂R,1
x (τ̄ ) =

(
Π̂R,0

x ⊗ fR,0
x

)
∆̂0τ

(
Π̂R,0

x ⊗ fR,0
x

)
∆̂0τ̄
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=
(
Π̂R,0

x ⊗ fR,0
x

)
∆̂0(τ τ̄),

where the last inequality is due to the fact that all the maps considered are multi-
plicative. It only remains to contend with planted trees Ia(τ ).(

Π̂R,0
x ⊗ fR,0

x

)
∆̂0Ia(τ ) =

(
Π̂R,0

x ⊗ fR,0
x

)
(Ia ⊗ Id)∆̂0τ

−
∑

deg1(Iaτ )≤|ℓ|

(
Π̂R,0

x ⊗ fR,0
x

)(Xℓ

ℓ! ⊗ M+(I+,0
a+ℓ ⊗ Id)∆̂0τ

)
.

The second term on the right hand side above, contributes:

−
∑

|ℓ|≥deg1(Iaτ )

(· − x)ℓ

ℓ!
(
fR,0

x I
+,0
a+ℓ ⊗ fR,0

x

)
∆̂0τ.

Whereas the first term on the right hand side, owing to the upper triangular structure
of ∆̂0, gives:(

Π̂R,0
x ⊗ fR,0

x

)
(Ia ⊗ Id)∆̂0τ = DaK ∗

(
ΠR,0

x ⊗ fR,0
x

)
∆̂0τ

+
∑

|ℓ|<deg0(Iaτ )

(· − x)ℓ

ℓ!
(
fR,0

x I
+,0
a+ℓ ⊗ fR,0

x

)
∆̂0τ.

By the induction hypothesis, one has:

DaK ∗
(
ΠR,0

x ⊗ fR,0
x

)
∆̂0τ = DaK ∗ ΠR,1

x τ.

Also using the induction hypothesis in conjunction with the upper triangular structure
of the map ∆̂0, we see that:

∑
|ℓ|≥deg1(Iaτ )

(· − x)ℓ

ℓ!
(
fR,0

x I
+,0
a+ℓ ⊗ fR,0

x

)
∆̂0τ

= −
∑

|ℓ|≥deg1(Iaτ )

(· − x)ℓ

ℓ!
((

Da+ℓK ∗ ΠR,0
x τ

)
(x)
)
,

and similarly for the summation over |ℓ| < deg0(Iaτ ). By construction we
know that deg0(σ) ≥ deg1(σ) which implies

∑
|ℓ|<deg0(σ)(•) −

∑
|ℓ|≥deg1(σ)(•) =∑

|ℓ|<deg1(σ)(•) for any σ ∈ T. Putting all of these observations together, we get:(
Π̂R,0

x ⊗ fR,0
x

)
∆̂0Ia(τ ) = (DaK ∗ ΠR,1

x τ)

−
∑

|k|<deg1(Iaτ )

(· − x)k

k!
((

Da+kK ∗ ΠR,1
x τ

)
(x)
)

= Π̂R,1
x (Ia(τ )).



Renormalised Models 20

To complete the induction, we argue on the strength of Lemma 3.11 as follows:

ΠR,1
x = Π̂R,1

x R =
(
Π̂R,0

x ⊗ fR,0
x

)
∆̂0R

=
(
Π̂R,0

x ⊗ fR,0
x

)
(R ⊗ Id)∆̂0

=
(
Π̂R,0

x R ⊗ fR,0
x

)
∆̂0

=
(
ΠR,0

x ⊗ fR,0
x

)
∆̂0.

Remark 3.13 Such factorisation was initiated in [15] for finding a map ∆M given
a renormalisation map M such that:

ΠM
x = (Πx ⊗ fx)∆M .

