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Abstract. In this paper, we formulate a new conjecture concerning Kato’s Euler system
for elliptic curves E over Q. This ‘Generalized Perrin-Riou Conjecture’ predicts a precise
congruence relation between a Darmon-type derivative of the zeta element of E over an
arbitrary real abelian field and the critical value of an appropriate higher derivative of
the L-function of E over Q. We prove the conjecture specializes in the relevant case of
analytic rank one to recover Perrin-Riou’s conjecture on the logarithms of zeta elements,
and also that, under mild technical hypotheses, the ‘order of vanishing’ part of the con-
jecture is unconditionally valid in arbitrary rank. This approach also allows us to prove a
natural higher-rank generalization of Rubin’s formula concerning derivatives of p-adic L-
functions and to establish an explicit connection between the p-part of the classical Birch
and Swinnerton-Dyer Formula and the Iwasawa Main Conjecture in arbitrary rank and
for arbitrary reduction at p. In a companion article we prove that the approach developed
here also provides a new interpretation of the Mazur-Tate Conjecture that leads to the
first (unconditional) theoretical evidence in support of this conjecture for curves of strictly
positive rank.
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1. Introduction

1.1. Background. A central problem in modern number theory is to understand the arith-
metic meaning of the values of zeta and L-functions. The Birch and Swinnerton-Dyer
Conjecture and main conjecture in Iwasawa theory are important instances of this problem,
being respectively related to the Hasse-Weil L-function of an elliptic curve and to the p-adic
L-function of an appropriate motive.

For an elliptic curve E defined over Q, significant progress on the problem was made
by Kato in [23] who used Beilinson elements in the K-theory of modular curves to define
canonical ‘zeta elements’ in étale (Galois) cohomology groups that could be explicitly related
to the values of Hasse-Weil L-functions.

To be a little more precise we fix an odd prime p, a finite abelian extension F of Q, a finite
set of places S of Q that contains the archimedean place, p, all primes that ramify in F and
all primes at which E has bad reduction. We write OF,S for the subring of F comprising
elements that are integral at all non-archimedean places whose residue characteristic does
not belong to S and Tp(E) for the p-adic Tate module of E.

Then the zeta element zF constructed by Kato belongs to the étale cohomology group
H1(OF,S , Tp(E)) and is explicitly related via the dual exponential map to the value at one
of the Hasse-Weil L-function of E (we assume the integrality of Kato’s zeta element for
simplicity: for more precise statements see §2). As F varies over subfields of finite degree
of the cyclotomic Zp-extension of Q, these elements zF form a projective system that can
be used to recover the p-adic L-function of E. In addition, as F varies more generally, the
elements zF form an Euler system and so can be used to bound the p-adic Selmer group of E.
In this way zeta elements have led to partial results on both the main conjecture and Birch
and Swinnerton-Dyer Conjecture for E. For this reason, such elements have subsequently
been much studied in the literature and have led to numerous important results.

Our main purpose in these articles is to investigate a conjectural property of Kato’s ele-
ments that it seems has not been observed previously and to demonstrate that this property,
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whenever valid, has significant applications. The conjecture itself predicts a precise link be-
tween a ‘Darmon-type’ derivative of zF for any given F and the value at the critical point
of an appropriate higher derivative of the L-function of E over Q. This conjectural link
constitutes a simultaneous refinement of well-known conjectures of Perrin-Riou [34] and of
Mazur and Tate [29] and will be described in more detail in the next section.

Although we shall not pursue it here, it seems reasonable to expect that the general
approach we develop can also be applied to elliptic curves with complex multiplication,
with the role of Kato’s zeta elements being replaced by elliptic units twisted by a Hecke
character.

We also expect that it should be possible to extend our approach to the setting of abelian
varieties and to modular forms and their families, and we hope to return to these questions
in a subsequent article.

1.2. Conjectures and results at finite level. We shall now give an overview of the
central conjecture that we formulate and the evidence for it that we have so far obtained.

1.2.1. At the outset we fix a finite real abelian extension F of Q and set G := Gal(F/Q).
Then, following a general idea introduced by Darmon in [15], the key object of our study
will be the element

NF/Q(zF ) :=
∑
σ∈G

σ(zF )⊗ σ−1

of H1(OF,S , Tp(E))⊗Zp Zp[G].
We write r for the rank of E(Q) and assume that r > 0, that E(Q) has no element

of order p and that the p-part of the Tate-Shafarevich group of E/Q is finite. Then, un-
der these hypotheses, in Definition 2.4 we shall use the leading term at s = 1 of L(E, s)
to (unconditionally) define a canonical ‘Birch and Swinnerton-Dyer element’ ηBSD in the
dimension one vector space over Cp that is spanned by

∧r
Zp
H1(ZS , Tp(E)). With I denot-

ing the augmentation ideal of Zp[G], we shall also define (in §2.3) a canonical ‘Bockstein
regulator map’

BocF :
∧r

Zp

H1(ZS , Tp(E)) −→ H1(ZS , Tp(E))⊗Zp I
r−1/Ir.

Finally we note the Zp-module H1(OF,S , Tp(E)) is free and so H1(OF,S , Tp(E)) ⊗Zp I
r−1

identifies with a submodule of H1(OF,S , Tp(E))⊗Zp Zp[G].
Then, in terms of this notation, the central conjecture of this article can be stated as

follows.

Conjecture 1.1 (The Generalized Perrin-Riou Conjecture).

(i) (‘Order of vanishing’) NF/Q(zF ) belongs to H1(OF,S , Tp(E))⊗Zp I
r−1.

(ii) (‘Integrality’) ηBSD belongs to
∧r

Zp
H1(ZS , Tp(E)).

(iii) (‘Leading term formula’) The image of NF/Q(zF ) in H1(OF,S , Tp(E)) ⊗Zp I
r−1/Ir

is equal to BocF (η
BSD).

Remark 1.2. A precise statement of Conjecture 1.1 will be given as Conjecture 2.12. For
the moment, we note a key advantage of its formulation is that it uses a construction of
regulators that works in the same way for all reduction types. A further crucial advantage
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is that, in the case r = 1, the conjecture takes a particularly simple form and can be proved
under various natural hypotheses.

In the rest of this section we outline the evidence that we have obtained for the above
conjecture and also explain why it constitutes a simultaneous refinement and generalization
of conjectures of Perrin-Riou and of Mazur and Tate.

1.2.2. We observe first that the containment predicted by Conjecture 1.1(i) can be studied
by using the equivariant theory of Euler systems that was recently described by Sakamoto
and the first and third authors in [10]. In particular, by using this approach we are able to
prove that Conjecture 1.1(i) is valid under certain mild hypotheses.

For example, the following concrete result will follow directly from stronger results that
we prove in §3. This result is a natural analogue for zeta elements of the main result of
Darmon [15, Th. 2.4] concerning Heegner points.

Theorem 1.3. The containment of Conjecture 1.1(i) is valid if all of the following condi-
tions are satisfied.

(a) p > 3;
(b) the p-primary part of X(E/F ) is finite;
(c) the image of the representation GQ → Aut(Tp(E)) ' GL2(Zp) contains SL2(Zp);
(d) for every prime number ` in S the group E(Qℓ) contains no element of order p.

Remark 1.4. The assumption (a) in Theorem 1.3 can be removed by using the theory of
Kolyvagin systems for p = 3 which has recently been developed by Sakamoto [38].

Concerning Conjecture 1.1(ii), we can show in all cases that the predicted containment
is valid whenever the p-part of the Birch and Swinnerton-Dyer Formula for E over Q, or
‘BSDp(E)’ as we shall abbreviate it in the sequel, is valid. (In fact, a stronger version of
this result will be proved in Proposition 2.6).

Finally, to discuss the prediction of Conjecture 1.1(iii) we shall initially specialize to the
case that the analytic rank ords=1L(E, s) of E is equal to one. In this case, well-known
results of Gross and Zagier and of Kolyvagin (amongst others) imply that r = 1 and so
parts (i) and (ii) of Conjecture 1.1 are valid trivially.

It is also straightforward to check in this case that the equality in Conjecture 1.1(iii) is
valid for every choice of field F if and only if one has zQ = ηBSD. By analysing the latter
equality, we shall thereby obtain the explicit interpretation of this case of Conjecture 1.1
that is given in the next result. (A proof of this result will be explained in Remark 2.13(ii)).

In the sequel we write LS(E, s) for the S-truncated Hasse-Weil L-function of E.

Theorem 1.5. If E has analytic rank one, then Conjecture 1.1 is valid for any field F if
and only if one has zQ ∈ H1

f (Q, Tp(E)) and

logω(zQ) =
L′
S(E, 1)

Ω+ · 〈x, x〉∞
logω(x)

2.

