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Abstract. We shall propose a new proof scheme for Planar Cover

Conjecture, focusing on the rotation systems of planar coverings of connected

graphs. We shall introduce the notion of “rotation compatible coverings” and
show that a rotation compatible covering of G embedded on the sphere can be

covered by a regular covering of G embedded on an orientable closed surface

on which its covering transformation group acts. The surface may not be
homeomorphic to the sphere in general, but its quotient becomes either the

sphere or the projective plane which contains G. As an application of our
theory, we shall prove that if a 3-connected graph G has a 3-connected finite

planar covering such that the pre-images of each vertex has sufficiently large

distance, then G can be embedded on the projective plane.

Introduction

A connected graph G̃ or a projection p : V (G̃) → V (G) is called a covering of a

simple graph G if p induces a bijection between the neighbors of corresponding vertices.

In particular, if there is a group action over G̃ such that the vertices equivalent under

the action project to the same vertex, then G̃ is said to be regular. A covering may be

an infinite graph in general, but we shall deal with finite coverings mainly in this paper.

In 1986, the author [21] proved that a connected graph G has a finite regular planar

covering if and only if G can be embedded on the projective plane, applying the notion

of “faithfulness of embeddings” developed in [17] and his thesis [18], and proposed the

conjecture that a connected graph has a finite planar covering if and only if it can

be embedded on the projective plane. The sufficiency holds obviously since the sphere

covers the projective plane doubly while the necessity is still open for more than 30 years.

This has been called Planar Cover Conjecture as one of famous unsolved problems in

topological graph theory.

In the first paper [21] written for the conjecture, the author presented a proof scheme

as follows. Any possible counterexample to the conjecture cannot be embedded on the

projective plane and hence if all “minimal” non-projective-planar graphs have no finite

planar covering, then the conjecture is true. He himself considered the minimal ones

related to inclusion of homeomorphic images, called irreducible graphs for the projective

plane, and concluded that it suffices to check up the 103 irreducible graphs classified

in [1, 5]. By subsequent discussions, we have already known that if K1,2,2,2 has no

finite planar covering, then the conjecture is true. There have been written a lot of
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papers [2–4,7–14,19–31,34,36,39] related to the conjecture and many of them follow this

scheme. In particular, the first 20 years of the conjecture have been summarized in [11].

It may be said that most of such papers have focused on how to exclude possible

counterexamples. In this paper, we shall give another proof scheme in a different di-

rection, discussing the rotation systems of planar coverings of graphs. In Section 2, we

shall introduce a new notion called “rotation compatible coverings”. This is strictly

wider than the notion of “regular coverings”. In fact, if a planar covering of G is regular

and 3-connected, then it can be embedded on the sphere as a rotation compatible one,

and there exist those 3-connect planar coverings that are rotation compatible, but not

regular, as shown in Section 7.

We shall modify or extend the proof scheme given in [21] so as to work for graphs

which have rotation compatible planar coverings. After developing such a general theory

according to the scheme, we shall show the following theorems as applications of the

theory. We say here that a covering is sufficiently large if the pre-images of each vertex

have sufficiently large distance in the covering. The precise definition of sufficiently large

coverings will be given in Section 3.

Theorem 1. If a connected graph G has a finite planar covering that is 3-connected

and sufficiently large, then G can be embedded on the projective plane.

A graph embedded on the sphere is said to be maximal planar if it triangulates the

sphere, that is, if its faces are all triangles:

Theorem 2. If a connected graph G has a finite maximal planar covering, then G

can be embedded on the projective plane.

Our arguments on coverings in this paper are not only combinatorial but also topo-

logical. We shall outline the general theory of coverings spaces in algebraic topology

modified for our use and describe the connection to “voltage graphs” in Section 1. On

the other hand, we shall develop a combinatorial way to control planar coverings embed-

ded on the sphere with rotation systems and introduce “rotation compatible coverings”

in Section 2. In Section 3, we shall give a precise definition of sufficiently large coverings

and show that a sufficiently large covering with suitable conditions is rotation compati-

ble. As shown in our later arguments, the 3-connectedness of coverings will be important

to discuss the existence of planar coverings of 3-connetced graphs. So we shall prepare

several arguments on the connectivity of coverings in Section 4, which will be useful also

for general use.

In Section 5, we shall describe our proof scheme, reviewing the original idea given

in [21], and prove that if a connected graph has a rotation compatible covering, then

it can be embedded on the projective plane, as Theorem 11, which implies Theorem

1. As our conclusion, the maximal planar covering is rotation compatible and hence

Theorem 2 follows. However, it is difficult to show it directly. We shall discuss it, using

several known facts in Section 6. Finally, we shall illustrate our theory with examples of

coverings of K3,3 and suggest further studies on this topic in Section 7.
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1. Classification of covering spaces

Let X̃ and X be two topological spaces, graphs or surfaces here. If there exists a

local homeomorphism p : X̃ → X, that is, a surjective continuous map which induces a

homeomorphism between suitable open neighborhoods of corresponding points in X̃ and

X, then X̃ or the pair (X̃, p) is called a covering space of X with covering projection p.

If the projection p is an n-to-1 map for a finite number n > 0, then X̃ is called an n-fold

covering of X. In particular, if G̃ = X̃ and G = X are simple graphs, then the covering

projection can be regarded as a surjective map p : V (G̃) → V (G) such that p induces

a bijection between the neighbors of any vertex v ∈ V (G) and those of its pre-image

ṽ ∈ p−1(v).

There has been a general theory of covering spaces, which is strongly connected to the

fundamental groups of topological spaces. The fundamental group π1(X) of a topological

space X is defined as a group consisting of closed curves based at a fixed point in X up to

continuous deformation (or up to homotopy) and the product of two elements in π1(X)

corresponds to the closed curve going along the first one and next along the second one.

We can find the theory described below in [38] for example. However, the notations have

been modified suitably for our use in graph theory.

It has been known that any covering space X̃ of X with projection p corresponds to

a subgroup H < π1(X) unique up to conjugation, and that its projection p : X̃ → X

induces an isomorphism p# : π1(X̃) → H. In this situation, we denote such a covering

space by X̃H and its projection by pH : X̃H → X. Each pre-image x̃ ∈ p−1
H (x) of

any point x ∈ X corresponds bijectively to a right coset Hg of H in π1(X) and hence

|p−1
H (x)| = (π1(X) : H). This value, say n, does not depend on a point x ∈ X and is

often called the covering index of pH and X̃ is called an n-fold covering of X.

Furthermore, if H is normal in π1(X), then the quotient group π1(X)/H acts on

the set of pre-images p−1
H (x) for each point x ∈ X naturally, and hence it acts on X̃H

as the covering transformation group. That is, all points in X̃H equivalent under this

group action project to the same point in X. In particular, the covering space X̃{1}
corresponding to the trivial subgroup {1} in π1(X) is called the universal covering space

of X and π1(X) itself acts on X̃{1}, where “1” stands for the identity element in π1(X).