This map exists for any linear map M : T0 → T0 that can be understood as choosing
a renormalisation map. The difficulty was to show that given a map M , the map
∆M is upper triangular. This property guarantees that we get the bounds for a model
in the end. As one has to construct this map by hand, [6] proposes a different route
by introducing extended decorations that allow one to write directly a formula of the
type:

ΠM
x = ΠxM,

which is not true in general with the normal setting. It was in [9] where a recursive
formula is given for ∆M when M is constructed via a preparation map in the
following way:

M = M◦R, M◦τ τ̄ = M◦τM◦τ̄ , M◦Ia(τ ) = Ia(Mτ ). (3.23)

One defines ∆M as in [9]:

∆M◦
(•) := • ⊗ 1, for • ∈ {1, Xi, Ξi}, (3.24)

∆M◦
(Iaτ ) := (Ia ⊗ Id)∆M (τ ) −

∑
deg0(Iaτ )≤|ℓ|

Xℓ

ℓ! ⊗ M+(I+,0
a+ℓ ⊗ Id)∆M (τ ),

∆M := ∆M◦
R, ∆M◦

τ τ̄ =
(
∆M◦

τ
)(

∆M◦
τ̄
)
.

Let us mention that the recursive formula (3.23) of M does not make sense
when R depends on a space-time point. One has to use instead the notation ∆R

(resp. ∆̂R) instead of ∆M (resp. ∆M◦). The rest of the definition remains the
same. The recursive formulation is a consequence of shortening Taylor expansions
in the context of renormalisation. In principle, renormalisation does not commute
with recentring as R applied to τ produces a sum of trees with a higher degree.
Therefore, it is not surprising that if such a map can be used in the context of
Malliavin derivatives, it should increase the degree of the noise.
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One sees from the definition that like ∆i, the map ∆̂0 is upper triangular in the
sense that:

∆̂0τ − τ ⊗ 1 =
∑
(̂τ )

τ̂ (1) ⊗ τ̂ (2), deg1(τ̂ (1)) ≥ deg1(τ ), (3.25)

where the sweedler notation above, is chosen so to avoid confusion with (3.2).
Contrasting this triangular structure with (3.18) suggests that the effect of the
co-action on τ ∈ T1, is such that Ξ1 always ends up in τ (2) except of course for
τ ⊗ 1. This motivates the following result with which we conclude this section:

Proposition 3.14 One has for every τ ∈ T0:

∆̂0τ = τ ⊗ 1. (3.26)

Proof. One proceeds by induction. The base case is trivial. Furthermore, as a
consequence of the multiplicativity of ∆̂0, one only needs to consider Ia(τ ) ∈ T0.
Then assuming (3.26) true for τ :

∆̂0(Iaτ ) = (Ia ⊗ Id)∆̂0(τ ) −
∑

deg1(Iaτ )≤|ℓ|

Xℓ

ℓ! ⊗ M+(I+,0
a+ℓ ⊗ Id)∆̂0(τ )

= Ia(τ ) ⊗ 1 −
∑

deg1(Iaτ )≤|ℓ|

Xℓ

ℓ! ⊗ M+(I+,0
a+ℓ (τ ) ⊗ 1)

= Ia(τ ) ⊗ 1 −
∑

deg1(Iaτ )≤|ℓ|

Xℓ

ℓ! ⊗ I
+,0
a+ℓ (τ )

= Ia(τ ) ⊗ 1,

where we have used the induction hypothesis and the last line comes from the fact
that deg1(Iaτ ) = deg0(Iaτ ) because τ ∈ T0.

4 Algebraic identities

The purpose of this section is to employ the constructions in the previous section to
relate the combinatorial approach of our decorated trees to that of the fundamentally
analytical multi-index approach of [20]. On the stochastic estimates end, this
analyticity is manifest most prominently in their use of the spectral gap inequality
to reduce the control of p-th moment of Π−

x , to the control of the p-th moment of
its Malliavin derivative and absolute control of its first moment. We note that the
control of the latter, in either of the approaches, is due to BPHZ renormalisation
and it is the former term that is the actual novelty here. To define the derivative,
the authors in [20] use the standard definition in the Malliavin Calculus literature
for cylindrical functionals of the noise F [ξ] := F̄ ((ξ, η1), . . . , (ξ, ηN )), i.e. the
Malliavin derivative is the Fréchet Derivative in the noise:

∂F

∂ξ
[ξ] =

N∑
n=1

∂nF̄ ((ξ, η1), . . . , (ξ, ηN ))ηn. (4.1)
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Pursuant to our goal of reconciling the two approaches, we first contend with the
question of how to relate the analytical object δΠR,1

x to our decorated tree based
approach. For this we may think of the Fréchet derivative (4.1) as a directional
derivative in some arbitrary infinitesimal perturbation δξ, which owing to the
linearity of ΠR,1

x is equivalent to exchanging some instance of ξ with that of δξ.
That is what DΞ does on the level of trees and hence we have the following result.

