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Abstract. The paper applies the JSJ decomposition and Koda-Ozawa’s annulus classifi-
cation to analyze the annulus configuration in a handlebody-knot exterior. We introduce
the notion of the annulus diagram, to pack the configuration into a labeled graph, and
classify genus two handlebody-knots in terms of their annulus diagrams. Applications to
handlebody-knot symmetries are discussed; methods to produce handlebody-knots with
various types of annulus diagrams are also presented.

1. Introduction

Let M be a compact, connected, orientable, irreducible, ∂-irreducible 3-manifold. The
JSJ decomposition asserts that, up to isotopy, there is a unique surface S ⊂ M consisting of
essential annuli and tori such that 1. every component of the exterior E(S ) := M − N̊(S ) is
either I-/Seifert fibered or hyperbolic and 2. the removal of any component of S causes the
first condition to fail, where N̊(S ) is an open regular neighborhood of S ⊂ M [14], [15] (see
also [1]). Assign a solid (resp. hollow) node to each fibered (resp. hyperbolic) component
of E(S ), and to each component N of N̊(S ) assign an edge between nodes corresponding
to component(s) of E(S ) that meets(meet) the frontier of N. The resulting graph is called
a characteristic diagram ΛM of M.

The present work concerns the case where M has a connected boundary and is atoroidal,
namely, containing no non-boundary parallel essential tori, and embeddable in an oriented
3-sphere S3. By Fox [6], such M is homeomorphic to a handlebody-knot exterior—the
exterior of a tangled handlebody in S3. Atoroidality and embeddability of M impose strong
topological constraints on its JSJ decomposition. If the genus g(∂M) = 1, there is only one
way to embed M in S3 by Gordon-Luecke [10] and its exterior in S3 is always a solid torus.
The characteristic diagram ΛM in this case is either Figs. 1a or 1d. In the former, M is a
hyperbolic knot exterior, whereas in the latter M is a torus knot exterior. The main results
here are a classification theorem for the characteristic diagram of M with g(∂M) = 2 and
its enhancement and application to handlebody-knot theory.

Classification of characteristic diagrams. Let M be a compact, ∂-irreducible, atoroidal
3-submanifold of S3 with ∂M connected and g(∂M) = 2.

Theorem 1.1 (Theorem 2.23). The characteristic diagram ΛM of M is one of the entries
in the table in Fig. 1.

By Thurston’s hyperbolization theorem [22], M is either hyperbolic or cylindrical,
namely, M containing an essential annulus; it is the former if and only if ΛM is Fig. 1a. It
is an interesting question as to whether all diagrams in Fig. 1 can be realized by such an
M. To the author’s knowledge, there is currently no known example whose characteristic
diagram is Figs. 1h, 1k, 1l, 1m or 1n.

Recall that the W-system of M introduced by Neumann-Swarup [20] is a maximal set
of canonical annuli in M, where an essential annulus is canonical if any other essential
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(a) (0, 0, 0, ◦) (b) (1, 1, 0, ◦) (c) (1, 0, 0, ◦)

(d) (1, 0, 0, •)
(e) (2, 1, 0, ◦) (f) (2, 0, 1, ◦)

(g) (2, 0, 0, ◦) (h) (2, 0, 0, •)
(i) (3, 0, 3, ◦)

(j) (3, 0, 3, •) (k) (3, 0, 1, ◦) (l) (3, 0, 1, •)

(m) (3, 0, 0, ◦) (n) (3, 0, 0, •)

Figure 1. Table of characteristic diagrams.

annulus can be isotoped away from it. Theorem 1.1, together with Theorem 3.14 and
Proposition 2.21(v), implies the following.

Corollary 1.2. The W-system of M coincides with the JSJ decomposition if ΛM is not one
of Figs. 1f, 1k and 1l.

Corollary 1.3. Up to isotopy, M contains four (resp. five, and infinitely many) essential
annuli if ΛM is Figs. 1h or 1f (resp. 1k or 1l, and 1d); otherwise, M contains at most three
essential annuli.

Applications to handlebody-knot theory. A genus g handlebody knot (S3,HK) is a genus
g handlebody HK in S3. In Sections. 3-4, we apply Theorem 1.1 to study handlebody-knots
of genus 2, abbreviated to handlebody-knots unless otherwise specified. While, up to iso-
topy, a genus 1 handlebody-knot, equivalent to a classical knot, is determined by its exte-
rior by Gordon-Luecke [10], there are infinitely many inequivalent, namely non-isotopic,
genus 2 handlebody-knots with homeomorphic exteirors by Motto [19], Lee-Lee [18]. In
particular, the characteristic diagramΛE(HK) of the handlebody-knot exterior E(HK) cannot
differentiate them, and finer information has to be added.

The present work concerns non-trivial atoroidal handlebody-knots (S3,HK)—that is,
E(HK) is atoroidal and not a handlebody; they are of particular interest, being precisely
those with a finite symmetry group by Funayoshi-Koda [7], where the (positive) symmetry
group MCG(+)(S3,HK) of (S3,HK), as defined in Koda [16], is the (positive) mapping
class group of the pair (S3,HK).

To enhance the characteristic diagram ΛE(HK), we recall that Koda-Ozawa [17] and
Funayoshi-Koda [7, Lemma 3.2] show that only four types of annuli A can occur as es-
sential annuli in an atoroidal handlebody-knot exterior E(HK). These four types can be
described in terms of ∂A in relation to the handlebody HK [17, Proof of Theorem 3.3].
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Type 2 : Exactly one component lA of ∂A bounds a disk DA in HK; if the disk DA is
non-separating (resp. separating) in HK, then A is of type 2-1 (resp. type 2-2). For
an example of a type 2-1 annulus, see Fig. 2a.

– The symbol hi is reserved for a type 2-i annulus, i = 1, 2.
Type 3-2 : Components of ∂A are parallel in ∂HK and bound no disks in HK, and there

exists a unique non-separating diskDA ⊂ HK disjoint from ∂A [7]. Let V := HK−
N̊(D). Then A is of type 3-2i (resp. type 3-2ii) if A is essential (resp. inessential)
in E(V).

– The symbol k∗ is reserved for a type 3-2∗ annulus.
Type 3-3 : Components of ∂A ⊂ ∂HK are non-parallel and bound no disks in HK; there

exists a unique separating essential disk DA in HK disjoint from ∂A [24]. The
disk DA cuts HK into two solid tori, each containing a component of ∂A. The
slope pair of A is the slopes of ∂A with respect to the two solid tori. For instance,
the handlebody-knot in Fig. 2b admits a type 3-3 annulus with a slope pair (1, 1).

– The symbol l(r1, r2) denotes a type 3-3 annulus with a slope pair (r1, r2); if (r1, r2) =
(0, 0), we simply write l0 and say A has a trivial slope pair. The slope pair is of
either the form ( p

q ,
q
p ), pq , 0 or the form ( p

q , pq), q , 0, where p, q are coprime
integers by [24, Lemma 2.12].

Type 4-1 : Components of ∂A are parallel in ∂HK and every essential disk in HK meets ∂A.
Note that the core of the solid torus cut off by A from E(HK) is an Eudave-Muñoz
knot [4].

– For a type 4-1 annulus the symbol em is reserved.

Label each edge of ΛE(HK), based on the type of the annulus it represents. Then the re-
sulting edge-labeled diagram, denoted by Λhk, is called the annulus diagram of (S3,HK).
The annulus diagram contains finer information; for instance, (S3, 51) and (S3, 64) in the
Ishii-Kishimoto-Moriuchi-Suzuki handlebody-kont table [13] have homeomorphic exteri-
ors but different annulus diagrams (Figs. 2a and 2b). By the definition, an essential annulus
A ⊂ E(HK) is non-separating if and only if A is of type 2 or of type 3-3.

We classify the annulus diagrams of atoroidal handlebody-knots admitting an essential
annulus of type 2 or of type 3-3 with specific slope pairs.

Theorem 1.4 (Theorem 3.18, Proposition 6.10). Suppose (S3,HK) is atoroidal and E(HK)
admits a type 2 essential annulus A.

(i) If A is of type 2-1, then Λhk is .
(ii) If A is of type 2-2, then Λhk is one of the following:

, i = 1 or 2, □ = • or ◦.

(iii) Every diagram in (i) and (ii) can be realized by some atoroidal handlebody-knot.

(a) Λhk of (S3, 51): . (b) Λhk of (S3, 64): .

Figure 2. Annulus diagrams.
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Figure 3. Rigid symmetries of (S3, 41).

In the case the characteristic diagram ΛE(HK) is of θ-shape, we show that the annulus
diagram Λhk is determined by ΛE(HK), and obtain a characterization of the simplest non-
trivial atoroidal handlebody-knot in terms of the characteristic diagram.

Theorem 1.5 (Theorems 3.14, 3.21). Suppose (S3,HK) is atoroidal.

(i) If ΛE(HK) is , then the annulus diagram Λhk is , where □ = ◦ or •.

(ii) If ΛE(HK) is , then (S3,HK) is equivalent to (S3, 41) in the handlbody-knot

table [13].

For a type 3-3 annulus A, we have the following partial classification.

Theorem 1.6 (Corollaries 3.10, 3.16, Lemma 3.7). Suppose (S3,HK) is atoroidal, and
A ⊂ E(HK) a type 3-3 essential annulus.

(i) If A has a boundary slope pair of ( p
q ,

q
p ), pq , 0, then Λhk is .

(ii) If A has a trivial slope pair, then Λhk is or .

We remark that (i) is Corollary 3.10, and (ii) follows from Theorem 1.4, Lemma 3.7
and Corollary 3.16. Also, Theorem 1.1, Theorem 1.5, and Lemma 3.15 imply that E(HK)
can admit at most two type 3-3 essential annuli, up to isotopy, and should this happen, both
would have the same boundary slope pair ( p

q , pq) with |p| greater than 1.
Applying Theorem 1.4, we compute the symmetry group for atoroidal handlebody-

knots whose exteriors contain a type 2 annulus.

Theorem 1.7 (Theorems 4.9 –4.11). Suppose (S3,HK) is atoroidal and A ⊂ E(HK) a type
2 essential annulus.

(i) If A is of type 2-1, thenMCG+(S3,HK) < Z2 andMCG(S3,HK) < Z2 × Z2.
(ii) If A is the unique type 2-2 annulus in E(HK), up to isotopy, thenMCG+(S3,HK) ≃
{1} andMCG(S3,HK) < Z2.

(iii) If A is the unique type 2-2 annulus, but not the unique annulus in E(HK), up to
isotopy, thenMCG+(S3,HK) ≃ {1} ≃ MCG(S3,HK).

(iv) If A is not the unique type 2-2 annulus, up to isotopy, thenMCG+(S3,HK) < Z2
andMCG(S3,HK) < Z2 × Z2.

Note the difference between “unique annulus” and “unique type XXX annulus”: in the
latter, annuli of other types might exist. Theorem 1.7 impliesMCG(S3, 41) ≃ Z2 × Z2 and
MCG+(S3, 41) ≃ Z2 as the reflection against the xy-plane and rotation around the z-axis
by π in Fig. 3 represent two non-trivial mapping classes. To our knowledge, (S3, 41) is the
only known example that attains the upper bound in Theorem 1.7 (iv); on the other hand,
no handlebody-knot admitting a unique type 2 annulus has been found to have a non-trivial
symmetry group so far. We speculate the following sharper statements are both true.
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Problem 1.8. Under the same assumption as in Theorem 1.7,MCG(S3,HK) ≃ Z2 × Z2 if
and only if (S3,HK) is equivalent to (S3, 41).

Problem 1.9. Under the same assumption as in Theorem 1.7, suppose A is the unique type
2 annulus in E(HK), up to isotopy. ThenMCG(S3,HK) ≃ {1}.

The rigid motions shown in Fig. 3 suggest a variant of the Nielsen realization problem.

Problem 1.10. Let (S3,HK) be a non-trivial atoroidal handlebody-knot. Then there exists a
subgroup G < Homeo(S3,HK) such that π0 : Homeo(S3,HK) →MCG(S3,HK) restricts
to an isomorphism on G.

Handlebody-knot symmetry is itself a topic of independent interest. To our knowledge,
apart from (S3, 41), the symmetry group is computed for only five other handlebody-knots
in the table [13]:

MCG(S3, 51) ≃ MCG(S3, 61) ≃ MCG(S3, 611) ≃ {1},

MCG(S3, 52) ≃ MCG+(S3, 52) ≃ Z2 × Z2, MCG(S3, 64) ≃ MCG+(S3, 64) ≃ Z2.

The first two are computed by Koda [16] using results from Motto [19] and Lee-Lee [18],
while the third follows from [23] and Theorem 1.4; the last two are computed in [24]. They
all can be realized as subgroups of the homeomorphism groups.