If a subgroup N in π1(X) is contained in H, denoted by N < H , then the covering

pN : X̃N → X factors through pH , that is, there exists a covering q : X̃N → X̃H with

pN = pH ◦ q. This covering projection q maps a point in X̃N corresponding to a right

coset Ng to a point corresponding to Hg. Since {1} is contained in any subgroup H, the

universal covering p{1} : X̃{1} → X factors through any covering of X.

We shall refer to the total of these facts described in the above as “the classification of

covering spaces”. We denote the homomorphism between π1’s induced by a continuous

function f : Y → X by f# : π1(Y ) → π1(X) in general.

The following lemma presents a well-known fact in group theory, but we shall note

its proof for the reader unfamiliar to group theory:

Lemma 3. Let Γ be a group and let H be a subgroup in Γ of finite index. Then

there is a normal subgroup N in Γ of finite index which H contains.

Proof. Suppose that H has index k < ∞. Then Γ has a right coset decomposition

Γ = Hg1 ∪ Hg2 ∪ · · · ∪ Hgk, where g1 = 1 is the identity element in Γ. Any element
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g ∈ Γ induces a permutation over the cosets Hgi’s and Γ acts on the coset decomposition

as Hgig = Hgj and hence it corresponds to a permutation over {1, 2, . . . , k}. Let σg

denote the corresponding permutation in the symmetry group Sk of degree k. Then

the correspondence σ : Γ → Sk which maps g ∈ Γ to σ(g) = σg becomes a group

homomorphism.

Let N be the kernel of σ. Then N is necessarily a normal subgroup in Γ and is

contained in H since Hg = H for any element g ∈ N . Its index is equal to (Γ : N) =

|Imσ| and must be finite since Sk is a finite group. □

We can conclude the following corollary immediately from the above lemma. It will

be very important for our later arguments.

Corollary 4. Given a finite covering pH : G̃H → G of a connected graph G

associated with a subgroup H in π1(G), there exists a finite regular covering pN : G̃N → G

which factors through pH .

Proof. Take the normal subgroup N in π1(G) which Lemma 3 guarantees. The

covering associated with N is the desired one. □

A combinatorial method to construct coverings of a given graph has been developed as

“voltage graphs”, which has been used to solve “Map Color Theorem” [37] and described

in [6]. The paper [27] has shown a way to translate the notions given above into those

in the theory of voltage graphs, as follows.

Let G be a connected graph and let T be a spanning tree of G. Assign a permutation

ρe over {1, . . . , n} to each edge e ∈ E(G) not belonging to T . The set of such permutations

ρ = {ρe : e ∈ E(G)−E(T )} is called a permutation voltage of G. Make n copies of T , say

T1, . . . .Tn, and let {u1, . . . , un} and {v1, . . . , vn} be the sets of copies of the two ends u

and v of e = uv such that ui and vi belong to Ti. Add the edges uivρe(i) to the collection

of T1, . . . , Tn for all i = 1, . . . , n. Then the resulting graph Gρ becomes an n-fold covering

of G, called the covering of G derived by a permutation voltage ρ.

It has been known that any finite covering of G can be obtained as a covering Gρ of G

derived by a suitable permutation voltage ρ. On the other hand, Gρ must be associated

with a suitable subgroup H in π1(G). Since the edges e correspond to a set of generators

of π1(G), the assignment ρ naturally induces a homomorphism ρ : π1(G) → S{1,...,n},

where SX stands for the permutation group over a finite set X in general. By the theory

presented in [27], we have known that H is conjugate to ρ−1(S{2,...,n}).

Now let A be a finite group of order |A| and let α : E(G)−E(T ) → A be an assignment

of elements in A to the edges e = uv of G not belonging to T . Make copies T × x of

T for all elements x ∈ A and add the edges uxvα(x), where ux and vx are the copies of

u and v lying on T × x, respectively. Then we obtain another covering Gα of G, called

the covering of G derived by a voltage α. This is very similar to Gρ, but G
α is a regular

covering of G on which A acts as its covering transformation group.

Let ⟨ρ⟩ denote the subgroup generated by {ρe : e ∈ E(G)−E(T )} in S{1,...,n}. Then

we can define a voltage α : E(G)−E(T ) → ⟨ρ⟩ by α(e) = ρe. It has been shown in [30,33]

that Gα becomes the regular covering G̃N of G which factors through G̃H = Gρ, given

in Corollary 4.
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2. Coverings with rotation systems

Let G be a connected graph and let p : G̃ → G be its covering. Suppose that G̃ is

embedded on an oriented closed surface F 2, that is, an orientable closed surface with

a fixed orientation over the surface, say “clockwise”. Then the embedded G̃ admits

naturally a rotation system σ = {σv : v ∈ V (G̃)}, where σv : N(v) → N(v) denotes a

cyclic permutation over the neighborhood N(v) of each vertex v of G̃ which indicates the

cyclic alignment of neighbors around v on the surface F 2. Thus, σv(u) is the successor

of u in the clockwise list of neighbors of v. If G̃ is 2-cell embedded on F 2, that is, if the

interior of each face of G̃ is homeomorphic to an open 2-cell, then F 2 is nothing but the

oriented closed surface derived by this rotation system σ of G̃, as defined in [6].

Here we focus on the pair (G̃, σ) of the covering G̃ and its rotation system σ. Since

the projection p : V (G̃) → V (G) maps the neighbors of each vertex v of G̃ bijectively

to those of p(v), it induces a rotation σ̄p(v) around p(v) as a copy of the rotation σv.

However, the system of these rotations does not work as a well-defined rotation system

of G itself in general since one vertex of G may receive different copies of rotations from

its pre-images.

If we obtain a well-defined rotation system of G, then we can embed G on an orientable

closed surface. However, we would like to construct an embedding of G on the projective

plane, which is not orientable, as our final goal in this paper and hence we need to relax

the conditions on the induced rotations, as follows.

Assumption 1: The copies of rotations around the vertices of G̃ projecting

to a vertex v of G induce a common rotation around v or its reverse.

Under this assumption, the pre-images of v can be classified into two groups so that

the vertices belonging to one group induce the same rotation around v, clockwise or

anti-clockwise. To distinguish these two groups, we assign “black” and “white” to the

vertices in each group and fix this coloring for all v’s. Read the alignment of neighbors

of a black vertex in G̃ projecting to v, according to the clockwise orientation over F 2.

Then their corresponding vertices around a white vertex projecting to v lie around it

anticlockwise.

Since G̃ is assumed to be a simple graph, each edge uv of G̃ joins two distinct vertices

u and v. If u and v have the same color, then the edge uv is said to be synchronous;

otherwise, to be anti-synchronous. Note that this definition depends on the colorings of

vertices with black and white.

Assumption 2: The edges of G̃ projecting to the same edge of G are either

all synchronous or all anti-synchronous.

The pair (G̃, σ) or simply G̃ with a rotation system σ assumed implicitly is said to be

rotation compatible if both Assumptions 1 and 2 hold. Switching black and white among

the vertices projecting to one vertex yields switching synchronous and ani-synchronous

edges. However, it is easy to see that the rotation compatibleness of G̃ does not change

even if the color assignment of vertices was changed.