Proposition 4.1 One has on T0

δΠR,1
x = ΠR,1

x DΞ. (4.2)

Proof. One can proceed by induction on the size of the decorated trees using the
recursive formula of the model. On the basic symbols {1, Ξ0, Xi} the property
is seen to be true. Suppose then we have two trees τ, τ̄ that satisfy the induction
hypothesis; we check that

δ
(
Π̂R,1(τ τ̄ )

)
= (δΠ̂R,1τ )(Π̂R,1τ̄ ) + (Π̂R,1τ )(δΠ̂R,1τ̄ )

= (Π̂R,1DΞτ )(Π̂R,1τ̄ ) + (Π̂R,1τ )(Π̂R,1DΞτ̄ )

= Π̂R,1(DΞτ τ̄ + τ DΞτ̄)
= Π̂R,1(DΞ(τ τ̄ )),

where we have used the product rule for the Malliavin derivative, linearity, and
multiplicativity of Π̂R,1, and the fact that DΞ is a derivation. With multiplicativity
settled we need only settle the case of planted trees τ̄ = Ia(τ ). To that end, we can
argue

δΠ̂R,1
x (Iaτ ) = δ(DaK ∗ ΠR,1

x τ)

− δ

 ∑
|k|<deg1(Iaτ )

(y − x)k

k! (Da+kK ∗ ΠR,1
x τ)(x)


= (DaK ∗ δΠR,1

x τ)

−
∑

|k|<deg1(Iaτ )

(y − x)k

k! (Da+kK ∗ δΠR,1
x τ)(x)

= Π̂R,1
x IaDΞτ

= Π̂R,1
x DΞIaτ,

where we have used the induction hypothesis, the fact that Frechet derivatives are
distributive over convolutions, and the definition of DΞ. To complete the induction
we argue:

δ
(
ΠR,1

x τ
)

= δ
(
Π̂R,1

x (Rτ)
)

= Π̂R,1
x DΞ(Rτ) (4.3)

= Π̂R,1
x R(DΞτ) = ΠR,1

x (DΞτ).
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One can remark that the commutativity property is not true when one considers the
model ΠR,0

x that takes into account the specific degree of the perturbation δξ. This
breakdown is attributable to the fact that one has to change the length of the Taylor
expansions after applying δ.

The next object we will contend with is π(0)
xy . We recall from [20, Eq. 2.64] that

π(0)
xy = Πx(y),

which corresponds to applying the model to certain planted trees. The following
proposition then reveals that on I(T ) for the equation that the authors contend with
in [20], γR,0

xy is essentially the same as π(0)
xy .

Proposition 4.2 For τ such that I(τ ) is of positive degree, one has

γR,0
xy

(
Ĩ+,0(τ )

)
=
(
ΠR,0

y I(τ )
)

(x), (4.4)

where we recall the change of basis given in (3.20):

∑
ℓ

Xℓ

ℓ! I
+,0
a+ℓ (τ ) = Ĩ+,0

a (τ ).

Proof. We recall from [15] that

γR,0
xy

(
Ĩ+,0(τ )

)
=
(
fR,0

x A⊗ fR,0
y

)
∆+

0

(
Ĩ+,0(τ )

)
,

where A is the antipode for T+, the existence of which is the content of [15, Th.
8.16]. In particular, the antipode satisfies:

A1 = 1, AXi = −Xi, AI+,0(τ ) = −
∑

ℓ

M+
[

Xℓ

ℓ!
(
I

+,0
ℓ ⊗ A

)]
∆0τ.

One has by using (3.3)

∆+
0

(
Ĩ+,0(τ )

)
= ∆+

0

(∑
ℓ

Xℓ

ℓ! I
+,0
ℓ (τ )

)

=
∑
ℓ,k

(
Xk

k! ⊗ Xℓ

ℓ!

)
∆+

0

(
I

+,0
k+ℓ(τ )

)

=
∑
ℓ,k,r

(
Xk

k! I
+,0
k+ℓ+r ⊗ Xℓ

ℓ!
(−X)r

r!