To prove Theorem 1.4(iii), we need to produce atoroidal handlebody-knots admitting
a type 2 essential annulus—a type 2 annulus is not necessarily essential by the defini-
tion. Sections 5 and 6 develop essentiality and atoroidality tests and present a systematical
approach, via spatial graphs, to generate atoroidal handlebody-knots admitting a type 2
essential annulus.

Our tests make use of an unknotting operation: given a type 2 annulus A ⊂ E(HK), then
the union HKA := HK∪N(A) induces a handlebody-knot (S3,HKA), where N(A) ⊂ E(HK)
is a regular neighborhood of A. The frontier of N(A) ⊂ E(HK) consists of two annuli
in ∂HKA, whose cores we denote by l+, l− ⊂ ∂HKA. Recall also that a set of disjoint
simple loops {l1, . . . , ln} in the boundary of a 3-manifold M is primitive if there exists a
set of disjoint disks {D1, . . . ,Dn} in M such that li ∩ ∂D j is a point when i = j and empty
otherwise. Our essentiality and atoroidality criteria are stated as follows.

Theorem 1.11 (Propositions 5.8 and 5.9)). Given a handlebody-knot (S3,HK), and a type
2 annulus A ⊂ E(HK).

(i) Suppose A is of type 2-1. Then (S3,HK) is atoroidal and A is essential if and only
if (S3,HKA) is trivial with {l+, l−} not primitive in E(HKA) or is non-trivial and
atoroidal.

(ii) Suppose A is of type 2-2. Then (S3,HK) is atoroidal and A is essential if and
only if (S3,HKA) is trivial with l+, l− not homotopically trivial in E(HKA) or is
non-trivial and atoroidal.

Convention. We work in the piecewise linear category. Given a subpolyhedron X of M,
we denote by X, X̊, N(X), and ∂MX the closure, the interior, a regular neighborhood, and
the frontier of X in M, respectively. The exterior E(X) of X in M is defined to be the
complement of N̊(X) if X ⊂ M is of positive codimension, and defined to be the closure of
M − X otherwise. Submanifolds of a manifold M are assumed to be proper and in general
position except in some obvious cases where submanifolds are in ∂M. A surface S other
than a disk in a 3-manifold M is essential if it is incompressible and ∂-incompressible. A
disk D ⊂ M is essential if D does not cut a 3-ball off from M. When M is a handlebody,
an essential disk is also called a meridian disk. 3-manifolds here are assumed to be ori-
entable, and given a 3-manifold M, g(∂M) denotes the sum of the genera of its boundary
components. Given an oriented loop l in a space X, [l] denotes the element represented by
l in the first integral homology group H1(X). We denote by (S3, X) an embedding of X in
the oriented 3-sphere S3.
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2. Characteristic submanifolds

Here we review Johannson’s characteristic submanifold theory [15] (see also [2]), and
introduce the characteristic diagram and annulus diagram. A completeness criteria needed
in Section 3 is also developed.

2.1. Characteristic submanifold theory.

Definition 2.1. Given a compact n-manifold M, a boundary-pattern m for M is a finite set
of compact, connected (n − 1)-submanifolds of ∂M such that the intersection of any i of
them is either empty or an (n − i)-manifold.

We denote by |m| the union of all elements of m. An i-faced disk is a disk D whose
boundary-pattern d consists of i elements with |d| = ∂D. When i ≤ 3 (resp. i = 4), (D, d)
is called a small-faced disk (resp. a square). The empty boundary-pattern is denoted by ϕ,
and the completion m of a boundary-pattern m for M is the boundary-pattern given by

m := {G ∈ m} ∪ {components of ∂M − |m|}.

Throughout the paper, an annulus (or arc) is assumed to carry the boundary-pattern ϕ.
Given a manifold (M,m) with boundary-pattern and a submanifold N ⊂ M of positive
codimension, if N ∩ ∂M meets every intersection of elements of m transversely, then N
inherits a natural boundary-pattern given by

n := {G ∩ ∂N | ∀G ∈ m}. (2.1)

Similarly, n defines a boundary-pattern for a codimension-zero submanifold N of M, pro-
vided the intersection ∂MN ∩ ∂M meets every intersection of elements in m transversely.
The boundary-pattern n for N is called the submanifold boundary-pattern; when N is of
codimension zero, we call the completion n the proper boundary-pattern for N. Through-
out the paper, a submanifold N ⊂ M is assumed to satisfy the transversality condition, and
unless otherwise specified, N carries the submanifold boundary-pattern n except that, when
N is regarded as the exterior E(W) of some submanifold W in M, the proper boundary-
pattern is assumed and denoted by m̃. We drop n from the notation when there is no risk of
confusion, but specify in the notation the proper boundary-pattern n whenever useful.

Definition 2.2. An arc γ in a surface (S , s) with boundary-pattern is essential if no com-
ponent of the exterior (E(γ), s̃) is a small-faced disk.

A surface S in a 3-manifold (M,m) with boundary-pattern is essential if no component
X of (E(S ), m̃) contains a small-faced disk that meets the frontier ∂MX in an essential arc
in ∂MX. A codimension-zero submanifold N in (M,m) is essential if its frontier ∂MN is
essential in (M,m).

In the case m = ϕ, the definition is equivalent to the one in terms of incompressibility
and ∂-incompressibility. A 3-manifold (M,m) with boundary-pattern can be I-fibered (resp.
Seifert fibered) if it admits an I-bundle (resp. Seifert bundle) structure M

π
−→ B with B

equipped with a boundary-pattern b such that

m = {π−1(G) | G ∈ b} ∪ {components of ∂M − π−1(∂B)}. (2.2)

If (M,m) is I-fibered over (B, b), a component of ∂M − π−1(∂B) is called a lid of (M,m)
(with respect to π), and any other element in m is called a side of (M,m) (with respect to
π). If (M,m) can be I-fibered over an annulus, we call it a cylindrical shell. An annulus
A in (M,m) is parallel to an element A ∈ m (resp. to another annulus A′ in (M,m)) if a
component of (E(A ∪ A), m̃) (resp. (E(A ∪ A′), m̃)) is a cylindrical shell meeting both the
regular neighborhoods of A and of A (resp. of A′). The following is a corollary of the
vertical-horizontal theorem [15, Proposition 5.6; Corollary 5.7].
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Lemma 2.3. Suppose (M,m) is I-fibered over (B, b) with χ(B) < 0. Let A be an essential
annulus in (M,m). Then the boundary ∂A is in the lid(s) L ∈ m, and there exists an isotopy
Ft : (A, ∂A)→ (M,L) with F0 = id and F1(A) the preimage of an essential loop in B.

Definition 2.4. An F -manifold W in (M,m) is a codimension-zero essential submanifold
of M such that each component of W can be I- or Seifert fibered. An F -manifold W in M
is full if there exists no component Y of E(W) such that Y ∪W is an F -manifold in (M,m).

Definition 2.5. An F -manifold W in (M,m) is complete if, for any component Y of
(E(W), m̃) and any essential square, annulus or torus S in Y , one of the following holds.

If S ∩ ∂MY , ∅, then Y can be fibered as a product I-bundle or S 1-bundle over S . (C1)
If S ∩ ∂MY = ∅, then S is parallel to a component of ∂MY in Y . (C2)

Definition 2.6. A characteristic submanifold W for (M,m) is a full, complete F -manifold
in (M,m).

2.2. Characteristic submanifiolds of atoroidal manifolds. Here M is a compact, con-
nected, orientable, irreducible, ∂-irreducible 3-manifold containing no essential tori and
equipped with the boundary-pattern ϕ. We also assume ∂M , ∅, and allow disconnected
∂M; the boundary-pattern ϕ is dropped from the notation when no confusion may arise. For
such an M, the existence and uniqueness of characteristic submanifolds are guaranteed.

Theorem 2.7 ([15, Proposition 9.4; Corollary 10.9]). There exists a characteristic subman-
ifold W for M, and two characteristic submanifolds W1,W2 for M are ambient isotopic.

Furthermore, characteristic submanifolds have the engulfing property.

Theorem 2.8 ([15, Proposition 10.8]). Let W be a characteristic submanifold for M. Then,
for every F -manifold X ⊂ M, there exists an ambient isotopy Ft such that F1(X) ⊂ W.

The following, a direct consequence of [2, Theorem 2.9.3], gives an alternative descrip-
tion of characteristic submanifolds in terms of simple manifolds.

Definition 2.9. A manifold (X, x) with boundary-pattern is simple if any component of a
characteristic submanifold of (X, x) is a regular neighborhood of a square, annulus or torus
in x.

Theorem 2.10. Given a full F -manifold W ⊂ M, W is a characteristic submanifold for
M if and only if, for every component Y ⊂ (E(W), m̃), Y either is simple or is a cylindrical
shell.

We examine topological properties of submanifolds of M that can be I- or Seifert
fibered.

Lemma 2.11. Let X be an essential codimension-zero submanifold of M. Then ∂X con-
tains a genus one component if and only if (X, x) can be Seifert fibered over an n-faced
disk with at most one exceptional fiber, and x non-empty and containing disjoint elements;
additionally, it has exactly one exceptional fiber when n = 2.

Proof. The direction “⇐” is clear. To see the direction “⇒”, note first that by the essen-
tiality of X and the boundary-pattern ϕ on M, the intersection X ∩ ∂M is non-empty and
consists of disjoint annuli A1, . . . , Am in ∂X. This implies X is a solid torus for no essential
torus exists in M. Since M is ∂-irreducible, H1(Ai) → H1(X) cannot be trivial, and there-
fore, (X, x) can be Seifert fibered over an n-faced disk (D, d) with n = 2m > 0. In the case
n = 2, by the essentaility of ∂MX, the Seifert fibering must contain at least one exceptional
fiber. □

Corollary 2.12. Let X ⊂ M be an essential codimension-zero submanifold. Then
(i) ∂X contains a genus one component if and only if ∂X is a torus.
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(ii) (X, x) can be Seifert fibered if and only if (X, x) is a Seifert fibered solid torus.
(iii) If g(∂X) = 1, then (X, x) admits an essential annulus meeting ∂MX.

Proof. (i), (ii) follow directly from Lemma 2.11 For (iii), the frontier of a regular neigh-
borhood of any element in x is an essential annulus meeting ∂MX. □

Lemma 2.13. Given an essential codimension-zero submanifold X ⊂ M, if (X, x) is I-
fibered over (B, b), then b = ϕ; that is, x consists of only lids.

Proof. By the definition (2.2), the lid(s) of (X, x) is(are) element(s) in x. On the other
hand, since the boundary pattern on M is ϕ, the submanifold boundary-pattern x consists
of disjoint elements. Thus x only contains the lid(s). □

Lemma 2.14. Let (X, x)
π
−→ (B, ϕ) be an I-bundle and g(∂X) > 1. Then every essential

annulus in (X, x) disjoint from the sides of (X, x) is parallel to a side A ∈ x if and only if B
is a pair of pants.

Proof. The direction “⇐” follows from Lemma 2.3. We prove the direction “⇒” by con-
tradiction. Observe first that since g(∂X) > 1, the Euler characteristic χ(B) is less than
or equal to −1 by the equality 2χ(B) = 2 − 2g(∂X). In particular, the base B is a closed
surface B̂ with k open disks removed such that k and the genus g(B̂) satisfy 3 − 2g(B̂) ≤ k
when B is orientable and 3 − g(B̂) ≤ k otherwise. Let l be a non-separating loop in B if B̂
is neither a 2-sphere nor a projective plane, or a loop cutting a Möbius band off from B if
B̂ is a projective space, or a loop cutting a pair of pants off from B if B̂ is a 2-sphere. Then
if B is not a pair of pants, the preimage of l is an essential annulus in X disjoint from the
sides and not parallel to any side of (X, x). □

The following is a corollary of [15, Proposition 4.6].

Lemma 2.15. Let S ⊂ M be a surface consisting of essential annuli, and X a component
of (E(S ), m̃). Then first, X contains no essential tori, and secondly, given an annulus A ⊂ X
disjoint from ∂MX, A is essential in X if and only if A is essential in M.

Theorem 2.16 (Completeness Criterion). Let W ⊂ M be a full F -manifold. Then W is
complete if and only if, for every component Y of (E(W), m̃), either Y is a cylindrical shell
or g(∂Y) > 1, Y cannot be I-fibered over a pair or pants, and every essential annulus in Y
disjoint from ∂MY is parallel to a component of ∂MY.