Here logω : H1
f (Q, Tp(E)) → Qp is the formal logarithm associated to the (fixed) Néron

differential ω, L′
S(E, 1) denotes the value at s = 1 of the first derivative of LS(E, s), Ω

+ is
the real Néron period, x is a generator of E(Q) modulo torsion and 〈−,−〉∞ is the Néron-
Tate height pairing.
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The displayed equality in Theorem 1.5 is equivalent to the central conjecture formulated
by Perrin-Riou in [34, §3.3]. This result therefore allows us to regard Conjecture 1.1 as
a natural extension of Perrin-Riou’s conjecture to elliptic curves of arbitrary rank and, at
the same time, to interpret results in support of Perrin-Riou’s conjecture (see, for example,
Büyükboduk [13, Th. 2.4(iv)], Venerucci [45, Th. A], Büyükboduk, Pollack, and Sasaki
[14] and Bertolini, Darmon, and Venerucci [4]) as evidence in support of Conjecture 1.1 in
the case of analytic rank one.

In a different direction, we show in the companion article [9] that the formalism leading
to Conjecture 1.1 also gives rise to a new interpretation of the Mazur-Tate Conjecture (from
[29]) concerning congruence relations between modular symbols and the discriminants of
height pairings defined in terms of geometrical bi-extensions, and thereby leads to the first
(unconditional) theoretical evidence in support of the latter conjecture for elliptic curves of
strictly positive rank.

We hope these observations give an indication of the interest of the general approach
underlying the formulation of Conjecture 1.1. In this regard, we observe that one of the key
motivations behind the development of this approach was an attempt to formulate a natural
analogue for elliptic curves of the conjecture formulated in [6, Conj. 5.4] in the setting of
the multiplicative group. We finally recall that the latter conjecture was itself formulated
as a natural strengthening of the ‘refined class number formula for Gm’ that was previously
conjectured by the third author [39], and (independently) by Mazur and Rubin [28].

1.3. Iwasawa-theoretic considerations. In this section we discuss how the simultaneous
study of Conjecture 1.1 for the family of intermediate fields F of the cyclotomic Zp-extension
Q∞ of Q sheds light on a range of important problems.

1.3.1. To explain this, for each natural number n we write Qn for the unique subfield of
Q∞ of degree pn over Q.

We know the validity of Conjecture 1.1(i) with F = Qn (see Proposition 4.4), and we
write κn for the image of NQn/Q(zQn) under the natural projection

H1(OQn,S , Tp(E))⊗Zp I
r−1
n → H1(OQn,S , Tp(E))⊗Zp I

r−1
n /Irn,

where In denotes the augmentation ideal of Zp[Gal(Qn/Q)].
Then we can show the element κn belongs to the subgroup H1(ZS , Tp(E)) ⊗Zp I

r−1
n /Irn

of H1(OQn,S , Tp(E))⊗Zp I
r−1
n /Irn and, moreover, that as n varies the elements κn are com-

patible with the natural projection maps

H1(ZS , Tp(E))⊗Zp I
r−1
n /Irn → H1(ZS , Tp(E))⊗Zp I

r−1
n−1/I

r
n−1.

Hence, writing I for the augmentation ideal of Zp[[Gal(Q∞/Q)]], one obtains an element
of H1(ZS , Tp(E))⊗Zp I

r−1/Ir by setting

κ∞ := lim←−
n

κn ∈ lim←−
n

H1(ZS , Tp(E))⊗Zp I
r−1
n /Irn ' H1(ZS , Tp(E))⊗Zp I

r−1/Ir

(cf. Definition 4.5; we note that no conjecture is needed to deduce the existence of κ∞).
In addition, the family of maps (BocQn)n induces a canonical homomorphism

Cp ·
∧r

Zp

H1(ZS , Tp(E))→ Cp ·H1(ZS , Tp(E))⊗Zp I
r−1/Ir
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and the fact that the Zp-module Ir−1/Ir is torsion-free implies that the natural map

H1(ZS , Tp(E))⊗Zp I
r−1/Ir → Cp ·H1(ZS , Tp(E))⊗Zp I

r−1/Ir

is injective. In particular, this allows one to formulate Conjecture 1.1(iii) for the family of
elements NQn/Q(zQn) without having to assume the validity of Conjecture 1.1(ii).

We shall show (in Proposition 4.14) that this version of Conjecture 1.1(iii) is equivalent
to the following prediction.

In the sequel we write L
(r)
S (E, 1) for the coefficient of (s− 1)r in the Taylor expansion at

s = 1 of LS(E, s).

Conjecture 1.6 (Conjecture 4.8). If r is also equal to the analytic rank ords=1L(E, s) of
E, then one has

κ∞ =
L
(r)
S (E, 1)

Ω+ ·R∞
·RBoc

ω ,

where Ω+ is the real Néron period, R∞ is the Néron-Tate regulator and RBoc
ω is the ‘Bock-

stein regulator’ in H1(ZS , Tp(E))⊗Zp I
r−1/Ir that is introduced in Definition 4.10.

Remark 1.7. If r is equal to ords=1L(E, s), then the r-th derivative of LS(E, s) is holo-

morphic at s = 1 and its (non-zero) value at s = 1 is equal to r! · L(r)
S (E, 1).

Remark 1.8. We will show that the Bockstein regulator that occurs in Conjecture 1.6 has
the following properties.
(i) If r = 1, then

RBoc
ω = logω(x) · x

for any element x of E(Q) that generates E(Q) modulo torsion (cf. Remark 4.12).
(ii) Suppose that E does not have additive reduction at p and write 〈−,−〉p for the classical
p-adic height pairing. Then for any element x of E(Q) one has

〈x,RBoc
ω 〉p = logω(x) ·Rp,

where Rp denotes the p-adic regulator (cf. Theorems 5.6 and 5.11).

If r = 1, then κ∞ simply coincides with zQ and so Remark 1.8(i) implies that Conjecture
1.6 is valid if and only if one has

zQ =
L′
S(E, 1)

Ω+ ·R∞
logω(x) · x

for any element x of E(Q) that generates E(Q) modulo torsion. This equality is equivalent
to Perrin-Riou’s conjecture.

In addition, whilst Remark 1.8(ii) implies that the Bockstein regulator RBoc
ω is a variant

of the classical p-adic regulator, a key role will be played in our approach by the fact that
RBoc
ω can be defined even in the case that E has additive reduction at p (in which case a

construction of the p-adic regulator is still unknown).
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1.3.2. To interpret Conjecture 1.6 in terms of p-adic L-functions, we must first prove a
‘Generalized Rubin Formula’ for the element κ∞.

To discuss this result, and some of its consequences, we assume until further notice that
E does not have additive reduction at p.

If E has good reduction at p, then we write α for an allowable root of the Hecke polynomial
X2 − apX + p. We set β := p/α.

If E has non-split multiplicative reduction at p, then we set α := −1 and β := −p.
We also write L(r)S,p for the ‘r-th derivative’ of the S-truncated p-adic L-function LS,p of

E (for a precise definition of this term see §6.2).

Theorem 1.9 (The Generalized Rubin Formula, Theorem 6.2).

(i) If E has good or non-split multiplicative reduction at p, then for every element x of
E(Q) one has

〈x, κ∞〉p =
(
1− 1

α

)−1(
1− 1

β

)
logω(x) · L

(r)
S,p.

(ii) If E has split multiplicative reduction at p, then for every element x of E(Q) one
has

〈x, κ∞〉p · L =

(
1− 1

p

)
logω(x) · L

(r+1)
S,p ,

where L denotes the ‘L-invariant’ of E (see Remark 6.4).

Remark 1.10. If r = 1, then one has κ∞ = zQ and Theorem 1.9(i) recovers the formula
that is proved by Rubin in [36, Th. 1(ii)] in the case that E has good ordinary reduction
at p.

We shall then show that this result has the following consequences.

Corollary 1.11 (Corollary 6.7). The Generalized Perrin-Riou Conjecture (Conjecture 1.6)
implies the following ‘p-adic Beilinson Formula’: one has(

1− 1

α

)−1(
1− 1

β

)
L(r)S,p =

L
(r)
S (E, 1)

Ω+ ·R∞
Rp

if E has good or non-split multiplicative reduction at p, and

L(r+1)
S,p = L ·

L
(r)
S\{p}(E, 1)

Ω+ ·R∞
Rp

if E has split multiplicative reduction at p.

In the next result we refer to the Iwasawa Main Conjecture for E and Q∞/Q that is
formulated in Conjecture 7.1.

Corollary 1.12 (Corollary 7.4). Assume that the p-primary part of X(E/Q) is finite and
E does not have additive reduction at p. Then the Iwasawa Main Conjecture for E and
Q∞/Q implies the validity up to multiplication by an element of Z×

p of the p-adic Birch and
Swinnerton-Dyer Formula for E.



8 DAVID BURNS, MASATO KURIHARA AND TAKAMICHI SANO

Remark 1.13. If the p-adic height pairing is non-degenerate, then the result of Corollary
1.12 was first proved by Schneider [41] (in the good ordinary case), Jones [21] (in the
multiplicative case) and Perrin-Riou in [34] (in the good supersingular case).

1.3.3. Going beyond the result of Corollary 1.12, our approach also allows the detailed
analysis of descent arguments in Iwasawa theory without restrictive hypotheses on either
the analytic rank or reduction type of E (and hence, therefore, for curves with additive
reduction at p).