)
∆0τ

+
∑
ℓ,k

(
Xk

k! ⊗ Xℓ

ℓ! I
+,0
k+ℓ(τ )

)

=
∑

k

(
Xk

k! I
+,0
k ⊗ 1

)
∆0τ
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+
∑
ℓ,k

(
Xk

k! ⊗ Xℓ

ℓ! I
+,0
k+ℓ(τ )

)
,

where we have used ∑
ℓ,r

Xℓ

ℓ!
(−X)r

r! = 1.

Furthermore one has fR,0
x

(
AĨ+,0(τ )

)
=
(
ΠRI(τ )

)
(x) which we can check as

follows

fR,0
x (AĨ+,0(τ )) = fR,0

x

−
∑
ℓ,r

M+
[

(−X)ℓ

ℓ!
(X)r

r!
(
I

+,0
ℓ+r ⊗ A

)]
∆0τ


= fR,0

x

(
−M+

[(
I+,0 ⊗ A

)]
∆0τ

)
=
(

(K ∗ ΠR,0
x )(·)(x) ⊗ fR,0

x A
)
∆τ

=
(
K ∗ ΠRτ

)
(x)

=
(
ΠRI(τ )

)
(x),

where we have used the facts(
ΠR,0

x ⊗ fR,0
x A

)
∆0 = ΠR,

and

fR,0
x

(
I+,0(τ )

)
= −(K ∗ ΠR,0

x τ )(x).

The last identity is true because I(τ ) is always of positive degree due to our
assumption. On the other hand, one has from (3.11) that

(ΠR,0
y I(τ ))(x) =

(
(ΠR·)(x) ⊗ fR,0

y

)
∆0I(τ )

=
(

(ΠRI·)(x) ⊗ fR,0
y

)
∆0τ

+
∑
k,ℓ

((
ΠR Xk

k!

)
(x) ⊗ fR,0

y

(
Xℓ

ℓ! I
+,0(τ )

))
.

We conclude by using the fact that:

(ΠRXk)(x) = fR,0
x (AXk) = xk.

As explained in the introduction, the presence of divergent constants in the formula-
tion of Π−

x [20, Eq. 2.18] prompted the authors to instead first establish control of
its so-called rough-path increment δΠR,1

x − ΠR,1
y dΓR

yx. Here dΓR
yx is a modelled

distribution in Hairer’s regularity structures sense [15, Def. 3.1] that is a structurally
similar analytical quantity to δΓR

yx. In our context dΓR
yx takes the following form.
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Definition 4.3 For τ ∈ T0 one has

dΓR
yxτ = Q0

(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0DΞτ, (4.5)

where Q0 projects to zero, all trees containing the noise Ξ1.

Remark 4.4 It should be noted here that in [20] the authors work with the algebraic
transpose (ΓR,0

yx )∗ and hence their dΓ∗ corresponds to the dual of (4.5).

That dΓR
yx is linear, is obvious and due to the multiplicity of ΓR,0

yx , fR,0
x , and ∆̂0,

and the Leibniz rule that DΞ satisfies, we have the following identity

dΓR
yx(τ1τ2) = dΓR

yx(τ1)dΓ̄R
yx(τ2) + dΓR

yx(τ2)dΓ̄R
yx(τ1), (4.6)

where dΓ̄R
yx :=

(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0. dΓ̄R

yx is easily seen to multiplicative. With
these characterisations of δΠR,1

x and dΓR
yx, we are now able to turn our attention

to the indicated identities. We begin here with the so-called continuity expression
dΓR

yx −ΓR,1
yz dΓR

zx. To understand the need for this expression, we return to the rough-
path increment δΠR,1

x −ΠR,1
y dΓR

yx. Particularly, to gaining control of this rough-path
increment, where the authors in [20] employ a reconstruction argument, which
requires as a hypothesis the control of the continuity expression dΓR

yx − ΓR,1
yz dΓR

zx.
For the details of this kind of reconstruction argument, we refer the readers to the
discussion around [19, Lem. 4.8].