Proof. “⇒”: Given a component Y of (E(W), m̃), either Y admits an essential square or
annulus that meets ∂MY or it does not. By (C1) in Definition 2.5, Y is a cylindrical shell
if it is the former. Suppose it is the latter. Then, since Y contains no essential square, it
cannot be I-fibered over a pair of pants, and by Corollary 2.12(iii), g(∂Y) cannot be 1. The
rest follows directly from (C2) of Definition 2.5.

“⇐”: It is clear that the conditions (C1) and (C2) in Definition (2.5) are satisfied if Y is
a cylindrical shell. So, we suppose otherwise; by Theorem 2.10, it suffices to show that Y
is simple. Let Wy be the characteristic submanifold of Y; note that since Y is a component
of (E(W), m̃), Y ⊂ M is equipped with the proper boundary-pattern. If Wy = ∅, then Y
is simple by the definition. If Wy , ∅ but ∂YWy = ∅, then Y = Wy. Since g(∂Y) > 1,
by Corollary 2.12(i)(ii), it cannot be Seifert fibered, so Y admits an I-bundle structure,
contradicting the assumption by Lemma 2.14.

Suppose ∂YWy , ∅, and let Xy be a component of Wy, and A be a component of the
frontier ∂Y Xy. Then A is disjoint from ∂MY since Wy contains a regular neighborhood
of ∂MY by Theorem 2.8. The component A ⊂ ∂Y Xy therefore cannot be a square by the
boundary-pattern ϕ on M; neither can it be a torus because of Lemma 2.15. The component
A hence is an annulus. By the assumption, the annulus A is parallel to a component A′ of
∂MY in Y . Let P ⊂ Y be the cylindrical shell between A and A′. Then by the fullness of Wy,
we have P ⊃ Xy and A′ ⊂ Xy. On the other hand, the essentiality of Xy implies ∂PXy = ∅,



JSJ DECOMPOSITION FOR HANDLEBODY-KNOTS 9

so P = Xy. In other words, every component of Wy is a regular neighborhood of some
component in ∂MY , so Y is simple. □

2.3. Characteristic diagram. Let M be as in the previous subsection.

Definition 2.17 (Characteristic Surfaces). A characteristic surface S of M is a union of
components of ∂MW such that

• no two components of S are parallel, and
• every component of ∂MW is parallel to some component of S ,

where W ⊂ M is a characteristic submanifold.

The existence of a characteristic surface follows from the existence of a characteristic
submanifold W of M: for instance, a maximal subset of mutually non-parallel annuli in
∂MW is a characteristic surface. Characteristic surfaces of M are unique, up to isotopy, by
Theorem 2.7.

Corollary 2.18. Given two characteristic surfaces S 1, S 2 of M, there exists an ambient
isotopy Ft satisfying F1(S 1) = S 2.

Furthermore, by Theorem 2.10, every component of the exterior E(S ) := M − N̊(S ) is
either Seifert/I-fibered or simple.

Definition 2.19. Given a characteristic surface S of M, the associated characteristic dia-
gram ΛM is a graph defined as follows:

• Assign a solid node • to each component of E(S ) that can be I-or Seifert fibered.
• Assign a hollow node ◦ to each component of E(S ) that is simple.
• To each component of N(S ), assign an edge between node(s) corresponding to

component(s) of E(S ) meeting the component of N(S ).

A node in ΛM or the component X ⊂ E(S ) it represents is said to be of genus g if
g(∂X) = g. In general, ∂X is not connected, but when M ⊂ S3, we have the following.

Lemma 2.20. If M is embeddable in S3 and ∂M is connected, then the boundary ∂X of
every component X ⊂ E(S ) is connected.

Proof. By the atoroidality, S consists of only annuli, so every component of ∂X meets ∂M.
Let C be a component of ∂X. Then, by the embeddability of M in S3, C splits M into
two components, one of which, denoted by M1, contains X. Connectedness of ∂M implies
∂M1 = C, and therefore K := C ∩ ∂M = ∂M1 ∩ ∂M.

Suppose ∂X contains another component C′. Then C′∩C = ∅ implies C′∩∂M ⊂ ∂M−K,
contradicting X ⊂ M1 since ∂M − K ⊂ M − M1. Therefore ∂X = C is connected. □

Two characteristic diagrams are isomorphic if there is a graph isomorphism between
them sending solid (resp. hollow) nodes to solid (resp. hollow) nodes of the same genus.
By Corollary 2.18, the characteristic diagram ΛM of M is determined by M, up to isomor-
phism. We say an annulus A ⊂ M is characteristic if it is isotopic to a component of a
characteristic surface S of M.

2.4. Classification and annulus diagram. Throughout the subsection, M is a compact
∂-irreducible, atoroidal 3-submanifold in S3 with connected ∂M and g(∂M) = 2, and ΛM

is its characteristic diagram.

Proposition 2.21.
(i) ΛM has exactly one genus two node, and all the other nodes are of genus one.

(ii) Genus one nodes in ΛM are all solid, and each corresponds to a Seifert-fibered
solid torus that is not a cylindrical shell.

(iii) No loop in ΛM contains a solid node.
(iv) All edges in ΛM are adjacent to the genus two node.
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(v) If the genus two node in ΛM is solid, then it corresponds to an I-bundle over a pair
of pants or a Möbius band or Klein bottle with an open disk removed.

(vi) If the genus two node in ΛM is solid, then ΛE(HK) cannot be a bigon.
(vii) Every node in ΛM is at most trivalent.

Proof. Let W be a characteristic submanifold of M and S a corresponding characteris-
tic surface of M. Suppose the complement E(S ) := M − N̊(S ) contains n components
X1, . . . , Xn. Then the equality of Euler characteristic

−2 = 2 − 2g
(
∂M
)
= χ
(
∂M
)
=

n∑
i=1

χ(∂Xi) =
n∑

i=1

(
2 − 2g(∂Xi)

)
implies

n∑
i=1

(
g(∂Xi) − 1

)
= 1.

In particular, there exists exactly one genus two component in E(S ), and other components
are of genus one and hence Seifert-fibered by Lemma 2.11 with none of them a cylindrical
shell by the definition of S . This proves (i) and (ii).

We prove (iii) by contradiction. Suppose there is a loop with a solid node in ΛM , and
denote by A the annulus corresponding to the loop, and by X ⊂ E(S ) the component
corresponding to the solid node. Then the union of X and N(A) is either Seifert-fibered or
I-fibered, contradicting the fullness of W.

To see (iv), it suffices to show there is no edge connecting two genus one solid nodes,
given (iii). Suppose such an edge exists, and let X1, X2 ⊂ E(S ) be the Seifert components
corresponding to the solid nodes. Let A be the annulus corresponding to the edge. Then
the union X1 ∪ N(A) ∪ X2 is Seifert fibered, contradicting the fullness of W ⊂ M.

For (v), we observe first that the component U in E(S ) corresponding to a genus two
solid node cannot be Seifert fibered by Lemma 2.11, and hence is I-fibered. Since the
lid(s) of U has(have) Euler characteristic −2, the base is either a pair of pants or a Möbius
band, torus, or Klein bottle with one open disk removed. Suppose the base is a torus with
one open disk removed. Then ΛM is by (iv). Denote by A the annulus corresponding
to the edge, and let V be the solid torus corresponding to the genus one node. Choose
generators of H1(A),H1(V) so the homomorphism H1(A) → H1(V) can be identified with
Z

m
−→ Z,m ≥ 0. Since A is essential, we have m , 0, 1. The short exact sequence

0→ H1(A)
(m,0)
−−−→ H1(V) ⊕ H1(U)→ H1(M)→ 0

then implies H1(M) ≃ Z ⊕ Z ⊕ Zm, contradicting M ⊂ S3.
We prove (vi) by contradiction. Suppose ΛM is a bigon, and let U (resp. V) be the

components of E(S ) corresponding to the genus two (resp. genus one) node, and A1, A2
the annuli corresponding to the edges. Then U is an admissible I-bundle over a Möbius
band with one open disk removed by (v). Choose generators of H1(Ai), H1(V),H1(U) so
that H1(Ai) ≃ Z

m
−→ Z ≃ H1(V), i = 1, 2, and

H1(A1) ≃ Z

(
1
0

)
−−→ Z ⊕ Z ≃ H1(U) and H1(A2) ≃ Z

(
±1
2

)
−−−→ Z ⊕ Z ≃ H1(U).

Then by the exact sequence

0→ H1(A1 ∪ A2)→ H1(V) ⊕ H1(U)→ H1(M)→ H̃1(A1 ∪ A2)→ 0,

either (m, 0, 1) or (0, 0, 1) in H1(V) ⊕ H1(U) induces an element of order 2 in H1(M),
contradicting M ⊂ S3.

Lastly, in view of (iv), to prove (vii), it suffices to consider the genus two node. The
case with a solid genus two node follows from (v), so we assume the genus two node is
hollow, and Y ⊂ E(S ) is the corresponding genus two component. Suppose ∂MY has more
than 3 components. Then there exists an annular component A in ∂Y − ∂MY . Let A1, A2 be
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the components of ∂MY that meet ∂A. Suppose the frontier A′ of a regular neighborhood
of A1 ∪ A ∪ A2 in Y is inessential, then there is an essential square in Y , contradicting the
completeness of the characteristic submanifold W ⊂ M; on the other hand, since Y is of
genus two, the annulus A′ is not parallel to any component of ∂MY; thus by the simpleness
of Y , neither can A′ be essential. □

Definition 2.22. We say the characteristic diagram of M is of type (e, l, b,□) if ΛM has e
edges, l loops, and b bigons, and □ = • (resp. ◦) if the genus two node in ΛM is solid (resp.
hollow).

Theorem 2.23. Characteristic diagrams of M are classified, up to isomorphism, by their
types (e, l, b,□) into 13 classes in the table in Fig. 1.

Proof. Note first characteristic diagrams of the same type are isomorphic. By Proposition
2.21(iv), (vii), we have 1 ≤ e ≤ 3, l = 0 or 1, and b = 0, 1, 3. In addition, (1, 1, 0, •),
(2, 1, 0, •) are ruled out by (iii) and (2, 0, 1, •) by (vi) in Proposition 2.21. □

Recall that a handlebody-knot (S3,HK) is irreducible if E(HK) is ∂-irreducible.

Lemma 2.24. Suppose (S3,HK) is reducible. Then it is trivial if and only if it is atoroidal.

Proof. Observe first that there exists a separating essential disk D ⊂ E(HK). The disk
D splits E(HK) into two knot exteriors E(K1), E(K2), for some knots K1,K2 in S3. Then
(S3,HK) is trivial if and only if both K1, K2 are trivial and therefore if and only if (S3,HK)
is atoroidal. □

Corollary 2.25. Suppose (S3,HK) is atoroidal. Then (S3,HK) is non-trivial if and only if
(S3,HK) is irreducible.

Proof. “⇐” is straightforward, while “⇒” follows from Lemma 2.24. □

Definition 2.26 (Annulus Diagram). Let (S3,HK) be a non-trivial, atoroidal handlebody-
knot. Then the annulus diagram Λhk of (S3,HK) is the characteristic diagram ΛE(HK) of
E(HK) together with a labeling hi,ki, l(r1, r2), l0 or em for each edge, based on the type of
the annulus the edge represents, as defined in Introduction.

3. Classification

Throughout the section, (S3,HK) is a non-trivial atoroidal handlebody-knot. We exam-
ine here combinations of non-separating annuli of various types in E(HK). Let A ⊂ E(HK)
be a non-separating essential annulus, and HKA be the union HK ∪ N(A). The frontier of
N(A) in E(HK) are two annuli A+, A−, whose cores we denote by l+, l−, respectively. We
orient l+, l− so as to satisfy [l+] = [l−] ∈ H1(N(A)). In the case A is of type 2-2, one of
l+, l−, say l−, is separating in ∂HKA. We denote the components of ∂A by l1, l2 if A is of
type 3-3, and by lA, l if A is of type 2 with lA the one bounding a disk in HK. In addition,
by “unique”, we understand “unique, up to isotopy”, and given a group G, we denote by
⟨x1, . . . , xn⟩, xi ∈ G, the subgroup generated by x1, . . . , xn.

3.1. Annulus configuration. Recall first a result on type 4-1 annuli [7, Lemma 3.7], [25,
Lemma 2.2].

Lemma 3.1. Let Â ⊂ E(HK) be a type 4-1 annulus. Then no non-separating essential
annulus in E(HK) disjoint from Â exists.

Given a type 3-3 annulus A, we fix an oriented diskDA ⊂ HK disjoint from ∂A. Recall
the definition of meridional basis from [24].