Note that if there exists a group action on the surface F 2 which acts on G̃ as its

covering transformation group, then the pair (G̃, σ) becomes rotation compatible. Any

covering transformation γ carries a local area around each vertex of G̃ homeomorphically,
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which corresponds to Assumption 1. The transformation γ carries a local area containing

each edge e = uv of G̃ homeomorphically, too. If γ were just an automorphism over G̃

which cannot extend over F 2, then γ might put the local part around e to that around

γ(e) with twisting. In such a case, the rotation around one end of e, say v, corresponds

to the rotation around γ(v) but the rotation around u corresponds to the inverse of the

rotation around γ(u) and hence if e is synchronous, then γ(e) is not. This means that

Assumption 2 would not hold for (G̃, σ).

Figure 1. A rotation compatible planar covering of K3,3

Figure 1 presents an easy example of a 4-fold planar covering of K3,3 with partite

sets {1, 2, 3} and {a, b, c}. This is not a regular covering since there does not exist

a transformation which carries the set of black vertices to that of white vertices; the

former forms two hexagons, but the latter does not.

Each of black vertices labeled by numbers has a rotation (a b c) while each of those

labeled by alphabets has a rotation (1 2 3). The rotations around white vertices are the

inverses of these. It is easy to see that this covering is rotation compatible. Since this has

a 2-cut, we can flip out the right half to reverse the rotations within that part. That is,

it switches black and white partially and the two edges which form the 2-cut turn to be

anti-synchronous. However, the edge labeled 2c lying in the left half is still synchronous

although they project to the same edge 2c in K3,3. Thus, Assumption 2 does not hold

for the planar covering of K3,3 so re-embedded and it is not rotation compatible.

As this example suggests, it depends on embeddings whether or not a planar covering

of a graph is rotation compatible. On the other hand, it is well-known that any 3-

connected planar graph is uniquely embeddable on the sphere [41,42], which implies that

it has a unique rotation system for its planar embedding, up to reversing. Furthermore,

if a 3-connected nonplanar graph has a planar covering, then it has a 3-connected one,

as we shall prove in Corollary 10. Therefore, it will be worthy to discuss the rotation

compatibleness of 3-connected planar covering.

Many arguments in topological graph theory work with graph minor arguments. For

our future research, we shall note the following lemma here.

Lemma 5. Let G be a connected graph and let H be another connected graph obtained

from G by either deleting or contracting an edge e in G. If G has a rotation compatible

covering 2-cell embedded on an orientable closed surface, then so does H.
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Proof. Let e = uv be an edge in G and assume that H can be obtained from G

by deleting or contracting e, that is, H = G − e or H = G/e. Let p : G̃ → G be a

rotation compatible covering of G embedded on an orientable closed surface F 2. Delete

or contract all edges in G̃ projecting to e over the surface F 2. Then we obtain a covering

H̃ of H embedded on F 2 and define the rotation of H̃ as one derived from the orientation

of F 2.

If H = G−e, then the rotation around each vertex in H̃ can be obtained from that in

G̃ by skipping the appearances of the pre-images of u and v. It is clear that Assumptions

1 and 2 hold for H̃ since the coloring of vertices in G̃ by black and white works also as

that for H̃. However, we should notice that H̃ may not be 2-cell embedded on F 2 and

also may not be connected. Each component of H̃ with the rotation system defined as

above derives an orientable closed surface where it is 2-cell embedded.

On the other hand, if H = G/e, then the rotations around two ends of each pre-image

ẽ of e are unified to one rotation around the vertex that ẽ shrinks to. Since the rotation

compatibleness does not depend on the coloring with black and white, we may assume

that the two ends of ẽ have the same color, black or white, and the unified rotation also

has the same color as they have. This implies that the colors of two ends of any edge

not projecting to e do not change after contracting all ẽ’s, and hence Assumptions 1 and

2 for G̃ guarantee those for H̃ in this case, too. □

As we have pointed out in the previous proof, the surfaces which contain the 2-cell

embeddings of components of H̃ may be different from that for G̃. However, if G̃ is

embedded on the sphere, then all surfaces for H̃ also are homeomorphic to the sphere.

3. Sufficiently large coverings

Let G be a 3-connected graph in general and suppose that G is embedded on the

sphere. Then each face of G is bounded by a cycle. Look at a vertex v and consider the

region given as the union of faces meeting at v. It is easy to see that the region also

is bounded by a cycle. The cycle surrounding v is called the link of v and is denoted

by lk(v). Thus, the link lk(v) bounds a polygonal disk containing v at its center and

the edges incident to v are placed radially around v to subdivide the disk into the faces

meeting at v.

Define lkmax(G) as the maximum of the lengths of lk(v)’s taken over all vertices

v ∈ V (G) and call it the maximum link length of G. If lkmax(G) = 3, then any vertex v

of G is surrounded by a triangle and v has degree 3. This implies that G is isomorphic

to K4. Therefore, we conclude that lkmax(G) ≥ 4 for any 3-connected planar graph G

except K4.

More generally, if a 3-connected graph G is 2-cell embedded on a closed surface F 2,

we need to assume that G is 3-representative, that is, any essential closed curve on F 2

meets G in at least three points. Under such an assumption, a local part around each

vertex v has a wheel-like structure bounded by a cycle lk(v) and hence we can define

lkmax(G) for such G as well as a 3-connected graph G embedded on the sphere. (It is

well-known that the notion of representativity of a graph embedded on a closed surface

has been introduced in [35]. Slightly earlier than it, the author has already introduced

the notion combining the connectivity and representativity, called the incompressibility

in [18].)
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Now let G̃ be a finite covering of a 3-connected graph G and assume that G̃ is 3-

connected, too. If G̃ is embedded on the sphere or is 3-representative on a closed surface

other than the sphere, then we can define the maximum link length of this G̃. If the

distance between any pair of the pre-images of each vertex v of G in G̃ is bigger than

lkmax(G̃), then G̃ is said to be sufficiently large. Recall that a sufficiently large covering

has been defined as one such that the pre-igames of each vertex have sufficiently large

distance in introduction. The above definition gives its precise meaning.

Lemma 6. Let G̃ be a 3-connected covering of a connected graph G and suppose that

G̃ is embedded on the sphere or is 3-representative on an orientable closed surface. If G̃

is sufficiently large, then it is rotation compatible.

Proof. Let p : G̃ → G be the covering projection of G̃ and suppose that it is

embedded on the oriented closed surface with rotation system σ and is sufficiently large.

First consider the cycle C = lk(v) given as the link of each vertex v to confirm Assumption

1. Since G̃ is sufficiently large, any two vertices lying on C do not project to the same

vertex of G; otherwise, their distance would be less than |lk(v)| and hence less than

lkmax(G̃). Therefore, the cycle C projects isomorphically to a cycle in G.