The next theorem we present will establish the relationship between δΠR,1 and
dΓR with a relatively lax assumption on R. This theorem is of central importance
in this work because it can be used to extend our arguments here, to non-linearities
coming from equations beyond the quasilinear parabolic one the authors consider in
[20].

Theorem 4.5 For every τ ∈ T0 satisfying Assumption 3, and R satisfying Assump-
tion (1) one has (

Π̂R,1
y dΓR

yxτ
)

(y) =
(
δΠ̂R,1

x τ
)

(y), (4.7)

and hence one has for τ ∈ T0(
ΠR,1

y dΓR
yxτ
)

(y) =
(
δΠR,1

x τ
)

(y). (4.8)

Proof. Instead of the usual inductive argument, we prove the (4.7) for all τ ∈ T0
and derive (4.8) therefrom. It is easy to see that (4.7) holds for τ ∈ {1, Xi, Ξ0}. To
establish its ”multiplicativity” we note first that for τ ∈ T0 we have

Π̂R,1
y dΓ̄R

yxτ =
(
Π̂R,1

y ΓR,0
yx ⊗ fR,0

x

)
∆̂0τ

=
(
Π̂R,0

y ΓR,0
yx ⊗ fR,0

x

)
∆̂0τ (4.9)
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=
(
Π̂R,0

x ⊗ fR,0
x

)
∆̂0τ

= Π̂R,1
x τ.

With (4.9) in hand, if we are given τ, τ̄ ∈ T0, for which (4.7) holds, we see using
the multiplicativity of Π̂R,1, the product rule and (4.6):(

Π̂R,1
y dΓR

yx[τ τ̄ ]
)

(y) =
((

Π̂R,1
y dΓR

yxτ
)
Π̂R,1

y dΓ̄R
yxτ̄

+
(
Π̂R,1

y dΓ̄R
yxτ
)
Π̂R,1

y dΓR
yxτ̄
)

(y)

=
((

δΠ̂R,1
x τ

)
Π̂R,1

x τ̄ +
(
Π̂R,1

x τ
)
δΠ̂R,1

x τ̄
)

(y) (4.10)

= δ
(
Π̂R,1

x [τ τ̄ ]
)

(y).

This means that we need only prove (4.7) for decorated trees of the form Ia(τ ). We
know from Assumption 3 that

deg0(Ia(DΞτ )) > 0,

which implies that one has (
Π̂R,0

y Ia(τ )
)

(y) = 0.

Then, one has(
Π̂R,1

y dΓR
yxIa(τ )

)
(y) =

(
Π̂R,1

y Q0
(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0Ia(DΞτ )

)
(y)

=
((

Π̂R,0
y ΓR,0

yx ·
)

(y) ⊗ fR,0
x

)
∆̂0Ia(DΞτ )

=
((

Π̂R,0
x ·

)
(y) ⊗ fR,0

x

)
∆̂0Ia(DΞτ )

=
(
Π̂R,1

x Ia(DΞτ )
)

(y)

=
(
δΠ̂R,1

x Iaτ
)

(y),

(4.11)

where the Assumption 3 is required for doing away with Q0 and transforming Π̂R,1
y

into Π̂R,0
y . Indeed, one has

(Π̂R,1
y Q0ΓR,0

yx Ia(DΞτ ))(y) = (Π̂R,0
y ΓR,0

yx Ia(DΞτ ))(y).

This due to the fact that

deg0(Ia(DΞτ ′)) > 0,

for every τ ′ subtree of τ including the root of τ and therefore

(Π̂R,0
y Ia(DΞτ ′))(y) = 0.
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The evaluation at the point y acts as the projection Q0. In (4.11), Proposition 3.8 is
used in the fourth equality and Proposition 4.1 is used for the last equality. These
propositions are used with Π replaced by Π̂ which is justified because in proving
the proposition for the former we proved it for the latter as well. This proves (4.7)
on the whole of T0. Now to see how (4.7) implies (4.8) we recall the commutative
properties of R - as noted in (3.6), (3.7), (3.22), and (3.15) - and the fact that R
maps into T0. Then with (4.7) at hand, we can argue that(

ΠR,1
y dΓR

yxτ
)

(y) =
(
Π̂R,1

y RdΓR
yx(τ )

)
(y)

=
(
Π̂R,0

y Q0(R ⊗ id)
(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0DΞ (τ )

)
(y)

=
(
Π̂R,0

y Q0
(
ΓR,0

yx ⊗ fR,0
x

)
(R ⊗ id)∆̂0DΞ (τ )

)
(y)

=
(
Π̂R,0

y

(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0DΞ (Rτ )

)
(y)

=
(
Π̂R,1

x (DΞ Rτ)
)

(y)

=
(
Π̂R,1

x R(DΞτ)
)

(y)

=
(
δΠR,1

x τ
)

(y).