For example, in this way we are able to prove the following analogue for E of the main
result of our earlier article [7] concerning the equivariant Tamagawa Number Conjecture
for Gm (cf. Remark 7.7). We note, in particular, that since the following result imposes no
restrictions on the reduction of E at p, it sheds some new light on the link between main
conjectures in Iwasawa theory and the classical Birch and Swinnerton-Dyer Conjecture.

Theorem 1.14 (Theorem 7.6). Assume all of the following hypotheses:

• X(E/Q) is finite;
• the analytic rank of E is equal to the rank r of E(Q);
• the Iwasawa Main Conjecture of Conjecture 7.1 is valid;
• the Generalized Perrin-Riou Conjecture of Conjecture 1.6 is valid;
• the Bockstein regulator RBoc

ω does not vanish.

Then there exists an element u of Z×
p such that

L(r)(E, 1)

Ω+ ·R∞
= u · #X(E/Q) · Tam(E)

#E(Q)2tors
,

where Tam(E) denotes the product of the Tamagawa factors of E/Q.
In particular, the conjecture BSDp(E) is valid.

1.4. General notation. For the reader’s convenience we collect together some of the gen-
eral notation that will be used throughout this article.

At the outset we fix an odd prime number p. The symbol ` will also usually denote a
prime number.

For a field K, the absolute Galois group of K is denoted by GK .
We fix an algebraic closure Q of Q. We also fix an algebraic closure Qp of Qp and fix an

embedding Q ↪→ Qp.

For a positive integer m, we denote by µm ⊂ Q the group of m-th roots of unity.
For an abelian group X, we use the following notations:

• Xtors: the subgroup of torsion elements;
• Xtf := X/Xtors: the torsion-free quotient;
• rank(X) := rankZ(Xtf);
• X[p]: the subgroup of elements annihilated by p;
• X[p∞]: the subgroup of elements annihilated by a power of p.

If X is endowed with an action of complex conjugation, we denote by X+ the subgroup
of X fixed by the action.

If X is an R-module (with R a commutative ring), we set

X∗ := HomR(X,R).
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Note that this notation has ambiguity, since X may be regarded as an R′-module with
another ring R′ and X∗ can mean HomR′(X,R′). However, this ambiguity would not make
any danger of confusion since the meaning is usually clear from the context.

For an element x ∈ X, we denote by 〈x〉R the submodule generated by x over R. We
abbreviate it to 〈x〉 when R is clear from the context.

Suppose that X is a free R-module with basis {x1, . . . , xr}. We denote by

x∗i : X → R

the dual of xi, i.e., the map defined by

xj 7→

{
1 if i = j,

0 if i 6= j.

For a perfect complex C of R-modules, we denote by detR(C) the determinant module
of C. This module is understood to be a graded invertible R-module (with the grade
suppressed from the symbol).

For a number field F and a finite set S of places of Q, we denote by OF,S the ring of
SF -integers of F , where SF denotes the set of places of F lying above a place in S. In
particular, OQ,S is denoted simply by ZS . We denote by RΓ(OF,S ,−) the etale cohomology
complex RΓét(Spec(OF,S),−).

As usual, the notation H i
f (F,−) indicates the Bloch-Kato Selmer group and H i

f (Fv,−)
the Bloch-Kato local condition for a place v of F .

For an elliptic curve E defined over Q, we denote by L(E, s) the Hasse-Weil L-function
of E. For a finite set S of places of Q, we denote by LS(E, s) the S-truncated L-function
of E. We denote by L∗

S(E, 1) the leading term at s = 1.
The Tate-Shafarevich group of E over a number field F is denoted by X(E/F ). The

product of Tamagawa factors of E/Q is denoted by Tam(E).
We use some other standard notations concerning elliptic curves and modular curves,

such as Γ(E,Ω1
E/Q), H1(E(C),Q), E1(Qp), Y1(N), X1(N), etc.

2. Formulation of the Generalized Perrin-Riou Conjecture

We fix a prime number p and assume throughout the article that p is odd.

2.1. Kato’s Euler system. Let E be an elliptic curve over Q of conductor N .
Fix a modular parametrization φ : X1(N) → E and write f =

∑∞
n=1 anq

n for the
normalized newform of weight 2 and level N corresponding to E.

Let Tp(E) be the p-adic Tate module of E and set V := Qp ⊗Zp Tp(E). Let T be a
GQ-stable sublattice of V that is given by the image of the following map:

H1(Y1(N)×Q Q,Zp(1)) ↪→ H1(Y1(N)×Q Q,Qp(1))(2.1.1)

↠ H1(X1(N)×Q Q,Qp(1))

ϕ∗−→ H1(E ×Q Q,Qp(1))

= V ∗(1)

' V,
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where the second arrow is the Manin-Drinfeld splitting (see [42, §5.2] or [18, §1.9.3]), the
third is induced by φ and the last is induced by the Weil pairing.

Note that T identifies with the maximal quotient of H1(Y1(N) ×Q Q,Zp(1)) on which
Hecke operators T (n) act via an and may be different from Tp(E). If E[p] is an irreducible
GQ-representation, we may assume T = Tp(E).

We fix the following data:

• an embedding Q ↪→ C;
• a finite set S of places of Q such that {∞} ∪ {` | pN} ⊂ S;
• integers c, d > 1 such that cd is coprime to 6 and all primes in S, and that c ≡ d ≡ 1
(mod N);
• an element ξ ∈ SL2(Z).

For this data and any positive integer m that is coprime to cd, Kato constructed in [23,
(8.1.3)] a ‘zeta element’

c,dzm(ξ, Sm) := c,dz
(p)
m (f, 1, 1, ξ, Sm \ {∞})

in H1(OQ(µm),Sm
, T ), where Sm denotes the set S ∪ {` | m}.

It is also known that the collection (c,dzm(ξ, Sm))m forms an Euler system (see [23, Ex.
13.3]).

For a finite abelian extension F of Q that is unramified outside S, we set

c,dzF = c,dzF (ξ, S) := CorQ(µm)/F (c,dzm(ξ, S)),

where m = mF denotes the conductor of F .
For later purposes we make a specific choice of ξ as follows. Just as in (2.1.1), the fixed

modular parametrization φ : X1(N)→ E induces a map

H1(X1(N)(C), {cusps},Z) ' H1(Y1(N)(C),Z(1))(2.1.2)

→ H1(E(C),Q(1)) ' H1(E(C),Q),

where the first and last isomorphisms are obtained by the Poincaré duality.
We write H for the image of this map (so H is a lattice of H1(E(C),Q)) and let

δ(ξ) ∈H

denote the image under the map (2.1.2) of the modular symbol

{ξ(0), ξ(∞)} ∈ H1(X1(N)(C), {cusps},Z).
Let g denote the complex conjugation and set e+ := (1 + g)/2.

We then fix ξ so that the following condition is satisfied:

(2.1.3) the element e+δ(ξ) of H1(E(C),Q)+ is a Z(p)-basis of (Z(p) ⊗Z H )+.

The existence of such ξ ∈ SL2(Z) is justified as follows. By a well-known theorem of
Manin, we know that H1(X1(N)(C), {cusps},Z) is generated by the set {{α(0), α(∞)} |
α ∈ SL2(Z)}. This implies that the Z(p)-module (Z(p) ⊗Z H )+ is generated by the set

{e+δ(α) | α ∈ SL2(Z)}. Since (Z(p) ⊗Z H )+ ' Z(p) and Z(p) is local, Nakayama’s lemma

implies the existence of ξ ∈ SL2(Z) such that e+δ(ξ) generates (Z(p) ⊗Z H )+.
Throughout this article, we also fix a minimal Weierstrass model of E over Z and let

ω ∈ Γ(E,Ω1
E/Q)
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be the corresponding Néron differential.
We define the real period for (ω, ξ) by setting

Ωξ :=

∫
e+δ(ξ)

ω.(2.1.4)

(In general, this integral need only agree with the usual real Néron period Ω+ up to multi-
plication by an element of Q×. However, if E[p] is irreducible, then Ωξ and Ω+ will agree

up to multiplication by an element of Z×
(p).)

Then Kato’s reciprocity law [23, Th. 6.6 and 9.7] gives the formula

exp∗ω(c,dzQ) = cd(c− 1)(d− 1)
LS(E, 1)

Ωξ
in Q,(2.1.5)

where exp∗ω : H1(ZS , T )→ H1(Qp, T )→ Qp is the dual exponential map associated to ω.

Remark 2.1. As in [23, Th. 12.5], one may normalize Kato’s zeta element in order to
construct an element z of H1(ZS , V ) with the property that exp∗ω(z) = L{p}(E, 1)/Ω

+,
where the L-fucntion is truncated just at p rather than at all places in S. However, one
does not in general know that this element z lies in H1(ZS , T ). This delicate integrality
issue is the reason that we prefer to use c,dzQ = c,dzQ(ξ, S) rather than the normalized
element. In addition, if H1(ZS , T ) is Zp-free, then one expects that the element

zQ :=
1

cd(c− 1)(d− 1)
· c,dzQ

of H1(ZS , V ) actually belongs to H1(ZS , T ) but, as far as we are aware, this has not been
proved in full generality.