Let p−1(p(v)) = {v1, . . . , vn} be the set of pre-images of p(v). Since the cycle C̄ =

p(C) is 2-regular, the pull-back p−1(C̄) of C̄ in G̃ also is 2-regular and hence each of

its components is a cycle. Suppose that one of such cycles, say C ′, is not isomorphic to

C. This implies that C ′ contains some neighbors of at least two of v1, . . . , vn. Choose

the nearest pair of such neighbors, say u1 and u2. We may assume that ui is adjacent

to vi for i = 1, 2 after relabeling. Then u1 and u2 are joined by a segment of C ′ which

contains no other neighbors of v1, . . . , vn and projects isomorphically to a segment of

C̄. Since p(v) has degree at least 3, the length of the segment of C̄ does not exceed

|C̄| − 2 = |lk(v)| − 2 and hence v1 and v2 would be joined by a path of length at most

|lk(v)|, which is bounded by lkmax(G̃). This contradicts that G̃ is sufficiently large.

Therefore, we conclude that p−1(C̄) consists of mutually disjoint cycles C1, . . . , Cn

each of which projects isomorphically to C̄ and only one among those cycles contains

the neighbors of vi, say Ci, for each i = 1, . . . , n. Then the cycle Ci, the vertex vi and

the edges incident to vi form together a subgraph homeomorphic to a wheel and the

neighbors of vi lie along Ci in the cyclic order indicated by σvi
or its inverse. Since

this wheel-like structure projects isomorphically into the part around p(v) in G, this

projection copies the rotation around vi as the rotation around p(v) or its reverse. Thus,

Assumption 1 holds for the covering G̃.

Take any edge uv of G̃ to confirm Assumption 2. Let A1 and A2 be two faces of

G̃ meeting along uv. Then there are two paths P1 and P2 such that Pi goes from u to

v along the boundary of Ai, missing uv and they form a cycle P1 ∪ P2 which bounds

A1 ∪ A2. Let Θ be the subgraph of G̃ consisting of two paths P1, P2 and the edge uv.

Since this is a part of the wheel-like structure around v discussed in the previous, Θ

projects isomorphically into G and can be pulled back isomorphically into the regions

around each vi in G̃.

This implies that the correspondence between two edges uv and u′v′ in G̃ projecting

the same edge in G preserves whether or not they are synchronous. If uv is synchronous

and u′v′ is anti-synchronous, then the Θ structure around uv must be mapped to that

around u′v′ after flipping the part of Θ around u or v. However, if such a thing happened,
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then the tubular neighborhood of the Θ structure for u′v′ would contain a Möbius band,

which is contrary to the closed surface being orientable. Therefore, Assumption 2 also

holds and hence G̃ is rotation compatible. □

A connected graph G embedded on a closed surface F 2 is called a triangulation on

F 2 if each face is a triangle. In particular, a triangulation on the sphere is often called

a maximal planar graph. Note that the link of a vertex in such a triangulation is a cycle

consisting of the only neighbors of the vertex and hence lkmax(G) is nothing but the

maximum degree of G. Although a covering of a connected graph which can be regarded

as a triangulation on a closed surface may not be sufficiently large in general, we can

conclude the same as in the previous lemma for such a covering with some conditions.

Lemma 7. Let G̃ be a triangulation on an orientable closed surface F 2 which covers

a connected graph G. If the distance between any two vertices of G̃ projecting to the same

vertex in G is greater than 3 and if any cycle of length 3 in G̃ bounds a 2-cell region on

F 2, then the covering p : G̃ → G is rotation compatible.

Proof. First suppose that Assumption 1 does not hold for G̃. Then there are two

distinct vertices v1 and v2 which project to the same vertex v in G and which induce

different rotations around v. Let Ci be the link of vi in G̃. Then these two cycles C1

and C2 project to different cycles around v. This implies that there are four vertices u1,

u2, u3 and u4 lying along p(C1) in this cyclic order and that two edges e1 = u1u3 and

e2 = u2u4 are contained in p(C2) but not in p(C1).

Consider the pre-images of e1 and e2 incident to C1, say ẽ1 and ẽ2. If one end of ẽ1
does not meet C1, it must be a vertex lying on the link of another vertex v3 projecting

to v and hence there is a path of length 3 joining v1 to v3. This contradicts the first

condition in the lemma. Thus, both ends of ẽ1 meet C1 and so do those of ẽ2. However,

those and v form a cycle of length 3 for each of ẽ1 and ẽ2. By the second condition,

each of the two cycles must bounds a 2-cell region, but it is impossible for them to do it

together, a contradiction. Therefore, we conclude that the links of all vertices projecting

to v are mapped to the same cycle which consists of the neighbors of v. This implies

that Assumption 1 holds for G̃.

Consider any edge uv of G̃ and the two faces uvw1 and uvw2 meeting along uv. The

Θ structure with two cycles uvw1 and uvw2 works as the Θ in the previous proof and we

can conclude that Assumption 2 holds. Therefore, G̃ is rotation compatible. □

A natural question arises; is any 3-connected planar covering of a nonplanar graph

always rotation compatible? Unfortunately, the answer is negative in general. We shall

show such an example for the negative answer to this question in Section 7. However,

we do not know yet whether or not a graph which has a planar covering has a rotation

compatible planar covering. If it were affirmative, then Planar Cover Conjecture would

be solved affirmatively by our later arguments.

4. Connectivity of coverings

Let G be a connected graph and let p : G̃ → G be its covering. Suppose that G̃ has a

2-cut of vertices, say u and v, that is, G̃ splits into two subgraphs H1 and H2 which meet

at two vertices u and v. Let G̃i be the graph obtained from Hi by identifying u and v. If
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p(u) = p(v) and if each of G̃1 and G̃2 is a covering of G with the natural projection, then

we say that G splits into two coverings G̃1 and G̃2 at two vertices u and v. For example,

the 4-fold covering of K3,3 given in Figure 1 splits into two 2-fold planar coverings at the

two white vertices labeled by c.

Lemma 8. If a covering G̃ of a 3-connected graph G is not 3-connected, then G̃ is

2-connected and splits into two coverings of G at two vertices.

Proof. Suppose that G̃ splits into two subgraphs H1 and H2 at two distinct ver-

tices u and v, that is, G̃ = H1 ∪H2 and H1 ∩H2 = {u, v} and assume that p(u) ̸= p(v).

Take two distinct neighbors x1 and x2 of u such that xi belongs to Hi for i = 1, 2.

Consider the projections of x1 and x2, that is, p(x1) and p(x2). They are two distinct

vertices of G since p projects the neighbors of u bijectively into G. Since G is 3-connected,

p(x1) and p(x2) can be joined by a path Q missing p(u) and p(v) in G. Thus Q and p(u)

with two edges p(ux1) and p(ux2) form a cycle in G, say Cu. The pull-back p−1(Cu) of the

cycle Cu in G̃ consists of mutually disjoint cycles missing v. However, one of such cycles

passing through u cannot be closed since it does not pass through v, a contradiction.

This denies the assumption of p(u) ̸= p(v), and hence we have p(u) = p(v).

We can consider a similar cycle Cu under the assumption of p(u) = p(v) and p−1(Cu)

consists of mutually disjoint cycles, too. Take one of them which passes through u, say

C. Then the copies of x1ux2 lie separately along C and we find one of those copies such

that “u” is placed at v and that “x1” and “x2” are placed in H2 and H1, respectively.