We have remarked before that it is the lack of regularity in Π−
x that prompts the

authors to exploit the rough-path increment, but it should be emphasised that the
reason they are able to do so, is that they see no renormalisation when evaluating
the rough-path increment at the diagonal. In particular, they have a divergence-free
formula [20, Eq. 4.50], that they use in their reconstruction argument. In our next
theorem, we derive the same formula in our context and exhibit the fact that we
indeed see no renormalisation on the diagonal.

Theorem 4.6 Given a preparation map R such that it satisfies Assumption 2, one
has for τ, τ1, . . . , τi ∈ T0, that(

Fxy

[(∏
i

I(τi)

)
I2(τ )

])
(y) =

(∏
i

(
Π̂R,1

x I(τi)
)

(y)

)
(F̂xyI2(τ ))(y)

where Fxy = δΠR,1
x − ΠR,1

y dΓR
yx and F̂xy = δΠ̂R,1

x − Π̂R,1
y dΓR

yx.

Proof. We remark for future reference that Fxy is linear but fails to be multiplicative
because dΓR

yx fails to be so. Then we have the following relationship:

F̂xyR = (δΠ̂R,1
x − Π̂R,1

y dΓR
yx)R (4.12)

= (Π̂R,1
x DΞ − Π̂R,1

y dΓR
yx)R

= Π̂R,1
x DΞR − Π̂R,1

y dΓR
yxR
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= Fxy,

where we have used the following observations that follow easily from definitions
and the commutativity properties of R

ΠR,1
y dΓR

yx = Π̂R,1
y dΓR

yxR, δΠR,1
x = Π̂R,1

x DΞR.

From (4.7) and in particular the multiplicativity we saw in (4.10), we see that

F̂xy

(∏
i

I(τi)

)
(y) = 0. (4.13)

Now given the trees τ, τi ∈ T, we define the quantity

A =
(∏

i

I(τi)

)
I2(τ ),

which due to our assumption on the renormalisation map R, is such that

(R − id)A =
∑

j

cj

∏
i∈Ij

I(τi,j).

Using the equality above, the linearity of F̂xy and (4.13) gives us that

(
F̂xy(R − id)A

)
(y) =

F̂xy

∑
j

cj

∏
i∈Ij

I(τi,j)

(y)

=

∑
j

cjF̂xy

∏
i∈Ij

I(τi,j)

(y) = 0.

Due to the equality above and (4.12), it is enough to prove that(
F̂xy

∏
i

I(τi)I2(τ )

)
(y) =

∏
i

(
Π̂R,1

x I(τi)
)

(y)(F̂xyI2(τ ))(y).

This can be proved inductively, indeed the base case follows from (4.9) and (4.13):(
F̂xyI(τ )I2(τ̄ )

)
(y) =

(
δΠ̂R,1

x (I(τ )I2(τ̄ )) − Π̂R,1
y dΓR

yx(I(τ )I2(τ̄ ))
)

(y)

=
(
δΠ̂R,1

x I(τ )Π̂R,1
x I2(τ̄ ) + δΠ̂R,1

x I2(τ̄ )Π̂R,1
x I(τ )

− Π̂R,1
y

(
dΓR

yxI(τ )dΓ̄R
yxI2(τ̄ )

)
− Π̂R,1

y

(
dΓR

yxI(τ )dΓ̄R
yxI2(τ̄ )

))
(y)

=
(
Π̂R,1

x I(τ )
)

(y)
[
δΠ̂R,1

x I2(τ̄ ) − Π̂R,1
y dΓR

yxI2(τ̄ )
]
(y)

+
(
Π̂R,1

x I2(τ̄ )
)

(y)
[
δΠ̂R,1

x I(τ ) − Π̂R,1
y dΓR

yxI(τ )
]
(y)

=
(
Π̂R,1

x I(τ )
)

(y)F̂xyI2(τ̄ )(y) +
(
Π̂R,1

x I2(τ̄ )
)

(y)F̂xyI(τ )(y)

=
(
Π̂R,1

x I(τ )
)

(y)F̂xyI2(τ̄ )(y).