Definition 3.2. Suppose A is of type 3-3 with a slope pair ( p
q , pq). Then a meridional basis

of H1(E(HKA)) is a basis given by the homology classes of the boundary of two oriented,
disjoint, non-parallel meridian disks D1,D2 ⊂ HKA disjoint fromDA with [∂D1]− [∂D2] =
[∂DA] ∈ H1(E(HKA)).
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Lemma 3.3. Suppose A is of type 3-3 with a slope pair ( p
q , pq) and {b1, b2} a meridional

basis of H1(E(HKA)). If [l+] = (p1, p2) in terms of {b1, b2}, then [l−] = (p1 ∓ 1, p2 ± 1) and
p1 + p2 = ±p.

Proof. Denote by V1,V2 the solid tori in HK − N̊(DA), and by U the solid torus V1 ∪ V2 ∪

N(A). Then l+, l− are two parallel curves in ∂U, and they separate the two disk components
of the frontier ∂HKN(DA) ⊂ ∂U, so [l+] − [l−] = ±[∂DA] ∈ H1(E(HKA)) and therefore the
first assertion. Consider the short exact sequence

0→ ⟨[∂DA]⟩ → H1(E(HKA))→ H1(E(U)) ≃ ⟨b1 = b2⟩ → 0,

and note that the slopes of l+, l− ⊂ ∂U are p
q with respect to (S3,U). Hence p1 + p2 =

±p. □

Lemma 3.4. Suppose A is of type 3-3 with a boundary slope pair (r1, r2).
If (r1, r2) = ( p

q ,
q
p ), pq , 0, then {[l+], [l−]} is a basis of H1(E(HKA)).

If (r1, r2) = ( p
q , pq), pq , 0, then ⟨[l+], [l−]⟩ is a subgroup of H1(E(HKA)) with index

|p|.
If (r1, r2) = (0, 0), then ⟨[l+], [l−]⟩ is a rank one subgroup of H1(E(HKA)).

Proof. Denote by V1,V2 the solid tori in HK− N̊(DA), and by U the union V1 ∪V2 ∪N(A).
Suppose (r1, r2) = ( p

q ,
q
p ), |p|, |q| > 1. Then U is a Seifert fibered space with two

exceptional fibers, and therefore the exterior W := E(U) of U in S3 is a solid torus, whose
core is a (p, q)-torus knot in S3. Since l+, l− are parallel to the core of W in W by [21],
[l+] = [l−] generates H1(W). On the other hand, we have E(HKA) = W − N(DA); that is,
E(HKA) is obtained by removing a regular neighborhood of an arc in W dual to DA, so
H1(W, E(HKA)) = 0. This together with H2(W) = 0 implies the short exact sequence

0→ H2(W, E(HKA))→ H1(E(HKA))→ H1(W)→ 0

given by the inclusion E(HKA) ↪→ W. Because of the facts that ⟨[DA]⟩ = H2(W, E(HKA)),
and ±[∂DA] = [l+]− [l−], and [l+] = [l−] generates H1(W), we have {[l+], [l−]} is a basis of
H1(E(HKA)).

Suppose (r1, r2) = ( p
q , pq), q , 0. Then by Lemma 3.3, [l+] = (p1, p2) and [l−] =

(p1 ∓ 1, p2 ± 1) with p1 + p2 = p in terms of a meridional basis of H1(E(HKA)), and hence
the determinant ∣∣∣∣∣∣ p1 p2

p1 ∓ 1 p2 ± 1

∣∣∣∣∣∣ = ±(p1 + p2) = ±p.

When p , 0, ⟨[l+], [l−]⟩ < H1(E(HKA)) is a subgroup of rank two with index |p|. When
p = 0, since [l+]− [l−] = ∓(1,−1), at least one of [l+], [l−] ∈ H1(E(HKA)) is non-trivial, so
⟨[l+], [l−]⟩ is a subgroup isomorphic to Z. □

Corollary 3.5. Suppose A is of type 3-3 with a non-trivial slope pair, and A′ is a non-
separating annulus disjoint from A. Then ∂A, ∂A′ are parallel in ∂HK. In particular, A′ is
of type 3-3 with the same slope pair.

Proof. Choose a regular neighborhood N(A) with N(A) ∩ A′ = ∅. Let P be the planar
surface ∂E(HKA) − Å+ ∪ Å−. Denote by l1±, l2± the components of ∂A± and by l′1, l

′
2 the

components of ∂A′. Since l′1, l
′
2 ⊂ P, one of l′1, l

′
2 is parallel to one of l1±, l2±; it may be

assumed that l′1 is parallel to l1+. By Lemma 3.4, [l+] , ±[l−] and none of [l+], [l−] is trivial
in H1(E(HKA)). These, together with [l′1] = [l′2] ∈ H1(E(HKA)), imply that l′2 is parallel to
either l2+ or l1+. The latter is impossible since l′1, l

′
2 are not parallel in ∂HK and hence not

parallel in P. Therefore ∂A′ is parallel to ∂A+ and hence to ∂A. □

There is an analog of Lemma 3.4 for type 2 annuli.

Lemma 3.6. If A is of type 2-1, then {[l+], [l−]} is a basis of H1(E(HKA)). If A is of type
2-2, then [l−] is trivial and the quotient H1(E(HKA))/⟨[l+]⟩ ≃ Z.
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Proof. It follows from the fact that l+, l− bound non-parallel, non-separating meridian disks
in HKA if A is of type 2-1, and l− (resp. l+) bounds a separating (resp. non-separating) disk
in HKA if A is of type 2-2. □

Lemma 3.7. Suppose A is of type 3-3 with a trivial slope pair, and A′ is a type 3-3 annulus
disjoint from A. Then A, A′ are parallel in E(HK).

Proof. Suppose ∂A and ∂A′ are parallel in ∂HK. Let B1, B2 ⊂ ∂HK be the annuli cut off
by ∂A, ∂A′. Then A ∪ A′ ∪ B1 ∪ B2 bounds a solid torus V in E(HK) by the atoroidality of
(S3,HK). Since A has a trivial slope pair, the linking number ℓk(l1, l2) is 0 and hence the
core of A is a preferred longitude with respect to (S3,V); this implies H1(A) → H1(V) is
an isomorphism, so A, A′ are parallel through V .

Suppose ∂A and ∂A′ are not parallel. Let l′1, l
′
2 be the components of ∂A′. Then since

∂HK−∂A is a four-times punctured sphere, it may be assumed that l1, l′1 are parallel in ∂HK,
and l2, l′2 are not. Let B1 ⊂ ∂HK be the annulus cut off by l1.l′1. Then B1 ∪ A ∪ A′ induces
an annulus A′′ ⊂ E(HK) disjoint from A ∪ A′ with ∂A′′ parallel to l2, l′2. Let B2, B3 ⊂ ∂HK
be the annuli cut off by ∂A′′ and l2 ∪ l′2. Then the torus B1 ∪ B2 ∪ B3 ∪ A∪ A′ ∪ A′′ bounds
a solid torus W in E(HK) since (S3,HK) is atoroidal.

Let P1, P2 ⊂ ∂HK be the pairs of pants cut off by B1 ∪ B2 ∪ B3. Then P1, P2 can be
regarded as a planar surface in E(W). By [17, Lemma 3.5], P1, P2 are inessential in E(W).

Case 1: P1 is compressible. Let D be a compressing disk of P1 that minimizes

#{D ∩ P2 | D a compressing disk of P1}.

Subcase 1.1: D∩P2 = ∅. The disk D is either in HK or in E(HK). Since ∂D is essential
in P1, ∂D is essential in ∂HK, so D is a compressing disk of ∂HK in S3. On the other hand,
∂A ∪ ∂A′ ∪ ∂A′′ contains three mutually non-parallel simple loops in ∂HK that bound no
disks in HK, so every meridian disk in HK meets ∂A ∪ ∂A′ ∪ ∂A′′, and hence D ⊂ E(HK),
but this contradicts the fact that (S3,HK) is irreducible.

Subcase 1.2: D ∩ P2 , ∅. Note first that D ∩ P2 only contains circles. Let D′ ⊂ D be
the disk cut off by a circle in D ∩ P2 innermost in D. By the minimality ∂D′ is essential in
P2; hence D′ is a compressing disk of ∂HK in S3, a contradiction as in Subcase 1.1.

The same argument applies to the case where P2 is compressible.
Case 2: P1, P2 are incompressible. First observe that, since none of the components

of ∂A ∪ ∂A′ ∪ ∂A′′ is separating in ∂HK, P1 (resp. P2) meets Bi for each i. Let D be a
∂-compressing disk of P1 that minimizes

#{D ∩ P2 | D a ∂-compressing disk of P1}.

Then by the minimality and incompressibility of P2, D ∩ P2 is either empty or some arcs.
Subcase 2.1: D ∩ P2 = ∅. Denote by γ the arc D ∩ E(W), and note that γ ⊂ Bu := B1 ∪

B2 ∪ B3 if D ⊂ HK; otherwise γ ⊂ Au := A∪ A′ ∪ A′′. In addition, γ is inessential in either
case: in the former, it follows from the fact that none of Bi, i = 1, 2, 3, has two boundary
components lying in P1, whereas in the latter, it results from the ∂-incompressibility of
A, A′, A′′.

Let D′ be the disk cut off by γ from Bu (resp. Au). Then D∪D′ induces a disk D′′ disjoint
from Bu (resp. Au). Since D is a ∂-compressing disk of P1 in E(W), ∂D′′ is essential in P1,
contradicting the incompressibility of P1.

Subcase 2.2: D ∩ P2 , ∅. Let D′ ⊂ D be a disk cut off by an arc in D ∩ P2 outermost
in D. Denote by γ the arc D′ ∩ ∂W; as with Subcase 2.1, γ is either in Au or in Bu, and
inessential whichever way. Let D′′ be the disk cut off by γ from Au or Bu. Then D′ ∪ D′′

induces a disk D′′′ disjoint from P1 with ∂D′′ ⊂ P2. By the minimality of #D ∩ P2, ∂D′′′

is essential in P2, contradicting the incompressibility of P2. □

Lemma 3.8. If {[l+], [l−]} is a basis of H1(E(HKA)), then A is the unique annulus in E(HK).
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Proof. By Theorem 2.8, it suffices to show that N(A) ⊂ E(HK) is a characteristic submani-
fold of (E(HK), ϕ). To see this, we employ Theorem 2.16. Since N(A) is a full F -manifold
of (E(HK), ϕ), it amounts to showing that every essential annulus A′ in E(HKA) disjoint
from A+, A− is parallel to A+, A−, where E(HKA) ⊂ (E(HK), ϕ) is endowed with the proper
boundary pattern. Denote by l′ a core of A′.

Case 1: A′ is non-separating in E(HK). Since {[l+], [l−]} is a basis of H1(E(HKA)), the
argument for Corollary 3.5 applies and thus ∂A′ is parallel to ∂A+ or ∂A− in ∂E(HKA); it
may be assumed that it is the former, and denote by B1, B2 the annuli cut off by ∂A+, ∂A′

from ∂E(HKA). Since every compressing disk of a torus in E(HKA) can be isotoped away
from A by the essentiality of A, we have E(HKA) is atoroidal. Particularly, A+∪A′∪B1∪B2
bounds a solid torus W in E(HKA). Let X be the closure of the complement E(HKA) −W
and lw a core of W, and orient l′, lw so that [l′] = [l+] and [l′] = k[lw], k > 0, in H1(W).
Consider the short exact sequence

0→ H1(A′)
(ι1,ι2)
−−−−→ H1(W) ⊕ H1(X)

ι3−ι4
−−−→ H1(E(HKA))→ 0,

where ιi, i = 1, 2, 3, 4, are induced by the inclusions. Note that ι4 sends [l′] to [l+] and [l−]
to itself, and ι1 sends [l′] to k[lw]. Since {[l+], [l−]} is a basis of H1(E(HKA)), the image of
[lw] under ι3 is m[l+] + n[l−], for some m, n ∈ Z. Then the identity ι3 ◦ ι1 = ι4 ◦ ι2 gives us
km[l+] + kn[l−] = [l+], and therefore n = 0, k = m = 1. This implies H1(A′)

ι1
−→ H1(W) is

an isomorphism, and hence A′ is parallel to A+ through W in E(HKA).
Case 2: A′ is separating in E(HK). Since the components of ∂A′ are parallel and do

not separate the components of ∂A in ∂HK, the components of ∂A′ are also parallel in
∂E(HKA). Let B ⊂ ∂E(HKA) be the annulus cut off by ∂A′. Then B ∪ A′ bounds a solid
torus W in E(HKA). Set X := E(HKA) −W, and consider the short exact sequence

0→ H1(A′)
(ι1,ι2)
−−−−→ H1(W) ⊕ H1(X)

ι3−ι4
−−−→ H1(E(HKA))→ 0,

where ιi, i = 1, 2, 3, 4, are induced by the inclusions. Let lw be a core of W. Then one can
orient l′, lw so that [l′] = k[lw] with k > 1 by the essentiality of A′. Since [l+], [l−] ∈ H1(X)
and H2(E(HKA), X) = 0, we have the homomorphism ι4 : H1(X) → H1(E(HKA)) is an
isomorphism and ⟨[l+], [l−]⟩ = H1(X). Let the image of [lw] under ι3 be m[l+] + n[l−],
and the image of [l′] under ι2 be m′[l+] + n′[l−], for some m, n,m′, n′ ∈ Z. Then x =
([lw],m[l+] + n[l−]) ∈ H1(W) ⊕ H1(X) is in the kernel of ι3 − ι4, and therefore, there exists
c ∈ Z such that the image of c[l′] under (ι1, ι2) is x; in other words, we have the equality(

kc[lw],m′c[l+] + n′c[l−]
)
=
(
[lw],m[l+] + n[l−]

)
∈ H1(W) ⊕ H1(X),

but this implies k = c = 1,m = m′, n = n′, contradicting k > 1. □

Lemma 3.9. The pair {[l+], [l−]} forms a basis of H1(E(HKA)) if and only if A is of type
2-1 or of type 3-3 with the slope pair ( p

q ,
q
p ), pq , 0.