This implies that the neighbors of u lying in Hi and those of v lying in Hj project to the

same set of neighbors of p(u) (= p(v)) for {i, j} = {1, 2}.
Let Ni(u) and Ni(v) be the sets of neighbors of u and v lying in Hi, respectively.

Then p(Ni(u) ∪ Ni(v)) forms the whole neighborhood of p(u) in G. Furthermore, any

path w1w2 · · ·wk going from w1 = p(u) to any other vertex wk = x ∈ V (G) can be lifted

to a path Q̃ in Hi. If w2 ∈ p(Ni(u)) (or p(Ni(v))), then Q̃ starts from u (or v) and

terminates at a vertex x̃ in Hi. Since p(x̃) = x, Hi projects onto G with p(u) = p(v) and

hence the graph obtained from Hi with u and v identified to one vertex can be regarded

as a covering of G for i = 1, 2.

Suppose that G̃ splits into two subgraphs H1 and H2 which meets at a cut vertex u

in turn. Take two neighbors x1 and x2 of u lying in H1 and H2 separately. Since G is

3-connected, we can find a cycle C in G passing through p(x1), p(u) and p(x2) in this

order. The pull-back p−1(C) of C in G̃ must be closed, but it is impossible since x1 and

x2 lie in different blocks. Therefore, this is not the case and hence G̃ is 2-connected. □

It has been shown in [21] that if G̃ is a regular covering of a 3-connected graph G

and is not 3-connected, then G̃ can be obtained as a cyclic chain of mutually isomorphic

parts. That is, those parts are placed in a cyclic order, and each of them meets the next

one at a point. If we take one half of G̃ given in Lemma 8 so as to minimize its size, then

it will be one part in the cyclic chain.

Corollary 9. If a planar covering G̃ of a 3-connected graph G is not 3-connected,

then G̃ splits into two planar coverings at two vertices.

Proof. Embed a planar covering G̃ on the plane (or the sphere). By Lemma 8, if
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G̃ is not 3-connected, it splits into two subgraphs H1 and H2 meeting at a 2-cut {u, v}
and Hi with u and v identified is a covering of G, say G̃i for i = 1, 2. Let j be the

number different from i with {i, j} = {1, 2}. Shrink Hj to a point continuously on the

plane. Then the vertices u and v are identified to one vertex and we obtain the planar

embedding of G̃i. That is, G̃i is a planar covering of G. □
Corollary 10. If a 3-connected nonplanar G has a planar covering, then it has a

3-connected planar covering.

Proof. If a planar covering G̃ of G is not 3-connected, G has another planar

covering smaller than G̃ by Corollary 9. Therefore, the smallest planar coverings of a

3-connected graph G must be 3-connected. □

5. Proof scheme

First, we shall review the proof scheme given in [21]. Suppose that a connected

graph G has a finite regular planar covering G̃. For some technical reasons, we assume

that G̃ is 3-connected. Then G̃ can be faithfully embedded on the sphere, that is, any

automorphism of G̃ extends to an auto-homeomorphism over the sphere [17]. This implies

that its covering transformation group, say Γ, acts on the sphere S2 and hence G can

be embedded on its quotient space O2 = S2/Γ. This can be regarded as one of “elliptic

2-orbifolds”.

The notion of orbifolds has been introduced in Thurston’s Lecture Note [40], Chapter

13 and the 2-orbifolds have been classified completely. In particular, the elliptic 2-

orbifolds can be regarded as the quotient spaces of the sphere by suitable group actions

and their underlying space are homeomorphic to the disk, the sphere or the projective

plane. Therefore, our O2 must be one of those surfaces and G can be embedded on it

and hence also on the projective plane. When our technical assumption does not hold,

we carry out a kind of reduction, considering a suitable decomposition of coverings.

@
@@R

pN

G̃N

?

q

G̃H

�
��	 pH

G

F 2

?

p̄

�
��	
q̄

S2

@
@@Rr

O2

-

-

-

Figure 2. Proof scheme diagram

Here we would like to deal with planar coverings which admit no group action. To do

this, we need to modify the proof scheme as the diagram in Figure 2 suggests. We shall

explain its details in our proof of the theorem below. In particular, if G̃H is a regular

planar covering of G, then G̃N and F 2 coincide with G̃H and S2, respectively and the

diagram shrinks into that for the original proof scheme given in [21].

Theorem 11. A connected graph G has a planar covering which is rotation com-

patible if and only if G can be embedded on the projective plane.
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Proof. The sufficiency is clear since we can construct a 2-fold covering of G em-

bedded on the sphere as the pull-back of an embedding of G on the projective plane

which the sphere covers doubly. The covering of G so constructed is necessarily rotation

compatible since the antipodal map over the sphere acts on it as its covering transfor-

mation.

To show the necessity, suppose that G has an n-fold planar covering G̃ and that G̃ is

embedded on the oriented sphere S2. Then G̃ has a unique rotation system σ to exhibit

its embedding. Assume that the pair (G̃, σ) is rotation compatible. By the classification

of covering spaces, this covering G̃ is associated with a suitable subgroup H in π1(G)

of index n. Put G̃H = G̃ and denote its projection by pH : G̃H → G, according to our

notation.

Consider a tubular neighborhood U(G̃H) of G̃H embedded on S2. This looks like

a fattened G̃H and can be regarded as the union of small disks and rectangular bands

joining these disks. Each of the disks contains a vertex v of G̃H at its center and each

edge e of G̃H runs along the centerline of one of the bands. Let Dv and Be denote them,

respectively. The boundary of U(G̃H) decomposes into several mutually disjoint closed

curves, each of which lies near along the boundary walk of a face of G̃H on the sphere

S2. It should be noticed that if a vertex v of G̃H has a rotation σv = (u1u2 · · ·uk) with

k = deg v, then the edges vu1, vu2, . . . , vuk are placed radially around v, according to

the rotation σv.

By Corollary 4, there exists a finite regular covering pN : G̃N → G which factors

through pH and is associated with a normal subgroup N in π1(G). Put Γ = π1(G)/N .

This is the quotient group of π1(G) by N and acts on G̃N as the covering transformation

group of pN . That is, if two vertices ṽ and ũ project to the same vertex of G, then there

exists a covering transformation γ ∈ Γ such that γ(ṽ) = ũ.

Let q : G̃N → G̃H be the covering projection with pN = pH ◦ q. Then we can define a

rotation around each vertex ṽ ∈ q−1(v) by pulling back the rotation around v ∈ V (G̃H).

Let F 2 be the oriented closed surface derived from the rotation system σ̃ so defined. That

is, G̃N is embedded on F 2 to realize σ̃. Then G̃N is contained in its tubular neighborhood

U(G̃N ) on F 2 and U(G̃N ) decomposes into small disks Dṽ and rectangular bands Bẽ, as

well as U(G̃H) does. We may assume that q(Dṽ) = Dq(ṽ) and q(Bẽ) = Bq(ẽ). It is clear

that G̃N with the rotation system σ̃ is rotation compatible since the rotation around

each vertex ṽ is just a copy of that around q(ṽ) and the same color is assigned to both

ṽ and q(ṽ).