From here it is only a matter of extending inductively to
∏

i I(τi), which is done in
the same vein as the base step above.
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In the next corollary, we provide a more explicit formula for the term involving
I2(τ ). It basically says that one has a commutative identity with derivatives and the
map described above.

Corollary 4.7 For every decorated tree τ , one has(
F̂xyI2(τ )

)
(y) =

(
∂2

x1

(
δΠ̂R,1

x − Π̂R,1
y dΓR

yx

)
(I(τ ))

)
(y).

Proof. This is an easy consequence of the commutativity properties, as noted in
Proposition 3.2 and (3.10). Indeed one checks

δΠ̂R,1
x I2(τ ) = Π̂R,1

x DΞI2(τ ) = Π̂R,1
x I2(DΞτ ) (4.14)

= ∂2
x1Π̂R,1

x I(DΞτ ) = ∂2
x1δΠ̂R,1

x I(τ ),

and that:

Π̂R,1
y dΓR

yxI2(τ ) = Π̂R,1
y dΓR

yxD2
e1I(τ )

= Π̂R,1
y D2

e1dΓR
yxI(τ )

= ∂2
x1Π̂R,1

y dΓR
yxI(τ ),

where the second inequality is justified by noting that

Dp∆̂0 = (Dp ⊗ Id)(Id ⊗ Γ̂0)∆0

= (Id ⊗ Γ̂0)(Dp ⊗ Id)∆0
(3.4)= (Id ⊗ Γ̂0)∆0Dp = ∆̂0Dp,

and similarly

DpΓR,0
yx = (Dp ⊗ Id)(Id ⊗ γR,0

yx )∆0

= (Id ⊗ γR,0
yx )(Dp ⊗ Id)∆0

= (Id ⊗ γR,0
yx )∆0Dp = ΓR,0

yx Dp,

from where we get:

DpdΓR
yx = (Dp ⊗ Id)Q0

(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0DΞ

= Q0
(
DpΓR,0

yx ⊗ fR,0
x

)
∆̂0DΞ

= Q0
(
ΓR,0

yx ⊗ fR,0
x

)
Dp∆̂0DΞ

= Q0
(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0DΞDp

= dΓR
yxDp

Now putting the two terms together and evaluating at the diagonal to kill positive
degree trees in the second term, we get:(

F̂xyI2(τ )
)

(y) =
((

δΠ̂R,1
x − Π̂R,1

y dΓR
yx

)
I2(τ )

)
(y)
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=
((

∂2
x1δΠ̂R,1

x − ∂2
x1Π̂R,1

y dΓR
yx

)
I(τ )

)
(y)

=
(
∂2

x1

(
δΠ̂R,1

x − Π̂R,1
y dΓR

yx

)
I(τ )

)
(y).

We finish the section by giving our version of [20, Eq. 4.84], which should be read
in the context of the equation they have in [20].

Proposition 4.8 One has for every τ ∈ T0, such that I(τ ) is of positive degree,
that(

δΠR,1
x − ΠR,1

y dΓR
yx

)
I(τ ) =

(
δΠR,1

x −
(
δΠR,1

x ·
)

(y) − ΠR,1
y PIdΓR

yx

)
I(τ ),

where PI is the projection onto planted trees of the form I(τ ).

Proof. This is a consequence of the elementary decomposition:

ΠR,1
y dΓR

yx = ΠR,1
y PIdΓR

yx + ΠR,1
y (id − PI)dΓR

yx.