2.2. Birch and Swinnerton-Dyer elements. In this subsection, we introduce a natural
notion of ‘Birch and Swinnerton-Dyer element’.

Such elements constitute an analogue for elliptic curves of the ‘Rubin-Stark elements’
that are associated to the multiplicative group.

In the sequel we shall denote the ‘algebraic rank’ rank(E(Q)) of E over Q by ralg or often,
for simplicity, by r.

Throughout this section we shall then assume the following.

Hypothesis 2.2.

(i) H1(ZS , T ) is Zp-free;
(ii) r := ralg > 0;
(iii) X(E/Q)[p∞] is finite.

Remark 2.3. If E[p] is irreducible, then T = Tp(E) and E(Q)[p] = 0 so Hypothesis 2.2(i)
is automatically satisfied.

Following [10, Lem. 6.1], we note that these assumptions imply the existence of a canon-
ical isomorphism

H1(ZS , V ) ' Qp ⊗Z E(Q)(2.2.1)
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and also, since the image of the localization mapH1(ZS , V )→ H1(Qp, V ) lies inH1
f (Qp, V ) =

Qp ⊗Zp E1(Qp), of a canonical short exact sequence

0→ Qp ⊗Zp E1(Qp)
∗ → Qp ⊗Z E(Q)∗ → H2(ZS , V )→ 0.(2.2.2)

We fix an embedding R ↪→ Cp and consider the following canonical ‘period-regulator’
isomorphism of Cp-modules

λ : Cp ⊗Zp

∧r

Zp

H1(ZS , T ) ' Cp ⊗Z
∧r

Z
E(Q)

' Cp ⊗Z
∧r

Z
E(Q)∗

' Cp ⊗Qp

(
E1(Qp)

∗ ⊗Zp

∧r−1

Qp

H2(ZS , V )

)
' Cp ⊗Qp

(
Γ(E,Ω1

E/Q)⊗Q
∧r−1

Qp

H2(ZS , V )

)
' Cp ⊗Qp

(
H1(E(C),Q)+,∗ ⊗Q

∧r−1

Qp

H2(ZS , V )

)
.

Here the first isomorphism is induced by (2.2.1), the second by the Néron-Tate height pairing

〈−,−〉∞ : E(Q)× E(Q)→ R,

the third by (2.2.2), the fourth by the dual exponential map

exp∗ : E1(Qp)
∗ → Qp ⊗Q Γ(E,Ω1

E/Q),

the last by the period map

Γ(E,Ω1
E/Q)→ H1(E(C),R)+,∗; ω 7→ (γ 7→

∫
γ
ω).

Definition 2.4. Fix an element x of the space
∧r−1

Qp
H2(ZS , V ). Then the Birch and

Swinnerton-Dyer element ηBSD
x = ηBSD

x (ξ, S) of the data ξ, S and x is the element of
Cp ⊗Zp

∧r
Zp
H1(ZS , T ) obtained by setting

ηBSD
x := λ−1

(
L∗
S(E, 1) · (e+δ(ξ)∗ ⊗ x)

)
.

The ‘(c, d)-modified Birch and Swinnerton-Dyer element’ for the given data is the element

c,dη
BSD
x := cd(c− 1)(d− 1) · ηBSD

x .

Remark 2.5. Each choice of an ordered basis of E(Q)tf gives rise to a natural choice of
element x as above (see §4.3.2). In the special case r = 1 and x = 1, the above definition
simplifies to an equality

ηBSD
x =

L∗
S(E, 1)

Ωξ ·R∞
· logω(x) · x

in Cp⊗Z E(Q) ' Cp⊗Zp H
1(ZS , T ), where R∞ is the Néron-Tate regulator, logω : E(Q)→

E(Qp) → Qp is the formal group logarithm associated to ω and x is any element of E(Q)
that generates E(Q)tf .
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The p-part of the Birch-Swinnerton-Dyer Formula for E asserts that there should be an
equality of Zp-submodules of Cp of the form

L∗(E, 1) · Zp = (#X(E/Q)[p∞] · Tam(E) ·#E(Q)−2
tors · Ω+ ·R∞) · Zp,

where Tam(E) denotes the product of the Tamagawa factors of E/Q. In the sequel we shall
abbreviate this equality of lattices to ‘BSDp(E)’.

The next result explains the connection between this conjectural equality and the inte-
grality properties of Birch and Swinnerton-Dyer elements.

Proposition 2.6. Set r := ralg and fix a Zp-basis x of the lattice
∧r−1

Zp
H2(ZS , T )tf . Then

BSDp(E) is valid if and only if there is an equality of Zp-lattices

Zp · ηBSD
x = #H2(ZS , T )tors ·

∧r

Zp

H1(ZS , T ).(2.2.3)

In particular, the validity of BSDp(E) implies that ηBSD
x belongs to

∧r
Zp
H1(ZS , T ).

Proof. It is well-known that the validity of BSDp(E) is equivalent to the equality of lattices
that underlies the statement of the Tamagawa Number Conjecture (or ‘TNC’ for short) for
the pair (h1(E)(1),Zp) (this has been shown, for example, by Kings in [24]). It is therefore
sufficient to show that the equality (2.2.3) is equivalent to the TNC and to do this we must
recall the formulation of the latter conjecture.

The statement of the TNC involves a canonical isomorphism of Cp-modules

(2.2.4) ϑ : Cp ⊗Zp det
−1
Zp

(RΓc(ZS , T ∗(1)))
∼−→ Cp

that arises as follows. Firstly, global duality induces a canonical isomorphism

det−1
Zp

(RΓc(ZS , T ∗(1))) ' det−1
Zp

(RΓ(ZS , T ))⊗Zp T
∗(1)+

(cf. [11, Prop. 2.22]) and hence also a canonical isomorphism

Cp ⊗Zp det
−1
Zp

(RΓc(ZS , T ∗(1)))(2.2.5)

' Cp ⊗Qp

(∧r

Qp

H1(ZS , V )⊗Qp

∧r−1

Qp

H2(ZS , V )∗ ⊗Qp V
∗(1)+

)
.

The isomorphism ϑ in (2.2.4) is then obtained by combining the latter isomorphism with
the canonical ‘comparison’ isomorphism

V ∗(1)+ ' Qp ⊗Q H
1(E(C),Q(1))+ ' Qp ⊗Q H1(E(C),Q)+

and the period-regulator isomorphism

λ : Cp ⊗Qp

∧r

Qp

H1(ZS , V ) ' Cp ⊗Qp

(
H1(E(C),Q)+,∗ ⊗Q

∧r−1

Qp

H2(ZS , V )

)
constructed earlier.

If z is the unique element of Cp⊗Zp det
−1
Zp

(RΓc(ZS , T ∗(1))) that satisfies ϑ(z) = L∗
S(E, 1),

then the TNC predicts that

Zp · z = det−1
Zp

(RΓc(ZS , T ∗(1))).
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Given this, the claimed result is a consequence of the fact that the isomorphism (2.2.5)
sends the element z to

ηBSD
x ⊗ x∗ ⊗ e+δ(ξ) ∈ Cp ⊗Qp

(∧r

Qp

H1(ZS , V )⊗Qp

∧r−1

Qp

H2(ZS , V )∗ ⊗Qp V
∗(1)+

)
,

and the lattice det−1
Zp

(RΓc(ZS , T ∗(1))) to

#H2(ZS , T )tors ·
∧r

Zp

H1(ZS , T )⊗Zp

∧r−1

Zp

H2(ZS , T )∗tf ⊗Zp T
∗(1)+.

□
2.3. Bockstein regulator maps. In this subsection, we shall introduce a canonical con-
struction of Bockstein regulator maps (see (2.3.3) below).

We first set some notations. Let F/Q be a finite abelian extension unramified outside S
and G its Galois group. Since all results and conjectures we study are of p-adic nature, we
may assume that [F : Q] is a p-power. In particular, since p is odd, F is a totally real field.
The augmentation ideal

IF := ker(Zp[G] ↠ Zp)
and the augmentation quotients

QaF := IaF /I
a+1
F

for a non-negative integer a will play important roles. We remark that Q0
F is understood

to be Zp[G]/IF = Zp.
For simplicity, in this subsection we shall abbreviate the ideal IF to I.
At the outset we note that the tautological short exact sequence

0→ I/I2 → Zp[G]/I2 → Zp → 0

gives rise to a canonical exact triangle of complexes of Zp-modules of the form

RΓ(OF,S , T ) ⊗L
Zp[G] I/I

2 → RΓ(OF,S , T ) ⊗L
Zp[G] Zp[G]/I

2 → RΓ(OF,S , T ) ⊗L
Zp[G] Zp.