Here we should check up whether or not a covering transformation γ : G̃N → G̃N

extends over the tubular neighborhood U(G̃N ). Since Assumption 1 holds for (G̃N , σ̃), it

is clear that γ extends naturally over the disk Dṽ for each vertex ṽ of G̃N . Assumption

2 also holds for the edges of G̃N . Thus, any edge e of G̃N and γ(e) are both synchronous

or both non-synchronous for any covering transformation γ ∈ Γ.

Look at an edge ũ1ṽ1 of G̃N . Since the rotation compatibleness of G̃N does not de-

pend on the assignment of black and white to its vertices, we may assume that ũ1ṽ1 is

synchronous and that the two ends ũ1 and ṽ1 are both black after re-assigning colors.

Let ṽ1, ṽ2, . . . ṽk be the neighbors of ũ1 and let ũ1, ũ2 . . . ũh be those of ṽ1 and suppose

that they lie around ũ1 and ṽ1 in these cyclic orders according to the rotation σ̃. Then

the edges ũ1ṽ1, . . . , ũ1ṽk and ṽ1ũ1, . . . , ṽ1ũh are placed radially around ṽ1 and ũ1, respec-

tively. The boundary curve of U(G̃N ) goes first along ṽkũ1, turns around ũ1, runs along
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the band containing the edge ũ1ṽ1, turns again around ṽ1 and finally goes away along

ṽ1ũ2.

Under our assumption here, the edge γ(ũ1ṽ1) = γ(ũ1)γ(ṽ1) is synchronous as well as

ũ1ṽ1. If γ(ũ1) is black, then so is γ(ṽ1) and the same local structure arises around γ(ũ1ṽ1)

as we have seen around ũ1ṽ1 in the above. Then we can extend γ so as to map the band

containing ũ1ṽ1 onto the band containing γ(ũ1ṽ1). If γ(ũ1) and γ(ṽ1) are white, then

the local structure around γ(ũ1ṽ1) can be obtained from that around ũ1ṽ1 by turning it

over, and hence γ carries the band containing ũ1ṽ1 to the corresponding band, as well as

in the previous case.

Therefore, γ acts on U(G̃N ) as its auto-homeomorphism which carries the disks to

disks and the bands to bands and hence it carries the boundary curves of U(G̃N ) onto

those. This implies that each of those boundary curves, say ℓ, projects onto one of the

boundary curves of U(G̃H). The closed curve ℓ bounds a 2-cell region R̃ on the closed

surface F 2 by the way of construction and its projection q(ℓ) also bounds a 2-cell region

R on the sphere S2. Since ℓ wraps around its image several times naturally, we can define

a branched covering between two 2-cells R̃ and R with exactly one branch point at their

center and obtain a branched covering q̄ : F 2 → S2 between the surfaces which maps

G̃N onto G̃H as an unbranched covering, that is, q̄|G̃N
= q.

On the other hand, the action on U(G̃N ) by the covering transformation group Γ

extends to the action over the whole surface F 2. If a covering transformation γ ∈ Γ

sends a 2-cell region R̃ onto itself, then the branch point of R̃ discussed in the above

becomes a fixed point of γ. Under this situation, we can consider the quotient space O2

of the surface F 2 by the group action of Γ. Let p̄N : F 2 → O2 be the natural projection

from F 2 to O2. Let x be any point on S2 and choose one of its pre-images by q̄, say x̃,

that is, q̄(x̃) = x. Define a continuous map r : S2 → O2 by r(x) = p̄N (x̃) for any point

x ∈ S2. It is clear that r is well-defined since all pre-images of x on F 2 are equivalent

under the action of Γ.

Since the action of Γ on F 2 has only isolated branch points, its quotient space O2

becomes a closed surface. Let α be a non-trivial simple closed curve on the surface O2

missing the branch points. Then α̃ = r−1(α) is a simple closed curve on S2 as a set and

wraps around α several times, say m times, via the continuous map r. Since the sphere

S2 is simply connected, α̃ is trivial in π1(S
2) = {1} and hence its continuous image αm

also is trivial in π1(O
2). However, there is no closed surface, other than the sphere and

the projective plane, whose fundamental group π1 contains a non-trivial element of finite

order.

Therefore, O2 must be homeomorphic to either the sphere or the projective plane

since αm = 1 ∈ π1(O
2). The projection p̄N (G̃N ) is nothing but G itself by construction

and hence we conclude that G can be embedded on the projective plane in particular. □

We have discussed only rotation systems of coverings to construct an embedding of

G on the projective plane. However, the reader might know the method to construct

a 2-cell embedding on a non-orientable closed surface using not only rotations around

vertices but also twisted edges. We put a rectangular band along an untwisted edge flatly,

but place the band along a twisted edge after twisting it through 180◦. Notice that each

anti-synchromous edge in a rotation compatible covering of G projects to a twisted edge

in the 2-cell embedding of G on the projective plane. Assumption 2 guarantees it.
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We might be able to describe a proof of Theorem 11 more simply without topological

arguments. However, our proof scheme includes an argument on the existence of a

regular covering of an orientable closed surface which covers the sphere containing a

given rotation compatible covering of a graph. For our further research, it will be worthy

to clip it off, as the following corollary:

Corollary 12. Let G be a connected graph and suppose that G has a finite covering

pH : G̃H → G 2-cell embedded on an orientable closed surface F 2. Then pH is rotation

compatible if and only if there is a regular covering pN : G̃N → G 2-cell embedded on

an orientable closed surface F̃ 2 such that pN factors through pH and that any covering

transformation of G̃N extends to an auto-homeomorphism over F̃ 2.

Proof. We can read the second to the eighth paragraphs in the previous proof as

a proof of the necessity, replacing S2 and F 2 with F 2 and F̃ 2 in order.

To show the sufficiency, assume the existence of such a regular covering pN : G̃N → G

as in the corollary. This is the same situation as described in the eighth paragraph in the

previous proof and the covering transformation group Γ of G̃N acts on F̃ 2. This implies

that pN itself must be rotation compatible. Since the rotations around vertices in G̃H

can be regarded as copies of those in G̃N via the projection q̄ : F̃ 2 → F 2, we conclude

that pH also becomes rotation compatible. □

Since any sufficiently large 3-connected planar covering is rotation compatible by

Lemma 6, we can conclude Theorem 1 as an immediate corollary of Theorem 11. On the

other hand, Theorem 2 cannot be regarded as a corollary of the theorem unfortunately

at this stage since Lemma 7 includes two additional conditions for triangulations.

6. Planar coverings with small faces

Let p : G̃ → G be a 3-connected planar covering of a connected graph G and suppose

that G̃ is embedded on the sphere. If each face of G̃ is bounded by a short cycle, then

the maximum link length of G̃ also will be short. This might suggest that such a planar

covering tends to be sufficiently large or rotation compatible. So we shall discuss here

those planar coverings that have only faces of small size. We can show the following

lemma, repeating our arguments in the proof of Theorem 11 carefully:

Lemma 13. Let G be a connected graph and let G̃ be a finite planar covering of G

embedded on the sphere. If G̃ is rotation compatible for the rotation system exhibiting its

embedding and if each face is bounded by a cycle of length at most 5, then G̃ is a 1- or

2-fold covering of G and G can be embedded on the projective plane.