Proof. “⇐” follows from Lemmas 3.6 and 3.4. “⇒” also results from the same lemmas as
{[l+], [l−]} can form a basis of H1(E(HKA)) only if A is of type 2 or of type 3-3. □

Lemmas 3.8 and 3.9 give us the following uniqueness result.

Corollary 3.10. If A is of type 2-1 or of type 3-3 with the slope pair ( p
q ,

q
p ), pq , 0, then A

is the unique annulus in E(HK).

Lemma 3.11. Let A, A′ be two disjoint type 2-2 annuli in E(HK). If ∂A, ∂A′ are parallel
in ∂HK, then A, A′ are parallel in E(HK).

Proof. Let B1, B2 ⊂ ∂HK be the annuli cut off by ∂A, ∂A′. Then B1 ∪ B2 ∪ A ∪ A′ bounds
a solid torus W in E(HK) by the atoroidality of (S3,HK). Observe that lA is a longitude of
(S3,W) since it bounds a disk in HK. This implies H1(A) → H1(W) is an isomorphism,
and hence A, A′ are parallel through W in E(HK). □
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Corollary 3.12. Let A, A′, A′′ be three disjoint type 2-2 annuli in E(HK). Then at least
two of them are parallel in E(HK).

Proof. Let l′ ⊂ ∂A′, l′′ ⊂ ∂A′′ be the components that do not bound a disk in HK, and
lA′ ⊂ ∂A′, lA′′ ⊂ ∂A′′ the other components. Then lA, lA′ , lA′′ are parallel in ∂HK by the
definition of a type 2-2 annulus.

Suppose A, A′ are not parallel in E(HK). Then l, l′ are longitudes of the solid tori V,V ′

in HK−Ů, where U ⊂ HK is the 3-ball cut off by the disks bounded by lA, lA′ . In particular,
l′′ is parallel to either l or l′, so by Lemma 3.11, A′′ is parallel to A or A′. □

Lemma 3.13. Suppose A is of type 2-2. Then there exists another type 2-2 annulus A′

disjoint from and non-parallel to A if and only if there exists a type 3-3 annulus A′′ with a
trivial slope pair disjoint from A.

Proof. “⇒”: Let lA′ ⊂ ∂A′ be the component that bounds a disk in HK and l′ ⊂ ∂A′

another component. Then lA, lA′ are parallel and bound an annulus B in ∂HK, and l, l′ are
non-parallel in ∂HK by Lemma 3.11. The union A ∪ A′ ∪ B induces a type 3-3 annulus,
which has a trivial slope pair since ℓk(l, l′) = ℓk(lA, lA′ ) = 0.

“⇐”: Let l′′1 , l
′′
2 be components of ∂A′′. Then one of them, say l′′1 , is parallel to l in

∂HK. Let B ⊂ ∂HK be the annulus cut off by l, l′′1 . Then the union A ∪ B ∪ A′′ induces a
type 2-2 annulus disjoint from and non-parallel to A with boundary components parallel to
lA, l′′2 . □

3.2. Classification theorems. Let ΛE(HK) be the characteristic diagram of E(HK), and
Λhk the annulus diagram of (S3,HK).

Theorem 3.14 (θ-shape characteristic diagram). IfΛE(HK) is , thenΛhk is ,

□ = • or ◦, and the Seifert fibered solid torus has no exceptional fiber.

Proof. Let A, A′, A′′ be the non-separating annuli corresponding to the edges of ΛE(HK).
None of them is of type 2-1 by Corollary 3.10 or of type 3-3 with a non-trivial slope pair
by Corollaries 3.10 and 3.5 since no two of them separate E(HK). Therefore, A, A′, A′′ are
of type 2-2 or of type 3-3 with a trivial slope. By Lemma 3.7, at most one of them is of type

3-3, whereas by Corollary 3.12, at most two of them are of type 2-2, so Λhk is .

Let W be the component corresponding to the genus one node, and A the type 3-3
annulus. If a core of A is a (p, q)-curve with respect to (S3,W), then the linking number
of the components of ∂A in S3 is ±pq. Since A has a trivial slope pair, pq = 0, and by the
essentiality of A, q , 0 and therefore (p, q) = (0,±1). Thus W has no exceptional fiber. □

Lemma 3.15. The exterior E(HK) contains a non-characteristic, non-separating annulus
A if and only if ΛE(HK) is . In addition, A is of type 3-3 with a boundary slope pair
( p

q , pq), pq , 0, and is the unique non-separating annulus in E(HK).

Proof. “⇐”: Let X be the component corresponding to the genus two node. By Proposition
2.21, X is I-fibered over a Klein bottle B with an open disk removed. Any non-separating
simple loop l in B induces an essential annulus A in X and hence in E(HK) by Lemma
2.15. Since l cannot be isotoped away from essential separating loops that are not parallel
to ∂B in B by [8, Theorem 3.3], A is not characteristic.

“⇒”: By Theorem 2.8 and Lemma 2.15, we may assume A is an essential annulus
in a component X of a characteristic submanifold of E(HK) with A non-parallel to any
component of ∂E(HK)X. By Proposition 2.21, X is either an I-bundle with χ(∂X) < 0 or a
Seifert fibered solid torus. The latter is impossible because #∂E(HK)X ≤ 3 by Theorem 2.23
and X has no exceptional fiber by Theorem 3.14 when #∂E(HK)X = 3.
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Therefore, X is an I-bundle over a Möbius band or Klein bottle with an open disk re-
moved; in particular, ΛE(HK) is or . The former is ruled out by Proposition 2.21(vi),
so X is an I-bundle over a Klein bottle with an opened disk removed B, and ΛE(HK) is .

By [8, Theorem 3.3], every two non-separating simple loops in a Klein bottle with an
opened disk removed are isotopic, so A is the unique non-separating annulus in E(HK).
Now, to determine the type of A, first note that the annulus A′ := ∂E(HK)X ⊂ E(HK) is an
annulus non-isotopic to A, so A is not of type 2-1 or of type 3-3 with a slope pair ( p

q ,
q
p ),

pq , 0, by Corollary 3.10. Denote by X′ the solid torus E(HK) − X and observe that, by
the essentiality of A′ = X ∩ X′ ⊂ E(HK), the homomorphism

H1(A′) ≃ Z
k
−→ Z ≃ H1(X′)

induced by the inclusion neither is trivial nor is an isomorphism, namely k , 0,±1. On the
other hand, the decomposition E(HKA) = (X − N̊(A)) ∪ X′ gives us the isomorphism:

H1(E(HKA)) ≃ ⟨v+, v−, u⟩/(v+ + v− = ±ku), (3.1)

where u is a generator of H1(X′), v± = [l±], and l± are the cores of the frontier ∂E(HK)N(A).
If A is of type 2-2, then v− is trivial in H1(E(HKA)) by Lemma 3.6, so H1(E(HKA)) ≃ Z, a
contradiction. If A is of type 3-3 with a trivial slope pair, then at least one of v+, v− is not
a generator by Lemma 3.3, contradicting (3.1), as both {v+, u} and {v−, u} form a basis of
H1(E(HKA)). Therefore A is of type 3-3 with a slope pair ( p

q , pq), pq , 0. □

Corollary 3.16. If A is of type 2 or of type 3-3 with a trivial slope pair or a slope pair
( p

q ,
q
p ), pq , 0, then A is characteristic.

Corollary 3.17. Up to isotopy, non-separating annuli in E(HK) are mutually disjoint.

Theorem 3.18 (Classification Theorem).

(i) If A is of type 2-1, then Λhk is .

(ii) If A is of type 2-2, then Λhk is one of the following:

, i = 1 or 2, □ = • or ◦.

Proof. (i) follows from Corollary 3.10. To see (ii), let S be a characteristic surface of
E(HK). By Theorem 2.23, S consists of at most three annuli, one of which is A by Corol-
lary 3.16.

Case 1: #S = 1. This implies Λhk is .
Case 2: #S = 2. Let A′ ∈ S be the other annulus. Then by Corollaries 3.10 and 3.5, it is

not of type 2-1 or of type 3-3 with a non-trivial slope pair. By Lemma 3.13 and Corollary
3.16, it is not of type 2-2 or of type 3-3 with a trivial slope pair since #S = 2. Therefore A′

is separating, and by Lemma 3.1, it is not of type 4-1, so Λhk is , i = 1 or 2.
Case 3: #S = 3. Let A′, A′′ be the other two annuli. Then at least one of them, say

A′, is non-separating by Theorem 2.23. On the other hand, A′ cannot be of type 2-1 or of
type 3-3 with a non-trivial slope by Corollaries 3.10 and 3.5, so A′ is of type 2-2 or of type
3-3 with a trivial slope pair; this implies that A′′ is of type 3-3 with a trivial slope pair or

of type 2-2, respectively, by Lemma 3.13 and Corollary 3.16. Therefore Λhk is ,

□ = • or ◦. □

We now give a characterization of (S3, 41) in terms of characteristic diagrams.

Lemma 3.19. Suppose the annulus diagrams of the handlebody-knots (S3,HK), (S3, H̃K)

are both . Then (S3,HK) and (S3, H̃K) are equivalent.
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DA0

U

Figure 4. Decompose E(HK) and HK.

Proof. Let A (resp. Ã) and A0, A1 (resp. Ã0, Ã1) be the type 3-3 annulus and the two type
2-2 annuli in E(HK) (resp. E(H̃K)), respectively, and denote by lA0 , lA1 (resp. l̃A0 , l̃A1 ) the
boundary components of A0, A1 (resp. Ã0, Ã1) that bound disks DA0 ,DA1 (resp. DÃ0

,DÃ1
)

in HK (resp. H̃K), respectively. Also, let U ⊂ E(HK), Ũ ⊂ E(H̃K) be the I-bundles and
W, W̃ their exteriors in E(HK), E(H̃K), respectively. Note that W (resp. W̃) is a Seifert
fibered solid torus whose frontier in E(HK) (resp. E(H̃K)) is the union A ∪ A0 ∪ A1 (resp.
Ã ∪ Ã0 ∪ Ã1), and lA0 , lA1 (resp. l̃A0 , l̃A1 ) lie in different lids of U (resp. Ũ); see Fig. 4.

To show (S3,HK), (S3, H̃K) are equivalent, we first construct a homeomorphism

f0 : (U, A, A0, A1, lA0 , lA1 )→ (Ũ, Ã, Ã0, Ã1, lÃ0
, lÃ1

).

To do this, we identify U, Ũ with P× I, P̃× I, respectively, where P, P̃ are pairs of pants. Let
C,C0,C1 (resp. C̃, C̃0, C̃1) be the components of ∂P (resp. ∂P̃), and identify (C0× I,C0×0)
and (C1 × I,C1 × 1) with (A0, lA0 ) and (A1, lA1 ) (resp. (C̃0 × I, C̃0 × 0) and (C̃1 × I, C̃1 × 1)
with (Ã0, l̃A0 ) and (Ã1, l̃A1 )), respectively.

It is not difficult to see there exist homeomorphisms gi : P × i → P̃ × i that map
(C × i,C0 × i,C1 × i) to (C̃ × i, C̃0 × i, C̃1 × i), i = 0, 1. On the other hand, since the mapping
class group of a three-times punctured sphere is given by the permutation group on the
punctures, g0, g1 can be extended to f0.