Next we recall (from, for example, [17, Prop. 1.6.5]) that RΓ(OF,S , T ) is acyclic outside
degrees one and two and that there exists a canonical isomorphism in the derived category
of Zp-modules

RΓ(OF,S , T )⊗L
Zp[G] Zp ' RΓ(ZS , T ).(2.3.1)

Taking account of these facts, the above triangle gives rise to a morphism of complexes
of Zp-modules

δF : RΓ(ZS , T )→
(
RΓ(ZS , T )⊗L

Zp
I/I2

)
[1]

and hence to a composite homomorphism of Zp-modules

βF : H1(ZS , T )
(−1)×H1(δF )−−−−−−−−→ H2(RΓ(ZS , T )⊗L

Zp
I/I2)(2.3.2)

= H2(ZS , T )⊗Zp I/I
2

↠ H2(ZS , T )tf ⊗Zp I/I
2,

in which the equality is valid since RΓ(ZS , T ) is acyclic in degrees greater than two and the
last map is induced by the natural map from H2(ZS , T ) to H2(ZS , T )tf .
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We write

BocF :
∧r

Zp

H1(ZS , T )→ H1(ZS , T )⊗Zp

∧r−1

Zp

H2(ZS , T )tf ⊗Zp Q
r−1
F

for the homomorphism of Zp-modules with the property that

BocF
(
y1 ∧ · · · ∧ yr

)
=

r∑
i=1

(−1)i+1yi ⊗
(
βF (y1) ∧ · · · ∧ βF (yi−1) ∧ βF (yi+1) ∧ · · · ∧ βF (yr)

)
for all elements yi of H

1(ZS , T ).
Then, each choice of basis element x of the (free, rank one) Zp-module

∧r−1
Zp

H2(ZS , T )tf ,
gives rise to a composite ‘Bockstein regulator’ homomorphism

BocF,x :
∧r

Zp

H1(ZS , T )
BocF−−−→H1(ZS , T )⊗Zp

∧r−1

Zp

H2(ZS , T )tf ⊗Zp Q
r−1
F(2.3.3)

id⊗ϕx⊗id−−−−−−→H1(ZS , T )⊗Zp Q
r−1
F ,

where φx is the isomorphism
∧r−1

Zp
H2(ZS , T )tf ' Zp induced by the choice of x.

Remark 2.7. If r = 1 and x = 1 is the canonical basis of
∧r−1

Zp
H2(ZS , T )tf = Zp, then

BocF,x = BocF is simply equal to the identity map on H1(ZS , T ).
2.4. The Generalized Perrin-Riou Conjecture. In the sequel we shall write ran for the
analytic rank ords=1L(E, s) of E.

2.4.1. In [34], Perrin-Riou investigates relations between Kato’s Euler system and the p-adic
Birch-Swinnerton-Dyer Conjecture. In particular, she formulates the following conjecture.

Conjecture 2.8 (Perrin-Riou [34], see also [13]).

(i) The element c,dzQ is non-zero if and only if ran is at most one.
(ii) If ran = ralg = 1, then in Cp ⊗Zp H

1(ZS , T ) ' Cp ⊗Z E(Q) one has

c,dzQ = cd(c− 1)(d− 1)
L′
S(E, 1)

Ωξ ·R∞
logω(x) · x,(2.4.1)

where x is any element of E(Q) that generates E(Q)tf .

Remark 2.9. This conjecture is a slight modification of, but equivalent to, Perrin-Riou’s
original formulation of the conjecture. By Kato’s reciprocity law (2.1.5), the element c,dzQ
is explicitly related to L(E, 1) and, in particular, does not vanish if ran = 0. Perrin-Riou’s
conjecture predicts that c,dzQ does not vanish even if ran = 1 and, moreover, that it should
be explicitly related to the first derivative L′(E, 1) via the formula (2.4.1).

By Remark 2.5, we immediately obtain the following interpretation of Perrin-Riou’s con-
jecture in terms of the BSD element.

Proposition 2.10. If ran = ralg = 1 and x = 1, then Conjecture 2.8(ii) is valid if and only

if one has c,dzQ = c,dη
BSD
x .

Remark 2.11. An interpretation of Perrin-Riou’s conjecture in the same style as Proposi-
tion 2.10 was previously given by Sakamoto and the first and the third authors in [10, §6].
(In fact, a natural ‘equivariant’ refinement of this conjecture is also formulated in loc. cit.)
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2.4.2. We shall now give a precise formulation of Conjecture 1.1.
For this purpose we will always assume the validity of Hypothesis 2.2. We also use the

notation IF and QaF introduced in §2.3.
We set r := ralg and write

ιF : H1(ZS , T )⊗Zp Q
r−1
F → H1(OF,S , T )⊗Zp Q

r−1
F(2.4.2)

→ H1(OF,S , T )⊗Zp Zp[G]/IrF
for the composite homomorphism that is induced by the restriction map H1(ZS , T ) →
H1(OF,S , T ) and the natural inclusion Qr−1

F ↪→ Zp[G]/IrF . This map ιF is actually injective.
(This follows easily from the facts that H1(ZS , T ) is Zp-free and that H1(ZS , T ) identifies
with the submodule H1(OF,S , T )G of G-invariant elements in H1(OF,S , T ) (since H0(ZS , T )
vanishes).)

Motivated by constructions of Darmon in [16] and [15] (relating to cyclotomic units and
to Heegner points respectively), we define the ‘Darmon norm’ of c,dzF to be the element of
H1(OF,S , T )⊗Zp Zp[G] obtained by setting

NF/Q(c,dzF ) :=
∑
σ∈G

σ(c,dzF )⊗ σ−1.

We can now give a precise formulation of Conjecture 1.1. This prediction involves the
Birch-Swinnerton-Dyer element c,dη

BSD
x and Bockstein regulator map BocF,x that were re-

spectively defined in §2.2 and §2.3.

Conjecture 2.12 (The Generalized Perrin-Riou Conjecture). Set r := ralg. Then for each

Zp-basis element x of
∧r−1

Zp
H2(ZS , T )tf the following claims are valid.

(i) The element c,dη
BSD
x belongs to

∧r
Zp
H1(ZS , T ).

(ii) The image in H1(OF,S , T )⊗Zp Zp[G]/IrF of the Darmon norm NF/Q(c,dzF ) of c,dzF
is equal to ιF

(
BocF,x(c,dη

BSD
x )

)
.

Remark 2.13.
(i) Proposition 2.6 shows that Conjecture 2.12(i) is implied by the validity of BSDp(E).

(ii) Assume ralg = 1 and that x = 1 in
∧r−1

Zp
H2(ZS , T )tf = Zp. Then in this case one has

NF/Q(c,dzF ) = NF/Q(c,dzF ) in H
1(OF,S , T )⊗Zp Zp[G]/IF ' H1(OF,S , T ),

where NF/Q :=
∑

σ∈G σ. In particular, since CorF/Q(c,dzF ) = c,dzQ and BocF,x is the

identity map on H1(ZS , T ) (by Remark 2.7), Conjecture 2.12 is equivalent in this case to
an equality c,dzQ = c,dη

BSD
x . From Proposition 2.10 it therefore follows that if ran = ralg = 1

then Conjecture 2.12 is equivalent to Perrin-Riou’s conjecture (as stated in Conjecture
2.8(ii)). This observation proves Theorem 1.5 and also motivates us to refer to Conjecture
2.12 as the ‘Generalized Perrin-Riou Conjecture’.

Remark 2.14. The formulation of Conjecture 2.12 can also be regarded as a natural ana-
logue for elliptic curves of the conjectural ‘refined class number formula for Gm’ concerning
Rubin-Stark elements that was originally formulated independently by Mazur and Rubin
[28, Conj. 5.2] and by the third author [39, Conj. 3] and then subsequently refined by the
present authors in [6, Conj. 5.4].



17

Remark 2.15. It is straightforward to show that the element BocF,x(c,dη
BSD
x ), and hence

also the validity of Conjecture 2.12(ii), is independent of the choice of basis element x.

Remark 2.16. In §4.1 we will reinterpret Conjecture 2.12 in terms of a natural ‘Darmon-
type’ derivative of c,dzF .

2.5. An algebraic analogue. We now formulate an analogue of Conjecture 2.12 that is
more algebraic, and elementary, in nature.

To do this we recall that if X(E/Q) is finite, then the Birch and Swinnerton-Dyer Formula
for E predicts that

(2.5.1) L∗
S(E, 1) =

 ∏
ℓ∈S\{∞}

Lℓ

 #X(E/Q) · Tam(E) · Ω+ ·R∞
#E(Q)2tors

,

where Ω+ is the usual real Néron period of E, Lℓ is the standard Euler factor at ` of
the Hasse-Weil L-function (so that (

∏
ℓ∈S\{∞} Lℓ)L

∗(E, 1) = L∗
S(E, 1)) and Tam(E) is the

product of Tamagawa factors.

Definition 2.17. Set r := ralg. Then for each element x of
∧r−1

Qp
H2(ZS , V ) the algebraic

Birch and Swinnerton-Dyer element ηalgx = ηalgx (ξ, S) of the data ξ, S and x is the element
of Cp ⊗Zp

∧r
Zp
H1(ZS , T ) obtained by setting

ηalgx := λ−1

 ∏
ℓ∈S\{∞}

Lℓ

 #X(E/Q) · Tam(E) · Ω+ ·R∞
#E(Q)2tors

· (e+δ(ξ)∗ ⊗ x)

 .

The ‘(c, d)-modified algebraic Birch and Swinnerton-Dyer element’ of the given data is then
defined by setting

c,dη
alg
x := cd(c− 1)(d− 1) · ηalgx .