Then, (
ΠR,1

y (id − PI)dΓR
yxI(τ )

)
(y) = (ΠR,0

y dΓR
yxI(τ ))(y)

=
(

(ΠR,0
x ·)(y) ⊗ fR,0

x

)
∆̂0DΞI(τ )

=
(
ΠR,1

x DΞI(τ )
)

(y)

=
(
δΠR,1

x I(τ )
)

(y),

where we have used Proposition 3.8 and Proposition 4.1. The first equality is true
because any tree of the form I(τ ′) with τ ′ a subtree of τ is of positive degree as a
consequence of our assumption. The term dΓR

yxI(τ ) produces terms of this form
that are either killed by the projection id − PI or by the evaluation of the model on
the diagonal:

(ΠR,0
y I(τ ′))(y) = 0,

which allows us to conclude.

Proposition 4.9 One has for τ ∈ T0(
dΓR

yx − ΓR,1
yz dΓR

zx

)
τ =

∑
(DΞτ )

τ (1)γR,0
yx (τ (2))

−
∑

(DΞτ )

γR,0
zx (τ (2))

∑
(τ (1))

τ (1,1)γR,0
yz (τ (1,2)),

where
∑

(·) refers to the sweedler notation as in (3.2).
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Proof. Let τ ∈ T0. One can check then(
dΓR

yx − ΓR,1
yz dΓR

zx

)
(τ )= Q0

(
ΓR,0

yx ⊗ fR,0
x

)
∆̂0DΞτ

− ΓR,1
yz Q0

(
ΓR,0

zx ⊗ fR,0
x

)
∆̂0DΞτ

= Q0ΓR,0
yx DΞτ − ΓR,1

yz Q0ΓR,0
zx DΞτ (4.15)

= Q0ΓR,0
yx DΞτ − ΓR,0

yz Q0ΓR,0
zx DΞτ.

The third equality above is true because Q0 maps into T0 and ΓR,0, ΓR,1 agree on
T0. To see why the second inequality is true, we recall, to begin with, that in the
triangular structure of ∆̂0, the noise Ξ1 ends up in τ̂ (2) in each component τ̂ (1) ⊗ τ̂ (2)

of the Sweedler notation (3.25), save for the leading term DΞτ ⊗ 1. As τ̂ (2) feeds
into fR,0

x and τ̂ (1) ∈ T0, we are able to do away with the projection and

Q0
(
ΓR,0

yx (τ̂ (1)) ⊗ fR,0
x (τ̂ (2))

)
− ΓR,1

yz Q0
(
ΓR,0

zx (τ̂ (1)) ⊗ fR,0
x (τ̂ (2))

)
= ΓR,0

yx (τ̂ (1))fR,0
x (τ̂ (2)) − ΓR,1

yz ΓR,0
zx (τ̂ (1))fR,0

x (τ̂ (2))

= fR,0
x (τ̂ (2))

(
ΓR,0

yx τ̂ (1) − ΓR,1
yz ΓR,0

zx τ̂ (1)
)

= fR,0
x (τ̂ (2))

(
ΓR,0

yx τ̂ (1) − ΓR,0
yz ΓR,0

zx τ̂ (1)
)

= 0,

For the leading term DΞτ ⊗ 1 we are unable to remove the projection in (4.15).
Now with reference with to (3.14), we may rewrite (4.15) as:

Q0ΓR,0
yx DΞτ − ΓR,0

yz Q0ΓR,0
zx DΞτ = Q0(id ⊗ γR,0

yx )∆0DΞτ

− (Id ⊗ γR,0
yz )∆0Q0(Id ⊗ γR,0

zx )∆0DΞτ.

It only remains to analyse each of the terms on the right hand side in the previous
equality. Appealing to Sweedler notation for ∆0 and noting that Q0 does away with
the leading term with Ξ1 on the left side of the tensor product, we get

Q0(id ⊗ γR,0
yx )∆0DΞτ =

∑
(DΞτ )

τ (1)γR,0
yx (τ (2)).

A similar calculation is possible for the remaining term

(Id ⊗ γR,0
yz )∆0Q0(Id ⊗ γR,0

zx )∆0DΞτ = (Id ⊗ γR,0
yz )∆0

∑
(DΞτ )

τ (1)γR,0
zx (τ (2))

=
∑

(DΞτ )

γR,0
zx (τ (2))(Id ⊗ γR,0

yz )∆0τ (1)

=
∑

(DΞτ )

γR,0
zx (τ (2))

∑
(τ (1))

τ (1,1)γR,0
yz (τ1,2)

which allows us to conclude.
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