Now, let V,V0,V1 ⊂ HK (resp. Ṽ , Ṽ0, Ṽ1 ⊂ H̃K) be the 3-ball and two solid tori cut off
by DA0 ,DA1 (resp. DÃ0

,DÃ1
) such that DAi , P × i ⊂ ∂Vi (resp. DÃi

, P̃ × i ⊂ ∂Ṽi), i = 0, 1.
Then the exterior E(V ∪W) (resp. E(Ṽ ∪ W̃)) of V ∪W (resp. Ṽ ∪ W̃) in S3 is U ∪ V0 ∪ V1
(resp. Ũ ∪ Ṽ0 ∪ Ṽ1); see Fig. 4, and f0 can be extended to a homeomorphism

f1 : (E(V ∪W),U,V0,V1)→ (E(Ṽ ∪ W̃), Ũ, Ṽ0, Ṽ1)

as follows. Extend first the restriction f0|P×i to a homeomorphism

f̄0 : ∂(V0 ∪ V1)→ ∂(Ṽ0 ∪ Ṽ1)

that sends a meridian of Vi to a meridian of Ṽi, i = 0, 1; this can be done because ∂Vi− P̊× i
consists of an annulus and the diskDAi . Then extend f̄0 to a homeomorphism from V0∪V1
to Ṽ0 ∪ Ṽ1, which, together with f0, induces f1.

Observe that E(V ∪W) (resp. E(Ṽ ∪ W̃)) meets W (resp. W̃) at an annulus A♭ (resp. Ã♭)
Thus we can extend the restriction f1|A♭ to a homeomorphism

f̄1 : (W, A♭)→ (W̃, Ã♭).

Gluing f̄1 and f1 together yields a homeomorphism

f2 : (E(V),U,V1,V2,W)→ (E(Ṽ), Ũ, Ṽ1, Ṽ2, W̃).
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Since V ⊂ HK, Ṽ ⊂ H̃K are 3-balls, by the Alexander trick, f2|∂V can be extended to a
homeomorphism

f̄2 : (V, ∂V)→ (Ṽ , ∂Ṽ).

Gluing f̄2 and f2 together yields a homeomorphism

(S3,U,W,V1,V2,V)→ (S3, Ũ, W̃, Ṽ1, Ṽ2, Ṽ),

and hence an equivalence between (S3,HK) and (S3, H̃K). □

(a) (S3, 41).

W
A′

A′′

A

(b) Annuli in E(41).

A′
A′′

A

(c) E(41) − W̊.

A′

A′′

Lids

A

(d) I-bundle over a twice-punctured disk.

Figure 5. Annulus diagram of (S3, 41).

Lemma 3.20. The annulus diagram of (S3, 41) is .

Proof. Recall that (S3, 41) is equivalent to the handlebody-knot in Fig. 5a, and its exterior
admits three annuli A, A′, A′′ as depicted in Fig. 5b, where A is of type 3-3, and A′, A′′ are
of type 2-2. By Corollary 3.16, they are characteristic and hence the characteristic diagram
of E(41) is , □ = ◦ or •. Let W ⊂ E(HK) be the Seifert fibered solid torus cut off
by A ∪ A′ ∪ A′′ (Fig. 5b). Then as shown in Figs. 5c and 5d, the exterior of W ⊂ E(HK)
together with A ∪ A′ ∪ A′′ is an I-bundle over a pair of pants, and hence the assertion. □

Theorem 3.21. The characteristic diagram ΛE(HK) is if and only if (S3,HK) is equiv-

alent to (S3, 41).

Proof. This follows from Theorem 3.14 and Lemmas 3.19 and 3.20. □

4. Handlebody-knot symmetries

In this section, we compute the symmetry groups of handlebody-knots whose exteriors
contain a type 2 annulus, based on the classification in Theorem 3.18.
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4.1. Mapping class group. We recall some properties of mapping class groups. Given
subpolyhedra X1, . . . , Xn of an oriented manifold M, the space of self-homeomorphisms of
M preserving Xi, i = 1, . . . , n, setwise (resp. pointwise) is denoted by

Homeo(M, X1, . . . , Xn) (resp.Homeo(M, rel X1, . . . , Xn) ),

and the mapping class group of (M, X1, . . . , Xn) is defined as

MCG(M, X1, . . . , Xn) := π0
(
Homeo(M, X1, . . . , Xn)

)(
resp.MCG(M, rel X1, . . . , Xn) := π0

(
Homeo(M, rel X1, . . . , Xn)

))
.

The “+” subscript is added when only orientation-preserving homeomorphisms are used:

Homeo+(M, X1, . . . , Xn)
(
resp.Homeo+(M, rel X1, . . . , Xn)

)
,

MCG+(M, X1, . . . , Xn)
(
resp.MCG+(M, rel X1, . . . , Xn)

)
.

Given f ∈ Homeo(M, X1, · · · , Xn), [ f ] denotes the mapping class it represents. If M = S3,
then we call the mapping class group the symmetry group of (M, X1, . . . , Xn), and every
3-submanifold of S3 carries the induced orientation.

Lemma 4.1 (Cutting Homomorphism, [5, Proposition 3.20]). Let Σ be an oriented closed
surface and α1, . . . , αn mutually disjoint and non-homotopic simple loops in Σ. Then there
is a well-defined homomorphism

cut :MCG+(Σ, [α1], . . . , [αn])→MCG+(Σ − N(α1 ∪ · · · ∪ αn))

whose kernel is generated by the Dehn twists about α1, . . . , αn, where the group

MCG+(Σ, [α1], . . . , [αn])

is the subgroup ofMCG+(Σ) given by homeomorphisms that preserve the isotopy classes
of α1, . . . , αn, respectively.

Then next two lemmas are proved in [3] and [7] (see also [23, Remark 2.1]).

Lemma 4.2 ([3, Lemma 2.3]). If (S3,HK) is atoroidal, then

MCG+(E(HK), rel ∂E(HK)) ≃ {1}.

Lemma 4.3 ([7]). The symmetry groupMCG(S3,HK) is finite if and only if (S3,HK) is
non-trivial and atoroidal.

Lemma 4.4. Let (W,w) be an oriented solid torus with boundary pattern, where w =
{G1, G2, . . . , Gn}, and Gi, i = 1, . . . , n, are all annuli, and |w| = ∂W.

Suppose f ∈ Homeo+(W, G1, . . . , Gn) does not swap the components of ∂G1—which
holds automatically when n > 2. Then f is isotopic to id inHomeo+(W, G1, . . . , Gn).

Proof. Without loss of generality, it may be assumed that Gi∩G j , ∅ if and only if |i− j| ≤ 1.
Denote by Uk the union G1 ∪ · · · ∪ Gk and set U0 = ∅. Observe that, if f |Uk−1 = id, 1 ≤ k ≤ n,
then f can be isotoped in

Homeo+(W, Gk, . . . , Gn, rel Uk−1), (4.1)

so that f |Uk = id. To see this, we first isotope f |Uk to id in Homeo(Uk, rel Uk−1) as follows:
In the case k = 1, it results from the assumption that f does not swap components of ∂G1,
whereas if 1 < k < n, it follows from the fact that MCG(Uk, rel Uk−1) = {1}. If k = n,
then it is a consequence of f sending meridian disks of W to themselves. Via a regular
neighborhood of Uk in W, the isotopy of f |Uk can be extended to an isotopy in (4.1) that
isotopes f so that f |Uk = id. Hence by induction, we may assume f ∈ Homeo(W, rel ∂W),
and the assertion follows sinceMCG(W, rel W) ≃ {1}. □

Lemma 4.5. Let W be a solid torus in S3 and A ⊂ ∂W an annulus with H1(A) → H1(W)
non-trivial and not an isomorphism. ThenMCG(S3,W, A) ≃ MCG+(S3,W, A).
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Proof. Orient the cores cA, cW of A,W, respectively, so that the induced homomorphism
H1(A) → H1(W) sends [cA] to q[cW ], q ≥ 0. Since H1(A) → H1(W) is non-trivial, and not
an isomorphism, we have q , 0, 1. Since q , 1, the linking number ℓk(cA, cW ) is non-zero.
On the other hand, q , 0 implies any self-homeomorphism f of (S3,W, A) either preserves
or reverses the orientations of both cA, cW , and hence ℓk(cA, cW ) = ℓk( f (cA), f (cW )), and f
is therefore orientation-preserving, given ℓk(cA, cW ) , 0. □

Lemma 4.6. Let W be an oriented solid torus, and A1, A2 ⊂ ∂W two disjoint annuli with
H1(Ai) → H1(W), i = 1, 2, isomorphisms. Then MCG+(W, A1 ∪ A2) ≃ Z2 × Z2 and
MCG(W, A1 ∪ A2) ≃ Z2 × Z2 × Z2.

Proof. Identify W with Q × S 1 ⊂ R2 × C, where S 1 is the unit circle {z = eiθ} and Q is the
square given by

{(x, y) | −1 ≤ x, y ≤ 1}.
Identify A1, A2 with the annuli given by y = ±1, and their cores c1, c2 the loops given by
x = 0, and denote by B1, B2 the annuli in the closure of ∂W − A.

Consider ri ∈ Homeo+(W, A1 ∪ A2), i = 1, 2, defined by the assignments:

Q × S 1 → Q × S 1

(x, y, z) 7→ (−x,−y, z),
(x, y, z) 7→ (−x, y, z̄)

respectively. Note that r1, r2 both are of order 2 and commute with each other. In addition,
r1 swaps A1, A2 and also B1, B2, whereas r2 swaps A1, A2 but preserves B1, B2, so their
composition r1 ◦ r2 swaps B1, B2 but preserves A1, A2. This implies they represent distinct
mapping classes. Since every f ∈ Homeo(W, A1 ∪ A2) either swaps A1, A2 (resp. B1, B2)
or preserves them, by Lemma 4.4, {[r1], [r2]} generatesMCG+(W, A1 ∪ A2).

To seeMCG(W, A1 ∪ A2) ≃ Z2 × Z2 × Z2, consider m ∈ Homeo(W, A1 ∪ A2) defined by
the assignment

Q × S 1 → Q × S 1

(x, y, z) 7→ (−x, y, z),

which is orientation-reversing, commutes with ri, i = 1, 2, and together with ri, i = 1, 2,
generatesMCG(W, A1 ∪ A2). □

Lemma 4.7. Let W be an oriented solid torus and A1, A2, A3 ⊂ ∂W three disjoint annuli
with H1(Ai) → H1(W), i = 1, 2, 3, isomorphisms. ThenMCG+(W, A1, A2 ∪ A3) ≃ Z2 and
MCG(W, A1, A2 ∪ A3) ≃ Z2 × Z2.

Proof. Identify W with H × S 1 ⊂ C × C, where S 1 ⊂ C is the unit circle, and H ⊂ C
the regular hexagon with center at the origin and vertices vk = e

2πk
6 , k = 1, . . . , 6. Identify

Ak with the product of S 1 and the edge ek connecting v2k−1, v2k, k = 1, 2, 3. Denote by
r ∈ Homeo+(W, A1, A2 ∪ A3) the homeomorphism given by

H × S 1 → H × S 1

(z1, z2) 7→ (−z̄1, z̄2);

r swaps A2, A3 and hence represents a non-trivial mapping class inMCG+(W, A1, A2∪A3).
Since every f ∈ Homeo+(W, A1, A2∪A3) either swaps A2, A3 or preserves them, by Lemma
4.4, either [ f ] = [r] or [ f ] is trivial, soMCG+(W, A1, A2 ∪ A3) ≃ Z2. On the other hand,
there is an orientation-reversing homeomorphism m ∈ Homeo(W, A1, A2 ∪ A3) defined by

H × S 1 → H × S 1

(z1, z2) 7→ (z1, z̄2),

which is of order 2 and commutes with r, and {[r], [m]} generatesMCG(W, A1, A2 ∪ A3).
□
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The next lemma follows from [11, Section 2] (see also [12, Theorem 1]).

Lemma 4.8. Given a handlebody-knot (S3,HK) and an essential surface S in E(HK), the
natural homomorphisms

MCG(S3,HK, S )→MCG(S3,HK),

MCG(S3,HK,N(S ))→MCG(S3,HK)

are injective.

4.2. Symmetry groups of handlebody-knots. Here (S3,HK) is an atoroidal handlebody-
knot, and A ⊂ E(HK) a type 2 essential annulus. The symbols l, lA,HKA, A+, A− are as in
Section 3. In addition, we identify the intersectionN(A)∩∂HK withN(l∪lA) = N(l)∪N(lA).

Theorem 4.9. If A is of type 2-1, thenMCG+(S3,HK) < Z2 andMCG(S3,HK) < Z2×Z2.

Proof. Note first that the injection MCG+(S3,HK,N(A)) → MCG+(S3,HK) in Lemma
4.8 is an isomorphism since A is unique by Theorem 3.18, and composing its inverse with

the homomorphismMCG+(S3,HK,N(A))
Φ
−→MCG+(N(A), A+ ∪ A−) given by restriction

to N(A) yields the homomorphism

MCG+(S3,HK) ≃ MCG+(S3,HK,N(A))→MCG+(N(A), A+ ∪ A−).