Remark 2.18. It is clear that, if x is non-zero, then the Birch and Swinnerton-Dyer

Formula (2.5.1) is valid for E if and only if the elements ηalgx and c,dη
alg
x are respectively

equal to the Birch and Swinnerton-Dyer elements ηBSD
x and c,dη

BSD
x from Definition 2.4.

An easy exercise shows that if x is a Zp-basis element of
∧r−1

Zp
H2(ZS , T )tf , then there is

an equality of lattices

Zp · ηalgx = #H2(ZS , T )tors ·
∧r

Zp

H1(ZS , T )(2.5.2)

and hence ηalgx belongs to
∧r

Zp
H1(ZS , T ).

Upon combining this fact with Remark 2.18, one is led to formulate the following algebraic
analogue of Conjecture 2.12.

Conjecture 2.19 (The Refined Mazur-Tate Conjecture). Set r := ralg. Then for each Zp-
basis element x of

∧r−1
Zp

H2(ZS , T )tf the image in H1(OF,S , T )⊗Zp Zp[G]/IrF of NF/Q(c,dzF )
is equal to ιF

(
BocF,x(c,dη

alg
x )
)
.
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Remark 2.20. We refer to this conjecture as a ‘refined Mazur-Tate Conjecture’ since in the
complementary article [9] it is proved (in general, modulo standard assumptions concerning
the non-vanishing of p-adic regulators) that, under mild and natural hypotheses on E at
p, the equality predicted by Conjecture 2.19 in the setting of the cyclotomic Zp-extension
of Q (see Conjecture 4.15 below) implies the p-component of the congruences for modular
elements that are conjectured by Mazur and Tate in [29]. This fact is in turn a key ingredient
in the approach used in [9] to obtain the first (unconditional) theoretical evidence in support
of the conjecture of Mazur and Tate for elliptic curves of strictly positive rank.

3. Fitting ideals and order of vanishing

In this section we shall discuss a further arithmetic property of Kato’s zeta elements and,
in particular, use it to prove Theorem 1.3.

Throughout we fix F , G and IF as in §2.3 and continue to assume that H1(ZS , T ) is
Zp-free. However, unless explicitly stated, in this subsection we do not need to assume
either that ralg > 0 or that X(E/Q)[p∞] is finite.

3.1. A ‘main conjecture’ at finite level. We write m for the conductor of F and set

tc,d := cd(c− σc)(d− σd) ∈ Zp[G],

where σa is the element of G obtained by restriction of the automorphism of Q(µm) that
sends ζm to ζam.

We then propose the following conjecture involving the initial Fitting ideal of the Zp[G]-
module H2(OF,S , T ).

Conjecture 3.1.{
Φ(c,dzF ) | Φ ∈ HomZp[G](H

1(OF,S , T ),Zp[G])
}
= tc,d · Fitt0Zp[G](H

2(OF,S , T )).

Remark 3.2. Conjecture 3.1 is analogous to the ‘weak main conjecture’ for modular ele-
ments that is formulated by Mazur and Tate [29, Conj. 3]. (In fact, since our conjecture
predicts an equality rather than simply an inclusion, it corresponds to a strengthening of
[29, Conj. 3]). It is also an analogue of the conjectures [6, Conj. 7.3] and [8, Conj. 3.6(ii)]
that were formulated by the present authors in the setting of the multiplicative group.

The prediction in Conjecture 3.1 can be studied by using the equivariant theory of Euler
systems developed by Sakamoto and the first and third authors in [10]. In this way, the
following evidence for Conjecture 3.1 is obtained in [10, Th. 6.11].

Proposition 3.3. Assume that the following conditions are all satisfied.

(a) p > 3 (see Remark 1.4 for p = 3);
(b) X(E/F )[p∞] is finite;
(c) the image of the representation GQ → Aut(Tp(E)) ' GL2(Zp) contains SL2(Zp);
(d) E(Qℓ)[p] vanishes for all primes ` in S.

Then for any homomorphism Φ : H1(OF,S , T )→ Zp[G] of Zp[G]-modules one has

Φ(c,dzF ) ∈ Fitt0Zp[G](H
2(OF,S , T )).
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3.2. The proof of Theorem 1.3. In the rest of this section, we assume the conditions
(a), (b), (c) and (d) in Theorem 1.3 (which are the same as those in Proposition 3.3). In
particular, E[p] is irreducible by (c), and we may assume T = Tp(E).

3.2.1. The connection between Conjecture 3.1 and Conjecture 1.1(i) is explained by the
following result.

Proposition 3.4. Assume that E(F )[p] vanishes and X(E/Q)[p∞] is finite. Set a :=
max{0, ralg − 1} and define a Zp[G]-submodule of IaF by setting

IF,S,a := #H2(ZS , T )tors · IaF + Ia+1
F .

Then NF/Q(c,dzF ) belongs to H1(OF,S , T )⊗Zp IF,S,a whenever one has

(3.2.1) Φ(c,dzF ) ∈ Fitt0Zp[G](H
2(OF,S , T ))

for all Φ ∈ HomZp[G]

(
H1(OF,S , T ),Zp[G]

)
.

Proof. Set M := H1(OF,S , T ) and JF,S := Fitt0Zp[G](H
2(OF,S , T )).

Then there exists a canonical isomorphism of Zp-modules

ι : HomZp(M,Zp)
∼−→ HomZp[G](M,Zp[G]); ϕ 7→

∑
σ∈G

ϕ(σ(−))σ−1.

Hence, for every φ ∈ HomZp(M,Zp), one has

(3.2.2) (φ⊗ 1)(NF/Q(c,dzF )) = ι(φ)(c,dzF ) ∈ JF,S .
Here φ ⊗ 1 denotes the map M ⊗Zp Zp[G] → Zp[G] induced naturally by φ so that the
equality follows directly from a comparison of the definitions of NF/Q(c,dzF ) and ι, and the
containment in JF,S is an immediate consequence of (3.2.1).

Since E(F )[p] is assumed to vanish, the Zp-module M is free. We fix a basis {xi}1≤i≤n
of M and write NF/Q(c,dzF ) as a sum

NF/Q(c,dzF ) =
n∑
j=1

xj ⊗ tj

with each tj ∈ Zp[G]. Then, with {x∗i }1≤i≤n denoting the corresponding dual basis of
HomZp(M,Zp), for every i the containment (3.2.2) (with φ = x∗i ) implies that

ti = (x∗i ⊗ 1)(

n∑
j=1

xj ⊗ tj) = (x∗i ⊗ 1)(NF/Q(c,dzF )) ∈ JF,S

and hence also that NF/Q(c,dzF ) ∈M ⊗Zp JF,S .
To complete the proof it is therefore enough to prove an inclusion

(3.2.3) JF,S ⊂ IF,S,a.

To do this we note that H i(OF,S , T ) vanishes for all i > 2 and hence that the natural
corestriction map H2(OF,S , T ) ↠ H2(ZS , T ) is surjective.

In addition, since X(E/Q)[p∞] is assumed to be finite, the Zp-rank of H2(ZS , T ) is equal
to a and so the Zp-module H2(ZS , T ) is isomorphic to H2(ZS , T )tors ⊕ Zap.
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The corestriction map therefore induces a surjective homomorphism of Zp[G]-modules

H2(OF,S , T ) ↠ H2(ZS , T )tors ⊕ Zap
and hence an inclusion of Fitting ideals

JF,S = Fitt0Zp[G](H
2(OF,S , T ))

⊂ Fitt0Zp[G](H
2(ZS , T )tors ⊕ Zap) = Fitt0Zp[G](H

2(ZS , T )tors) · IaF .

To deduce (3.2.3) from this it is thus enough to note the image of Fitt0Zp[G](H
2(ZS , T )tors)

under the natural map Zp[G]→ Zp[G]/IF ' Zp is equal to

Fitt0Zp
((H2(ZS , T )tors)G) = Fitt0Zp

(H2(ZS , T )tors) = #H2(ZS , T )tors · Zp.

□

Remark 3.5. The above argument also shows the validity of the containment (3.2.1) would
imply that

Φ(c,dzF ) ∈ IaF for every Φ ∈ HomZp[G](H
1(OF,S , T ),Zp[G]).(3.2.4)

This prediction constitutes an analogue for Kato’s Euler system c,dzF of the ‘weak vanishing’
conjecture for modular elements that is formulated by Mazur and Tate in [29, Conj. 1].

3.2.2. If the algebraic rank r := ralg of E over Q is strictly positive, then the integer a in

Proposition 3.4 is equal to r − 1 and so one has IaF = Ir−1
F .

One therefore obtains a proof of Theorem 1.3 directly upon combining the results of
Propositions 3.3 and 3.4.

4. Derivatives of Kato’s Euler system

In this section, we shall define a canonical ‘Darmon derivative’ c,dκF of Kato’s zeta
element c,dzF and use it to reinterpret the conjectures formulated above.

In particular, in this way we are able to formulate more explicit versions of the Conjectures
2.12 and 2.19 for subfields F of the cyclotomic Zp-extension of Q.

Throughout this section, we assume that H1(ZS , T ) is Zp-free and X(E/Q)[p∞] is finite.