Proof. We have constructed a continuous map r : S2 → O2 in the proof of The-

orem 11. This is locally homeomorphic except the centers of faces of G̃ at most. The

map r works as a branched covering from such an exceptional face A of G̃ to r(A) with

exactly one branch point. Therefore, if the face A of G̃ is bounded by a cycle C of length

m, then the boundary of r(A), which is r(C) as a set, becomes a cycle and its length

|r(C)| is a divisor of m.

Since r(C) is contained in a simple graph G = r(G̃), we have |r(C)| ≥ 3. If C

wraps around r(C) twice or more, then we have |C| ≥ 6. Since the assumption of the
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lemma excludes such a case, the cycle C projects to r(C) isomorphically and the face

A projects to r(A) homeomorphically. Therefore, the whole r becomes a unbranched

covering projection from the sphere S2 to the closed surface O2. This happens only

when O2 is homeomorphic to the sphere or the projective plane, and r is 1-fold in the

former case and is 2-fold in the latter case. □

If we could prove that any maximal planar covering of G is rotation-compatible, then

Theorem 2 would be just a corollary of the above lemma. Unfortunately, we have never

found such a proof yet, but can prove the following theorem, using several known facts:

Theorem 14. Any maximal planar covering G̃ of a connected graph G is either G

itself or a 2-fold covering of G. In the latter case, G is nonplanar and can be embedded

on the projective plane as its triangulation.

Proof. Let G̃ be an n-fold maximal planar covering of G and suppose that G̃

is embedded on the sphere. Then each face of G̃ is triangular and we have 3|V (G̃)| −
|E(G̃)| = 6 by Euler’s formula V −E+F = 2 with 2E = 3F . Assigning |V (G̃)| = n|V (G)|
and |E(G̃)| = n|E(G)| to this, we obtain the following equality:

n · (3|V (G)| − |E(G)|) = 6

Since all variables in the above are integers, n must be one of the divisors of 6.

If G itself is planar, then we have 3|V (G)| − |E(G)| ≥ 6 in general, and hence n = 1

and 3|V (G)| − |E(G)| = 6. This implies that G̃ must coincide with G, which is the first

option in the theorem. Otherwise, that is, if G is not planar, then n must be even; it

has been known that any planar covering of a nonplanar graph is even-fold by [2]. This

implies that n is equal to either 2 or 6.

Suppose that n = 6. Then we have 3|V (G)| − |E(G)| = 1. If G could be embedded

on the projective plane, then we would have 3|V (G)| − |E(G)| ≥ 3 by Euler’s formula

for the projective plane. Thus, G cannot be embedded on the projective plane although

it has a planar covering.

This implies that G is one of possible counterexamples to Planar Cover Conjecture,

which have been listed in [12]. The list consists of sixteen types of those graphs including

K1,2,2,2 and it has been known that if one of them has an n-fold planar covering, then

so does K1,2,2,2. On the other hand, it has been proved in [34, 39] that K1,2,2,2 has no

n-fold planar covering for n ≤ 10, and hence all possible counterexamples do not have

any 6-fold planar covering in particular. So does not G, a contradiction.

Therefore, G̃ is a 2-fold planar covering of G and hence it is a regular covering.

Since any triangulation on a closed surface, except K3, is 3-connected in general, G̃ can

be embedded faithfully on the sphere and its covering transformation group acts on the

sphere. Thus, G̃ becomes rotation compatible. By Lemma 13, G can be embedded on the

projective plane and each triangular face of G̃ on the sphere projects homeomorphically

to a face of G on the projective plane. Therefore, G triangulates the projective plane. □

We used Ota’s result [34] on possible planar coverings of K1,2,2,2 to prove the previous

theorem. However, we can show that the sixteen graphs listed as possible counterexample

to Planar Cover Conjecture in [12] and those obtained from them by adding “3-patches”
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cannot become candidates for G, directly evaluating the value of 3|V (G)| − |E(G)|; it
will not be equal to 1 for all of them.

A quadrangulation on a closed surface is a simple graph G embedded on the surface

such that each face is bounded by a cycle of length 4. In particular, it is easy to see that

any quadrangulation on the sphere is a bipartite graph. Arguments on bipartite planar

coverings in a more general situation can be found in [31]. Here we shall consider only

those coverings that quadrangulate the sphere.

Theorem 15. Let G be a 2-connected graph which is not planar and is not biparite.

If G has a planar covering p : G̃ → G such that G̃ is a 3-connected and quadrangulates

the sphere, then G can be embedded on the projective plane as a quadrangulation and G̃

is 2-fold.

Proof. Suppose that G̃ is an n-fold covering of G and embed G̃ on the sphere as

a quadrangulation. Then we have 2|V (G̃)| − |E(G̃)| = 4 by Euler’s formula and hence

n · (2|V (G)| − |E(G)|) = 4. This implies that n = 2 or 4 since G is nonplanar. If n = 2,

then the embedding of G̃ on the sphere is faithful since G̃ is 3-connected and its covering

transformation group Γ of order 2 acts on the sphere, leaving G̃ invariant.

Let u1v1u2v2 be any cycle of length 4 which bound a quadrilateral face of G̃. If

p(u1) = p(u2), then the two edges p(u1v1) and p(u2v1) would be a pair of multiple edges.

This is contrary to our assumption that any quadrangulation is simple. Therefore, we

have p(u1) ̸= p(u2) and similarly p(v1) ̸= p(v2), and hence the cycle u1v1u2v2 projects

isomorphically to a cycle of length 4 in G. This implies that each quadrilateral face of G̃

does not contain a branch point by the action of Γ and hence the projection p extends

to an unbranched covering projection p̄ : S2 → S2/Γ. Then S2/Γ is homeomorphic to

the projective plane, and the theorem follows.

Now suppose that n = 4. Since G is not bipartite, the covering p : G̃ → G factors

through the canonical bipartite covering b : B(G) → G, which is 2-fold, as shown in [20].

That is, there is a covering projection p′ : G̃ → B(G) with p = b ◦ p′. Since p′ is 2-fold,

we can carry out the same argument as in the previous, replacing G with B(G), and

conclude that B(G) can be embedded on the projective plane as a quadrangulation.

Therefore, the bipartite graph B(G) is a projective-planar 2-fold covering of the 2-

connected nonplanar graph G. By the theorem proved in [29], B(G) must be planar. The

structures of embeddings of planar graphs on the projective plane have been classified

into three types in [15] and hence B(G) must have one of the three structures. Each of

the structures has some ambiguous parts depicted as shaded regions and each of those

regions should be replaced with a concrete planar graph.

Since B(G) is embedded on the projective plane as a quadrangulation, each face must

be quadrilateral. The pictures shown in [15] contains several white regions and they

correspond to some faces of embeddings on the projective plane. However, it is easy to

see that we cannot subdivide the boundaries of shaded parts to obtain a quadrangulation

having no self-loops and no multiple edges and hence the quadrangulation B(G) cannot

be obtained by such a way, a contradiction. Therefore, n is not equal to 4. □
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7. Examples

We shall illustrate our theory with an example to understand it visually. See the

picture depicted in Figure 3, which consists of a big disk with one hole looking like a CD

and one of its quarters.