Since no self-homeomorphism of (S3,HK,N(A)) can swap N(l),N(lA), by Lemma 4.6, it
suffices to show the injectivity of Φ as it implies the injectivity of

MCG(S3,HK,N(A))→MCG(N(A), A+ ∪ A−).

To see Φ is injective, let [ f ] ∈ MCG+(S3,HK,N(A)) with Φ([ f ]) = 1. This implies
f |∂HK−N(l∪lA) does not permute punctures of the four-times punctured sphere ∂HK−N(l∪lA),
and thus [ f |∂HK−N(l∪lA)] = 1 ∈ MCG+(∂HK−N(l∪ lA)) since [ f |∂HK−N(l∪lA)] is of finite order
by Lemma 4.3. Again by Lemma 4.3, [ f |∂HK] is of finite order inMCG+(∂HK, [l], [lA]);
hence by Lemma 4.1, it is the identity. Because f |∂HK is isotopic to id, f can be isotoped
in Homeo(S3,HK) so that f |∂HK = id. Applying Lemma 4.2, one can further isotope f to
id inHomeo(S3, rel ∂HK). □

Theorem 4.10. If A ⊂ E(HK) is the unique type 2-2 annulus, thenMCG+(S3,HK) ≃ {1}
andMCG(S3,HK) < Z2. If in addition E(HK) admits an annulus A′ of another type, then
MCG(S3,HK) ≃ MCG+(S3,HK) ≃ {1}.

Proof. As in the previous case, the uniqueness of A gives us the homomorphism

MCG+(S3,HK) ≃ MCG+(S3,HK,N(A))
Φ
−→MCG+(N(A), A+ ∪ A−).

The first assertion follows once we show the injectivity of Φ because, given any f ∈
Homeo+(S3,HK,N(A)), it can neither swap A+, A− nor swap N(l),N(lA) by the definition
of a type 2-2 annulus. The second assertion can be derived from the first as follows: by
Theorem 3.18, the annulus A′ is the unique type 3-2 annulus in E(HK). Let W ⊂ E(HK) be
the solid torus cut off by A′. Then by the essentiality of A′, H1(A′)→ H1(W) is non-trivial
and not an isomorphism. On the other hand, by Lemma 4.8, there is a homomorphism

MCG(S3,HK) ≃ MCG(S3,HK, A′) =MCG(S3,HK,W)→MCG(S3,W, A′).

Now, ifMCG(S3,HK) is non-trivial, then by the first assertion, the mapping class group
MCG(S3,W, A′) contains a mapping class represented by an orientation-reversing homeo-
morphism, contradicting Lemma 4.5.

We now prove the injectivity of Φ. Let [ f ] ∈ MCG+(S3,HK) with Φ([ f ]) = 1 ∈
MCG+(N(A), A+ ∪ A−). We can isotope g := f |∂HK in Homeo+(∂HK,N(l ∪ lA)) so that
g|N(l∪lA) = id. Let D be the meridian disk disjoint from lA and dual to l. Then one can
further isotope g in Homeo+(∂HK, relN(l ∪ lA)) so that g|N(∂D) = id. In other words,
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f |∂HK represents a mapping class inMCG+(∂HK, relN(∂D∪ l)). Now, the homomorphism
induced by the inclusion

MCG+(∂HK, relN(∂D ∪ l))→MCG+(∂HK)

is injective by [5, Theorem 3.18], and by Lemma 4.3, [ f |∂HK] ∈ MCG+(∂HK) is of fi-
nite order, so [ f |∂HK] ∈ MCG+(∂HK, relN(∂D ∪ l)) is also of finite order. The group
MCG+(∂HK, relN(∂D ∪ l)) is, however, torsion free, and hence f |∂HK is isotopic to id in
Homeo+(∂HK). We may thence isotope f in Homeo+(S3,HK) so that f |∂HK = id. By
Lemma 4.2, f can be further isotoped to id inHomeo+(S3, rel ∂HK). □

Theorem 4.11. If A ⊂ E(HK) is of type 2-2 but not the unique type 2-2 annulus, then
MCG+(S3,HK) < Z2 andMCG(S3,HK) < Z2 × Z2.

Proof. By Theorem 3.18, E(HK) admits a unique type 3-3 annulus A0, and exactly two
non-isotopic type 2-2 annuli A1, A2; the three annuli together cut off a solid torus W ⊂

E(HK), and form a characteristic surface of E(HK), and induce, via Lemma 4.8, the ho-
momorphism

MCG+(S3,HK) ≃ MCG+(S3,HK, A0, A1 ∪ A2)

=MCG+(S3,HK,W)
Φ
−→MCG+(W, A0, A1 ∪ A2).

It suffices to prove that Φ is injective, in view of Lemma 4.7.
Let [ f ] ∈ MCG+(S3,HK,W) with Φ([ f ]) = 1 ∈ MCG+(W, A0, A1 ∪ A2). Note that

∂HK ∩W consists of three annuli B0, B1, B2; denote by c0, c1, c2 their cores, respectively.
Since Φ([ f ]) = 1, f |∂HK−(B0∪B1∪B2) does not permute punctures of ∂HK − (B0 ∪ B1 ∪ B2),
which is two copies of the three-times punctured sphere, and therefore [ f |∂HK−(B0∪B1∪B2)] =
1 ∈ MCG+(∂HK − (B0 ∪ B1 ∪ B2)). On the other hand by Lemma 4.3, [ f |∂HK] is of finite
order inMCG+(∂HK, [c0], [c1], [c2]), and hence trivial therein by Lemma 4.1; in particular,
f |∂HK is isotopic to id in Homeo+(∂HK). We then isotope f in Homeo+(S3,HK) so that
f |∂HK = id; by Lemma 4.2, we can further isotope f to id inHomeo+(S3, rel ∂HK). □

5. Irreducibility and atoroidality

Let (S3,HK) be a handlebody-knot, not necessarily atoroidal, and A ⊂ E(HK) a type 2
annulus, not necessarily essential. The symbols lA, l ⊂ ∂A, HKA, and A+, A−, l+, l− ⊂ ∂HKA

are as in Section 3.

5.1. Essentiality, irreducibility and triviality.

Lemma 5.1. Let A be of type 2-1 and consider the following statements:
(i) (S3,HK) is trivial.

(ii) A is inessential.
(iii) (S3,HKA) is reducible and there exists a disk D meeting l+ ∪ l− at one point.
(iv) (S3,HK) is reducible.

Then (i)⇒ (ii)⇔ (iii)⇒ (iv).

Proof. Note first that by the definition A is incompressible.
(i)⇒(ii): Let D ⊂ E(HK) be a compressing disk of ∂E(HK). Minimize #D ∩ A in the

isotopy class of A. If D ∩ A = ∅, then, by the incompressibility of A and the fact that D
does not separate l, lA in E(HK), the union ∂D ∪ ∂A cuts ∂E(HK) into two pairs of pants
P, P′, and each is bounded by l, lA, and ∂D. The union P ∪ A ∪ D thus is a torus, and
bounds a solid torus W ⊂ E(HK) by the triviality of (S3,HK). Since the core of A is a
longitude of (S3,W), every meridian disk of W disjoint from D is a ∂-compressing disk of
A. If D ∩ A , ∅, then, since A is incompressible, any outermost disk in D cut off by D ∩ A
is a ∂-compressing disk of A by the minimality.
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(ii)⇒(iii) & (ii) ⇒(iv): Since A is incompressible, it is ∂-compressible. Let D be a ∂-
compressing disk of A. Then D induces a disk in E(HKA) meeting l+ ∪ l− at one point, and
hence (S3,HKA) is reducible. On the other hand, the frontier of a regular neighborhood of
A ∪ D ⊂ E(HK) is a ∂-compressing disk of ∂E(HK), so (S3,HK) is reducible.

(iii)⇒(ii): The disk D induces a ∂-compressing disk of A. □

Lemma 5.2. Let A be of type 2-1. Then (S3,HK) is trivial if and only if (S3,HKA) is trivial
and {l+, l−} is primitive.

Proof. “⇒”: By (i)⇒(iii) in Lemma 5.1, there exists a disk D meeting l+ ∪ l− at one point,
say D ∩ l+ , ∅. Then the frontier of a regular neighborhood N(A+ ∪ D) of A+ ∪ D ⊂
E(HKA) − l− is an essential separating disk D′ ⊂ E(HKA), which splits E(HKA) into two
parts: a solid torus where l+ lies and D is a meridian disk and the exterior E(K) of a
knot (S3,K) where l− ⊂ ∂E(K) is a meridian of (S3,K). If (S3,HKA) is non-trivial, then
(S3,K) is non-trivial and ∂E(K) induces an incompressible torus T in E(HKA), which is
also incompressible in E(HK), for given any compressing disk D of T , one can always
isotope A away from D by the incompressibility of A; this contradicts (S3,HK) is trivial.
So (S3,K) is trivial, and E(K) is a solid torus with l− primitive in E(K), and hence the
assertion.

“⇐”: By [26] (see also [9]), there exists a basis {x+, x−} of π1(E(HKA)) with x± in the
conjugate classes determined by l±, respectively. Since π1(E(HK)) is the HNN extension
of π1(E(HKA)) with respect to π1(A), π1(E(HK)) is free, so (S3,HK) is trivial. □

Lemma 5.3. If A is of type 2-2, then the following are equivalent:
(i) (S3,HK) is reducible.

(ii) A is inessential.
(iii) (S3,HKA) is reducible and l− is homotopically trivial in E(HKA).

Proof. (i)⇒(ii): Let D be an essential disk in E(HK). Minimize #D∩A in the isotopy class
of A. Suppose D∩A = ∅. Then ∂D lies in the once-punctured torus T in ∂HKA − l+ ∪ l−. If
∂D is separating, then it may be assumed that ∂D is parallel to l−, and so A is compressible.
If ∂D is non-separating, then there is a loop l in T meeting ∂D once. The frontier of a
regular neighborhood of D ∪ l in E(HKA) − l− is an essential separating disk disjoint from
A, and therefore, as in the previous case, the annulus A is compressible. If D ∩ A contains
a circle, then any innermost disk in D cut off by D ∩ A is a compressing disk of A. If
D ∩ A contains only arcs, then an outermost disk D′ in D cut off by D ∩ A either is a
∂-compressing disk of A or induces an essential disk D′′ disjoint from A in E(HK); either
way implies A is inessential.

(ii)⇒ (iii) & (ii)⇒ (i): Consider first the case A is compressible. Then any compressing
disk D induces a disk D′ ⊂ E(HKA) with ∂D′ = l− and a disk D′′ ⊂ E(HK) with ∂D′′ = lA,
and therefore (iii) and (i). Now if A is ∂-compressible, and D is a ∂-compressing disk of
A, then D induces a disk D′ ⊂ E(HKA) with D′ ∩ l+ a point and D′ ∩ A− = ∅; the frontier
of a regular neighborhood N(A+ ∪ D′) in E(HKA) − A− is a separating disk D′′ with ∂D′′

parallel to l−; this implies A is compressible, that is, the previous case.
(iii)⇒ (i) & (iii)⇒ (ii) follow from Dehn’s lemma. □

Lemma 5.4. If (S3,HKA) is trivial and l− is homotopically trivial, then (S3,HK) is trivial.

Proof. Denote by D ⊂ E(HKA) a disk bounded by l−. Then D splits E(HKA) into two solid
tori, in one of which l+ is primitive. Therefore π1(E(HKA)) has a basis {x, y} with x in the
conjugacy class determined by l+. The assertion then follows from the fact that π1(E(HK))
is the HNN extension of π1(E(HKA)) with respect to π1(A). □

The converse of Lemma 5.4 is not true in general. As a corollary of Corollary 2.25 and
the assertions (ii)⇒(iv) in Lemma 5.1 and (ii)⇒(i) in Lemma 5.3, we have the following.

Corollary 5.5. If (S3,HK) is non-trivial and atoroidal, then A is essential.
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5.2. Non-triviality and atoroidality. We present here criteria for (S3,HK) to be non-
trivial and atoroidal in terms of (S3,HKA) and l+, l−. Recall first two results on atoroidality:

Corollary 5.6. If (S3,HK) is non-trivial and atoroidal, then (S3,HKA) is atoroidal.

Proof. This follows from [24, Lemma 4.1], but can also be deduced from Corollary 5.5
since A is essential by Corollary 5.5, if there exists an incompressible torus T ⊂ E(HKA),
then any compressing disk of T can be isotoped away from A, contradicting the atoroidality
of (S3,HK). □

Corollary 5.7. [24, Lemma 4.9] Suppose (S3,HKA) is atoroidal, and l− ⊂ E(HKA) is not
homotopically trivial if A is of type 2-2. Then (S3,HK) is atoroidal.