4.1. Darmon derivatives. We use the notations in §2.3.

4.1.1. We shall use the fact that the complex

CF := RHomZp(RΓc(OF,S , T ∗(1)),Zp[−2])

is a perfect complex of Zp[G]-modules that is acyclic outside degrees zero and one, and that
there exists a canonical isomorphism

H0(CF ) ' H1(OF,S , T )(4.1.1)

and a canonical exact sequence

0→ H2(OF,S , T )→ H1(CF )→ Zp[G]⊗Zp T
∗(1)+,∗ → 0.(4.1.2)

(See [11, Prop. 2.22].)
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In particular, by [11, Prop. A.11(i)], one finds that CF is represented by a complex of
the form PF → PF , where PF is a finitely generated free Zp[G]-module and the first term
is placed in degree zero.

In this way we obtain an exact sequence of Zp[G]-modules

0→ H1(OF,S , T )→ PF
fF−→ PF → H1(CF )→ 0.(4.1.3)

Then (2.3.1) implies that CQ is represented by the complex PQ
fQ−→ PQ obtained by taking

G-invariants of the complex PF
fF−→ PF and hence that there is an exact sequence

(4.1.4) 0→ H1(ZS , T )→ PQ
fQ−→ PQ → H1(CQ)→ 0.

We use this sequence to regard H1(ZS , T ) as a submodule of PQ. We also note that, just
as in (2.4.2), there are natural injective homomorphisms

ιF : PQ ⊗Zp Q
a
F ↪→ PF ⊗Zp Q

a
F ↪→ PF ⊗Zp Zp[G]/I

a+1
F

(where, we recall, QaF denotes IaF /I
a+1
F ).

Definition 4.1. Set a := max{0, ralg− 1} and assume that the containment (3.2.4) is valid
for all Φ in HomZp[G](H

1(OF,S , T ),Zp[G]). Then [6, Prop. 4.17] implies the existence of a
unique element c,dκF of PQ ⊗Zp Q

a
F with the property that

ιF (c,dκF ) = NF/Q(c,dzF )

in PF ⊗Zp Zp[G]/I
a+1
F . We shall refer to c,dκF as the Darmon derivative of c,dzF .

4.1.2. Conjecture 2.12 predicts that the element c,dκF belongs to the image of the (injective)
homomorphism

(4.1.5) H1(ZS , T )⊗Zp Q
a
F → PQ ⊗Zp Q

a
F .

At this stage, however, we can only verify this prediction in certain special cases.
In the next section we shall verify that it is valid if F is contained in the cyclotomic

Zp-extension Q∞ of Q. In the following result we record some evidence in the general case.
Before stating the result we note that the condition

Φ(c,dzF ) ∈ Fitt0Zp[G](H
2(OF,S , T )) for every Φ ∈ HomZp[G]

(
H1(OF,S , T ),Zp[G]

)
is valid whenever the data E,F, S and p satisfy the conditions (a), (b), (c) and (d) of
Proposition 3.3 and that, in general, its validity would follow from that of Conjecture 3.1.

We further note that claim (ii) of the following result constitutes a natural analogue for
zeta elements of one of the main results of Darmon in [15, Th. 2.5] concerning Heegner
points.

Theorem 4.2. Set z := c,dzF and κ := c,dκF . If one has Φ(z) ∈ Fitt0Zp[G](H
2(OF,S , T )) for

every Φ in HomZp[G]

(
H1(OF,S , T ),Zp[G]

)
, then the following claims are valid.

(i) If pN is the minimum of the exponents of the groups #H2(ZS , T )tors · QaF and
H2(ZS , T )tors, then pN · κ belongs to the image of the map (4.1.5).
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(ii) The image of κ under the natural map

PQ ⊗Zp Q
a
F → PQ ⊗Zp Q

a
F ⊗Z Z/(p)

belongs to the image of the map

H1(ZS , T )⊗Zp Q
a
F ⊗Z Z/(p)→ PQ ⊗Zp Q

a
F ⊗Z Z/(p)

induced by (4.1.5).

Proof. Set Q̃aF := #H2(ZS , T )tors ·QaF ⊂ Zp[G]/Ia+1
F . Then the sequences (4.1.3) and (4.1.4)

combine to give a commutative diagram

0 // H1(OF,S , T )⊗Zp
Zp[G]/I

a+1
F

// PF ⊗Zp
Zp[G]/I

a+1
F

f̃F // PF ⊗Zp
Zp[G]/I

a+1
F

0 // H1(ZS , T )⊗Zp
Q̃a

F
//

ι̃F

OO

PQ ⊗Zp
Q̃a

F

f̃Q //

ι̃F

OO

PQ ⊗Zp
Q̃a

F

ι̃F

OO

in which the maps ι̃F are obtained by restricting ιF .
Then the argument of Proposition 3.4 implies that

(4.1.6) κ ∈ PQ ⊗Zp Q̃
a
F ⊂ PQ ⊗Zp Q

a
F ,

and so the commutativity of this diagram implies that

ι̃F (f̃Q(κ)) = f̃F (ι̃F (κ)) = f̃F (NF/Q(z)) = 0

and hence, since ι̃F is injective, that f̃Q(κ) = 0.
Now, the exact sequence (4.1.4) induces exact sequences

0→ H1(ZS , T )⊗Zp Q̃
a
F → PQ ⊗Zp Q̃

a
F

µ1−→ im(fQ)⊗Zp Q̃
a
F → 0

and

0→ Tor
Zp

1

(
H2(ZS , T )tors, Q̃aF

) µ2−→ im(fQ)⊗Zp Q̃
a
F

µ3−→ PQ ⊗Zp Q̃
a
F .

with the property that µ3 ◦ µ1 is equal to f̃Q. (The first sequence here is exact since the
Zp-module im(fQ) is free and the second is exact as consequence of the fact that (4.1.2)
identifies H2(ZS , T )tors with H1(CQ)tors.)

These sequences combine with the equality f̃Q(κ) = 0 to imply µ1(κ) belongs to the
image of µ2 in the lower sequence above.

Thus, since the definition of pN ensures it annihilates the group Tor
Zp

1

(
H2(ZS , T )tors, Q̃aF

)
,

it follows that µ1(p
N · κ) vanishes, and hence that pN · κ belongs to H1(ZS , T ) ⊗Zp Q̃

a
F ⊂

H1(ZS , T )⊗Zp Q
a
F . This proves claim (i).

Turning to claim (ii), we note first that if H2(ZS , T )tors is trivial, then claim (i) implies
κ belongs to the image of the map (4.1.5) and so claim (ii) follows immediately.

On the other hand, if H2(ZS , T )tors is non-trivial, then Q̃aF is contained in p · QaF and
so (4.1.6) implies that the projection of κ to PQ ⊗Zp Q

a
F ⊗ Z/(p) vanishes. In this case,

therefore, the result of claim (ii) is also clear. □
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Remark 4.3. If G has exponent p and ralg > 0, then a > 0 and so QaF is annihilated
by p. In any such case, therefore, Theorem 4.2(ii) implies (under the stated hypotheses)
that κ belongs to the image of the map (4.1.5). In general, the argument of Theorem 4.2
shows that the group H2(ZS , T )tors constitutes the obstruction to attempts to deduce this
containment from Euler system arguments (via the result of Proposition 3.3). To describe
this obstruction more explicitly we assume that E[p] is an irreducible GQ-representation. In
this case, one can assume T = Tp(E) and then one sees that the obstruction H2(ZS , T )tors
sits in the exact sequence

E(Q)⊗Z Zp →
⊕

ℓ∈S\{∞}

lim←−
n

E(Qℓ)/p
n →

(
H2(ZS , T )tors

)∨ →X(E/Q)[p∞]→ 0

obtained from global duality, in which the first arrow denotes the natural diagonal map.

4.2. Iwasawa-Darmon derivatives. To consider the above constructions in an Iwasawa-
theoretic setting we shall use the following notations for non-negative integers n and i:

• Qn: the n-th layer of the cyclotomic Zp-extension Q∞/Q (i.e., the subfield of Q∞
such that [Qn : Q] = pn),
• Gn := Gal(Qn/Q),
• In := ker(Zp[Gn] ↠ Zp),
• Qan := Ian/I

a+1
n with a := max{0, ralg − 1} as above,

• H i
n := H i(OQn,S , T ),

• c,dzn := c,dzQn ,
• Γ := Gal(Q∞/Q),
• Λ := Zp[[Γ]],
• I := ker(Zp[[Γ]] ↠ Zp),
• Qa = Ia/Ia+1,
• Hi := lim←−nH

i
n.

4.2.1. We first verify the prediction (3.2.4) in this setting.

Proposition 4.4. For any non-negative integer n, the element c,dzn belongs to Ian ·H1
n.

In particular, the weak vanishing order prediction of (3.2.4) holds for the field F = Qn

for every n.