Figure 3. An 8-fold regular covering of K3,3 on the torus

First look at the quarter placed in the left. If we deform the two circular arcs along

its boundary to be straight line segments of the same length in parallel, then it looks

like a square with four corners labeled by two X’s and two Y ’s alternately. Furthermore,

deform it into a disk homeomorphically. Then we obtain the usual picture to present

K3,3 embedded on the projective plane, where each antipodal pair of the points lying

along the boundary of the disk should be identified.

The third quadrant of the disk with a hole placed in the right is the same one as the

left piece except the labels of vertices and hence it can be deformed into a square. Now

we have two squares. Bend each of these, pushing them to the front and to the back, and

identify two pairs of their vertical sides to form a cylinder standing vertically which has

two holes at its top and bottom. Then the vertices having the same labels are placed in

point-symmetrical positions, but they have different colors, black and white. (This is not

a coloring to indicate the bipartition of K3,3.) If we close up or shrink each of the two

ends of the cylinder, then we obtain a 2-fold covering of K3,3 embedded on the sphere.

Now make the cylinder suitably longer and bend it to form a shape like a water pipe

joint. Place it in the position of the third quadrant piece. Then we can see the same

picture on the front face as one drawn in the piece and the picture drawn in the left piece

goes to the back face.

Find the straight line passing through one pair of X and Y vertically. Make a copy

of the pipe joint, rotating the pipe joint around the vertical line through 180◦ and join

the original and its copy to form a longer pipe joint whose two holes look up. It should

be noticed that we can see the same picture as drawn in the lower half of the disk with

a hole from our side. If we close the two holes of our longer pipe joint, identifying each

pair of horizontal arcs joining X and Y along their holes, then we obtain a closed surface

homeomorphic to the sphere and it includes the 4-fold planar covering of K3,3 given in
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Figure 1. Find two cycles 2a3b1c of length 6 consisting of black vertices and one cycle of

length 12 passing through only white vertices.

Finally rotate our longer pipe joint upward around the horizontal line passing through

two X’s and two Y ’s through 180◦ to form the torus together with the original lower

longer pipe joint. Then the torus so constructed includes an 8-fold covering K̃ of K3,3. It

is clear that the cyclic group of order 2 generated by the rotation around the horizontal

axis acts on K̃ to derive the 4-fold covering of K3,3 given in Figure 1 as its quotient.

Since the torus has been decomposed into eight fundamental pieces, if any pair of

such pieces can be transfered by an auto-homeomorphism over the torus, then we can

conclude that K̃ is a regular covering of K3,3. Actually, we can find two generators of

its covering transformation group, as follows. One is the rotation around the vertical

lines passing through X’s and Y ’s, say a and we have a2 = 1. The other one comes from

the antipodal map over the cylinder corresponding to the third quadrant. Extend it to

the whose torus. Then it switches the second and the fourth quadrants of the torus and

induces the antipodal map over the cylinder corresponding to the first quadrant.

It is easy to see that a suitable composition of the two generators carries any one of

the eight fundamental pieces to another and that they generate the dihedral group D4 of

order 8. Notice that the first generator preserves the colors of vertices while the second

one switches black and white.

Therefore, the 8-fold covering of K3,3 on the tours depicted in Figure 3 is a regular

covering of K3,3 which factors through the rotation compatible 4-fold planar covering of

K3,3 given in Figure 1. This is the one constructed in our proof of Theorem 11 for this

example and the 2-orbifold O2 = F 2/Γ is the projective plane which we have constructed

from one of the quarters of the CD at the beginning. Note that the 2-orbfold O2 for this

example has two branch points of index 2 corresponding to X and Y in the figure.

The Euler number χ(O2) of a 2-orbifold O2 has been introduced in [40], Chapter

13, under more general situation. Suppose that O2 is decomposed into cellular pieces

{c1, c2, . . .} like a CW complex. Assign a natural number idx(ci) to each cell ci to

represent the characteristic of its singularity which ci contains. For example, if ci contains

only one branch point which corresponds to a 1/n rotation, then idx(ci) = n, and if it

contains no singularity, then idx(ci) = 1. The Euler number of O2 is defined by:

χ(O2) =
∑
ci

(−1)dim ci
1

idx(ci)

If O2 has no singularity, then χ(O2) coincides with its Euler number as a surface. It

is important that if Õ2 is an n-fold covering of O2 in the sense of orbifolds, then we

have χ(Õ2) = nχ(O2) (Proposition 13.3.4 in [40]), which corresponds to what is called

“Hurwitz’s formula”.

Our 2-orbifold O2 is homeomorphic to the projective plane and is decomposed into

four 2-cells by the embedding of K3,3 which has 6 vertices and 9 edges. The hexagonal

face c1b3a2 and the quadrilateral face c3b2 contain branch points X and Y of index 2,

respectively and two other faces contain no singularity. Thus, we can calculate the Euler

number of O2 as follows:

χ(O2) = 6− 9 +

(
1

2
+

1

2
+ 1 + 1

)
= 0
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Furthermore, we have χ(F 2) = 8χ(O2) = 0. Since the only orientable closed surface with

Euler number 0 is the torus, this is consistent with what we have observed above.

Figure 4. A 4-fold cyclic covering of K3,3

Figure 4 presents another example of a 4-fold planar covering of K3,3. The labels of

vertices are different from those in Figure 1 and suggest that K3,3 decomposes into the

cycle abcd of length 4 and one bridge containing two vertices x and y. This covering is

regular since the cyclic group Z4 of order 4 acts on it. A generator of this action rotates

the figure through 90◦ and exchanges the inner and outer dodecagons. The vertices are

colored by black and white in the same rule as in Figure 1 and this also is rotation

compatible.

Consider the replacement of the two edges labeled xy in the upper half of the figure

with two dashed lines forming an ellipse together. This yields another 4-fold covering of

K3,3 and switches the colors of x’s and y’s joined by the replaced edges. The new edges

join black and white while the edges xy in the lower half still join the same colors. Thus,

the new 4-fold covering of K3,3 is not rotation compatible. Similarly, we can replace the

edges xy with those along the lower ellipse in addition to obtain one more 4-fold covering

of K3,3 and it will turn back to be a rotation compatible one.

It is well-known that any 3-connected nonplanar graph other than K5 contains a sub-

division of K3,3 and such a nonplanar graph can be obtained from K3,3 by adding paths

in suitable places in order, preserving the 3-connectedness of graphs. This deformation

has been introduced and called a bridging in [16] where the author proved “the splitter

theorem” for 3-connected graphs. If we add a path to K3,3 drawn in Figure 4 to join the

midpoints of ab and xy, and also add the four corresponding paths to the 4-fold covering,

then the four edges labeled by xy in the covering cannot be flipped out so well as in the

previous. Furthermore, adding enough many paths to K3,3 to make the covering be a

fine mesh will yield a sufficiently large covering, which is rotation compatible.

What we should do in the next might be to discuss whether or not we can deform a

given planar covering into a rotation compatible one, focusing on the structure of K3,3

with added paths.
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