Proposition 5.8. Suppose A is of type 2-1. Then (S3,HK) is atoroidal and A is essential if
and only if (S3,HKA) either is trivial with {l+, l−} not primitive in E(HKA) or is non-trivial
and atoroidal.

Proof. “⇒”: By Corollary 5.6, (S3,HKA) is atoroidal. If (S3,HKA) is trivial, then {l+, l−}
cannot be primitive in E(HKA) by Lemma 5.2 since A is essential and hence (S3,HK) is
non-trivial by (i)⇒(ii) in Lemma 5.1.

“⇐”: The handlebody-knot (S3,HK) is atoroidal by Corollary 5.7, and is non-trivial by
Lemma 5.2, so A is essential by Corollary 5.5. □

Proposition 5.9. Suppose A is of type 2-2. Then (S3,HK) is atoroidal and A is essential
if and only if (S3,HKA) either is trivial with l− ⊂ E(HKA) not homotopically trivial or is
non-trivial and atoroidal.

Proof. “⇒”: By Corollary 5.6, (S3,HKA) is atoroidal. If (S3,HKA) is trivial, then by
(iii)⇒(ii) in Lemma 5.3, l− cannot be homotopically trivial since A is essential.

“⇐”: By Lemma 5.7, (S3,HK) is atoroidal. If A is inessential, then by (ii)⇒(iii) in
Lemma 5.3, the handlebody-knot (S3,HKA) is reducible with l− ⊂ E(HKA) homotopically
trivial, contradicting the assumption and Lemma 2.24. □

6. Examples

Here we construct atoroidal handlebody-knots that admit a type 2 essential annulus, and
show that annulus diagrams in Theorem 3.18 can all be realized by such handlebody-knots.

6.1. Looping trivalent spatial graphs. Let (S3,Γ) be a spatial graph with Γ either a θ-
graph or a handcuff graph. Then we can produce a new spatial graph (S3,Γ◦) by replacing
a small neighborhood of a trivalent node1 in Γ with a loop as shown in Fig. 6.

v
e1

e2

e3

(a) Neighborhood of a trivalent node v ∈ Γ.

=⇒

e1

e2

e3

(b) Replacing v with a loop.

Figure 6. Looping of a spatial θ-graph.

Label the trivalent node with v and its three adjacent edges e1, e2, e3 as in Fig. 6a. Then
the new spatial graph (S3,Γ◦) in Fig. 6b is said to be obtained by looping e1e2 at v, and
(S3,Γ◦) is called a looping of (S3,Γ), provided the resulting spatial graph is connected (see

1A neighborhoodN(v) ∈ Γ of the trivalent node v is a regular neighborhood of v ⊂ S3 such that (N(v),N(v)∩Γ)
is homeomorphic to a unit 3-ball with three non-negative axes.
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Fig. 7); there are six possible loopings for a spatial θ-graph, and four for a spatial handcuff
graph.

v

(a) Neighborhood of a trivalent node v ∈ Γ.

=⇒

(b) Replacing v with a loop.

Figure 7. Looping of a spatial handcuff graph.

A double looping (S3,Γ⊚) of (S3,Γ) is the spatial graph obtained by looping at both
trivalent nodes of Γ. Taking a regular neighborhood of a looping Γ◦ (resp. double loop-
ing Γ⊚) in S3 gives us a handlebody-knot, denoted by (S3,HK◦

Γ
) (resp. (S3,HK⊚

Γ
)), whose

exterior contains a canonical type 2 annulus A◦
Γ

induced by the created loop in (S3,Γ◦).
A spatial graph (S3,Γ) is said to be nontrivially atoroidal if the induced handlebody-

knot (S3,N(Γ)) is non-trivial and atoroidal.

Lemma 6.1. If (S3,Γ) is nontrivially atoroidal, then (S3,HK◦
Γ
) induced by a looping of

(S3,Γ) is atoroidal, and A◦
Γ
⊂ E(HK◦

Γ
) is essential. Furthermore A◦

Γ
is of type 2-1 and is

the unique annulus if Γ is a θ-graph, and is of type 2-2 if Γ is a handcuff graph.

Proof. The disk bounded by a component of ∂A◦
Γ

in HK◦
Γ

is dual to the two edges being
looped, so A◦

Γ
is of type 2-1 if Γ is a θ-graph and is of type 2-2 otherwise. The essentiality

of A◦
Γ

and atoroidality of (S3,HK◦
Γ
) follow from Propositions 5.8 and 5.9. □

Corollary 6.2. If (S3,Γ) is nontrivially atoroidal, then any handlebody-knot (S3,HK⊚
Γ
)

obtained by a double looping of (S3,Γ) is atoroidal, and its exterior contains two non-
isotopic type 2-2 essential annuli.

Proof. The two canonical annuli are of type 2-2 since any looping (S3,Γ◦) is a spatial
handcuff graph. The rest follows from Lemma 6.1. □

As an application of Lemma 6.1 and Corollary 6.2, we consider the spine (S3,Γ) of
(S3, 52) in [13] as shown in Fig. 8a. Then Fig. 8b is a looping of (S3,Γ), whose associated

handlebody-knot has the annulus diagram . On the other hand, the double looping of

(S3,Γ) in Fig. 8c induces a handlebody-knot whose annulus diagram is .

(a) Spine of (S3, 52). (b) Looping. (c) Double looping.

Figure 8. Handlebody-knots with a type 2 annulus.
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n
half
twists

l1 l2

τ

(a) (n, 2)-torus link (S3, Ln) with a tunnel τ.

=⇒

n
half
twists

l

(b) (Tunnel) looping of (S3, Ln ∪ τ).

Figure 9. Construction of Koda’s handlebody-knot family.

6.2. Unknotting annuli of type 2. As opposed to Lemma 6.1 and Corollary 6.2, here we
present a looping operation that yields atoroidal handlebody-knots that admit an essential
unknotting type 2 annulus.

Let (S3,Γ) be a spatial θ-graph that is a union of a non-trivial knot (S3,K) and a tunnel
τ of (S3,K). Let κ1, κ2 be the arcs of K cut off by τ. Then a tunnel looping of (S3,K ∪ τ) is
a looping obtained by looping κiτ at a trivalent node of Γ = K ∪ τ, i = 1 or 2.

Lemma 6.3. The handlebody-knot (S3,HK◦
Γ
) induced by a tunnel looping of (S3,Γ) is

atoroidal, and A◦
Γ

is an unknotting essential type 2-1 annulus.

Proof. It follows from the “only if ” part of Proposition 5.8 since (S3,K) is non-trivial. □

Now, let (S3,Γ) be the union of a non-split link (S3, L) and a tunnel τ of (S3, L).

Lemma 6.4. The handlebody-knot (S3,HK◦
Γ
) induced by a looping of (S3,Γ) is atoroidal,

and A◦
Γ

is an unknotting essential type 2-2 annulus.

Proof. Use (S3, L) being non-split and apply the “only if” part of Proposition 5.9. □

To show that all annulus diagrams in Theorem 3.18 can be realized by some atoroidal
handlebody-knots, we consider the union of an (n, 2)-torus link (S3, Ln = l1 ∪ l2), n ∈ Z,
with a tunnel τ as depicted in Fig. 9a. Denote by (S3,HKn) the handlebody-knot induced
by the looping of (S3, Ln ∪ τ) in Fig. 9b. Note that (S3,HK2) is equivalent to (S3, 41), while
{(S3,HKn)}n>2 is Koda’s handlebody-knot family in [16, Example 3]; Lemmas 6.3 and 6.4
give an alternative way to see they are irreducible, in view of Corollary 2.25.

Observe that if n > 2 and is even, the handlebody-knot exterior E(HKn) contains a
type 3-2 annulus A given as follows: let Ac be a cabling annulus in E(Ln) := S3 − N̊(Ln)
with τ ∩ E(Ln) ⊂ Ac. Let N(li) be the component of N(Ln) containing li, i = 1, 2, and
perform the looping construction entirely in N̊(l2). Then the frontier of N(l2) ∪ N(Ac) in
E(l1) := S3− N̊(l1) is an essential annulus A ⊂ E(HKn) of type 3-2ii as A is ∂-compressible
in E(l1).

Corollary 6.5. Suppose n > 2 and is even. Then the annulus diagram of the handlebody-
knot (S3,HKn) obtained by the looping of (S3, Ln ∪ τ) in Fig. 9b is .

Remark 6.6. Let l+, l− be the cores of the two annuli in the frontier of a regular neighbor-
hood of the type 2-2 annulus in E(HKn). Then one of l+, l− is primitive in E(Ln ∪ τ). Thus
the union l+ ∪ l− in Lemma 5.1 (iii) cannot be replaced with a single l+ or l−.

Next, we consider the union of the 2-component link (S3, L′n) with n odd and the tunnel
τ in Fig. 10a. Then the looping of (S3, L′n ∪ τ) in Fig. 10b induces a handlebody-knot
(S3,HK′n) whose exterior contains a type 3-2i annulus given by the cabling annulus of the
(n, 2)-torus knot component of (S3, L′n), so we have the following.

Corollary 6.7. The annulus diagram of the handlebody-knot (S3,HK′n) obtained by the

looping of (S3, L′n ∪ τ) in Fig. 10b is .
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n
half
twists

τ

(a) (S3, L′n), n odd, with the tunnel τ.

=⇒

n
half
twists

τ

(b) Looping of (S3, L′n ∪ τ).

Figure 10. Handlebody-knot exteriors that contain a type 3-2i annulus.

Lastly, to produce handlebody-knots with the annulus diagram , we observe that,

given a handlebody-knot (S3,HK) with a type 2-2 annulus A ⊂ E(HK), the loops l+, l−
bound two disks D+,D− in HKA, respectively, and D+,D− determine a spine ΓA of HKA;
denote by l1, l2 the constituent loops in ΓA with l2 disjoint from D+ in HKA, and orient
l1, l2. Then we have the following criterion for the non-uniqueness of A ⊂ E(HK).

Lemma 6.8. (1) Suppose E(HK) contains a type 3-2 annulus A′. Then ℓk(l1, l2) , ±1.
(2) Suppose E(HK) contains a type 2-2 annulus A′ not isotopic to A, and (S3, l1) is a

trivial knot. Then (S3, l1 ∪ l2) is either a trivial link or a Hopf link.

Proof. (1): Case 1: A′ is of type 3-2i. Let W ⊂ E(HK) be the solid torus cut off by A′, and
lw an oriented core of W. Note that the core of A′ is a (p, q)-curve on ∂W with |q| > 1 since
A′ ⊂ E(HK) is essential. If the linking number ℓk(l1, lw) is m, then the linking number
ℓk(l1, l2) is ±qm , ±1.

Case 2: A′ is of type 3-2ii. Let D ⊂ HKA be a non-separating disk dual to l1, and
denote by V the solid torus HKA − N̊(D). The annulus A′ cuts E(V) into two solid tori, one
of which, denoted by W, contains D. Note that the core of the annulus W ∩ V has a slope
of p

q , |p| > 1, with respect to (S3, l2). Let Dw be an oriented meridian disk of W. If the
linking number ℓk(l1, ∂Dw) = n, then the linking number ℓk(l1, l2) = ±np , ±1.

(2): Observe first that (S3, l2) is trivial by the existence of A′. Therefore, (S3, l1 ∪ l2) is
trivial if it is split. Suppose it is non-split. Then there exists an essential disk D ⊂ E(l2)
meeting l1 at exactly one point. Denote by W the 3-ball E(l2) − N(D). Then since (S3, l1)
is trivial, the ball-arc pair (W, l1 ∩W) is trivial, so (S3, l1 ∪ l2) is a Hopf link. □

n
half
twists

τ

(a) (S3, L′′n ), n even, with the tunnel τ.

=⇒

n
half
twists

(b) Looping of (S3, L′′n ∪ τ).

Figure 11. Handlebody-knots with a unique type 2 annulus.

Consider now the handcuff graph given by the union of the 2-component link (S3, L′′n )
with n even and the tunnel τ in Fig. 11a.

Corollary 6.9. The handlebody-knot induced by the looping of (S3, L′′n ∪ τ) in Fig. 11b

with even n , 0 is atoroidal with the annulus diagram .
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Proof. It follows from Lemmas 6.4 and 6.8 since the linking number of (S3, L′′n ) is ±1, and
it is not a Hopf link, for every even n , 0. □

Handlebody-knots induced by Figs. 8b, 8c, 9b, 10b, and 11b imply the following.

Proposition 6.10. Annulus diagrams in Theorem 3.18 can all be realized.
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