Proof. We use Kato’s result on the Iwasawa Main Conjecture [23, §12]. By [23, Th. 12.4(2)],
we know that Q⊗ZH1 is a free Q⊗ZΛ-module of rank one. This together with the injectivity
of H1/IH1 → H1(ZS , T ) and the assumption that H1(ZS , T ) is Zp-free implies that H1 is a
free Λ-module of rank one. Since

H2 ↠ H2(ZS , T )tf ' Zap
is surjective, the characteristic ideal of H2 is in Ia. Therefore, the characteristic ideal of
H1/〈c,dz∞〉 is also in it by [23, Th. 12.5(3)], where c,dz∞ := (c,dzn)n (note that (c,dzn)n is
in the inverse limit lim←−nH

1
n = H1). This shows that

c,dz∞ ∈ Ia ·H1,

which implies the conlusion of Proposition 4.4. □
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By using Proposition 4.4, we can now explicitly construct the Darmon derivative of c,dzn.
To do this we fix a topological generator γ of Γ and denote the image of γ in Gn by the
same symbol. In view of Proposition 4.4 one has

c,dzn = (γ − 1)awn

for some choice of element wn of H1
n.

We then compute

NQn/Q(c,dzn) =
∑
σ∈Gn

σ(c,dzn)⊗ σ−1

=
∑
σ∈Gn

σ(γ − 1)awn ⊗ σ−1

=
∑
σ∈Gn

σwn ⊗ σ−1(γ − 1)a ∈ H1
n ⊗Zp I

a
n.

Thus, in H1
n ⊗Zp Q

a
n, we have

NQn/Q(c,dzn) =
∑
σ∈Gn

σwn ⊗ (γ − 1)a.

Hence, the derivative in Definition 4.1 is explicitly given by

c,dκn := CorQn/Q(wn)⊗ (γ − 1)a ∈ H1
0 ⊗Zp Q

a
n.(4.2.1)

One easily sees that this element is well-defined, i.e., independent of the choice of wn.
Furthermore, the collection (c,dκn)n is an inverse system, so we can give the following
definition.

Definition 4.5. We define the Iwasawa-Darmon derivative of Kato’s Euler system by

c,dκ∞ := (c,dκn)n ∈ lim←−
n

H1
0 ⊗Zp Q

a
n = H1(ZS , T )⊗Zp Q

a.

We also define the normalized version

κ∞ :=
1

cd(c− 1)(d− 1)
· c,dκ∞ ∈ H1(ZS , V )⊗Zp Q

a.

Remark 4.6. The Iwasawa-Darmon derivative can be regarded as a natural analogue of
the ‘cyclotomic p-units’ that are defined by Solomon in [43] in the setting of the classical
cyclotomic unit Euler system. In a more general setting, it is an analogue of the derivative
κ of the (conjectural) Rubin-Stark Euler system that occurs in [7, Conj. 4.2].

Remark 4.7. If ralg is at most one, then a = 0, Qa = Zp and in H1(ZS , V ) one has

κ∞ = zQ :=
1

cd(c− 1)(d− 1)
· c,dzQ

so that Definition 4.5 gives nothing new in this case.

4.3. The Generalized Perrin-Riou Conjecture at infinite level. In this section we
assume Hypothesis 2.2 in order to state an Iwasawa-theoretic version of Conjecture 2.12.
We set r := ralg.
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4.3.1. To do this we fix a Zp-basis x of
∧r−1

Zp
H2(ZS , T )tf and write

Bocn,x = BocQn,x :
∧r

Zp

H1(ZS , T )→ H1(ZS , T )⊗Zp I
r−1
n /Irn

for the Bockstein regulator map (2.3.3) for the field Qn, as defined in §2.3.
As n varies these maps combine to induce a homomorphism

lim←−
n

Bocn,x :
∧r

Zp

H1(ZS , T )→ H1(ZS , T )⊗Zp lim←−
n

Ir−1
n /Irn = H1(ZS , T )⊗Zp Q

r−1

and hence also, by scalar extension, a homomorphism

Boc∞,x : Cp ⊗Zp

∧r

Zp

H1(ZS , T )→ Cp ⊗Zp H
1(ZS , T )⊗Zp Q

r−1.(4.3.1)

We recall from Definition 2.4 the Birch and Swinnerton-Dyer element ηBSD
x that is con-

structed (unconditionally) in the space Cp ⊗Zp

∧r
Zp
H1(ZS , T ).

Conjecture 4.8. One has

κ∞ = Boc∞,x(η
BSD
x )

in Cp ⊗Zp H
1(ZS , T )⊗Zp Q

r−1.

Remark 4.9. In contrast to the more general situation considered in Conjecture 2.12 we
do not here need to assume ηBSD

x belongs to
∧r

Zp
H1(ZS , T ). This is because the group Qr−1

is Zp-torsion-free and so one loses no information by defining the Bockstein homomorphism
Boc∞,x on Cp-modules. In particular, if r = 1, then the discussion of Remark 2.13 shows
that Conjecture 4.8 is equivalent to Perrin-Riou’s original conjecture. Finally, we observe
that Conjecture 4.8 is a natural analogue for elliptic curves of the conjecture formulated for
the multiplicative group in [7, Conj. 4.2].

4.3.2. We shall now give an explicit interpretation of Conjecture 4.8 in terms of the leading
term L∗

S(E, 1) (see Proposition 4.14 below).

Take a Z-basis {x1, . . . , xr} of E(Q)tf . We define an element x ∈
∧r−1

Qp
H2(ZS , V ) as the

element corresponding to

1⊗ x1 ⊗ (x∗1 ∧ · · · ∧ x∗r) ∈ Qp ⊗Zp

(
E1(Qp)⊗Z

∧r

Z
E(Q)∗

)
under the isomorphism∧r−1

Qp

H2(ZS , V ) ' Qp ⊗Zp

(
E1(Qp)⊗Z

∧r

Z
E(Q)∗

)
induced by (2.2.2). (Here we regard 1⊗x1 ∈ Qp⊗ZE(Q) as an element of Qp⊗Zp E1(Qp).)
We note that, by linearity, the definition of the Bockstein regulator map (4.3.1) is extended

for any element in
∧r−1

Qp
H2(ZS , V ), which is not necessarily a Zp-basis of

∧r−1
Zp

H2(ZS , T )tf .
Thus Boc∞,x is defined for above x.

Let ω be the fixed Néron differential and logω : E(Q) → E(Qp) → Qp the formal
logarithm associated to ω. We give the following definition.
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Definition 4.10. We define the Bockstein regulator associated to ω by setting

RBoc
ω := logω(x1) · Boc∞,x(x1 ∧ · · · ∧ xr) ∈ (Qp ⊗Z E(Q))⊗Zp Q

r−1.

(Here we identify H1(ZS , V ) = Qp ⊗Z E(Q) by (2.2.1).) One can check that this does not
depend on the choice of the basis {x1, . . . , xr} of E(Q)tf .

Remark 4.11. The Bockstein regulator defined above is closely related to the classical
p-adic regulators: for details, see Theorems 5.6 and 5.11 below.

Remark 4.12. When r = 1, then Boc∞,x is the identity map and one has

RBoc
ω = logω(x) · x ∈ Qp ⊗Z E(Q)

for any generator x of E(Q)tf .

Remark 4.13. Let Ωξ be as in (2.1.4) and R∞ the Néron-Tate regulator. Then one can
check that

Boc∞,x(η
BSD
x ) =

L∗
S(E, 1)

Ωξ ·R∞
·RBoc

ω .

In fact, by the definition of the Birch and Swinnerton-Dyer element, one checks that

ηBSD
x =

L∗
S(E, 1)

Ωξ ·R∞
· logω(x1) · x1 ∧ · · · ∧ xr.(4.3.2)

By Remark 4.13, we obtain the following interpretation of Conjecture 4.8.

Proposition 4.14. Conjecture 4.8 is valid if and only if one has

κ∞ =
L∗
S(E, 1)

Ωξ ·R∞
·RBoc

ω

in Cp ⊗Zp H
1(ZS , T )⊗Zp Q

r−1 ' (Cp ⊗Z E(Q))⊗Zp Q
r−1.

4.3.3. Using Proposition 4.14 we state an Iwasawa-theoretic version of the ‘algebraic’ variant
Conjecture 2.19 of Conjecture 2.12. This conjecture is therefore a natural ‘algebraic’ variant
of Conjecture 4.8.

We recall that Lℓ denotes the Euler factor at a prime ` so that one has ∏
ℓ∈S\{∞}

Lℓ

 · L∗(E, 1) = L∗
S(E, 1).

We also write vξ for the non-zero rational number that is defined by the equality

Ω+ = vξ · Ωξ(4.3.3)

where Ω+ is the real Néron period that occurs in (2.5.1).

Conjecture 4.15. If X(E/Q) is finite, then in (Qp ⊗Z E(Q))⊗Zp Q
r−1 one has

κ∞ = vξ

 ∏
ℓ∈S\{∞}

Lℓ

 #X(E/Q) · Tam(E)

#E(Q)2tors
·RBoc

ω .
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Remark 4.16. One checks easily that Conjecture 4.15 is equivalent to an equality

κ∞ = Boc∞,x(η
alg
x ),

where x is any non-zero element of
∧r−1

Qp
H2(ZS , V ) and ηalgx is the algebraic Birch and

Swinnerton-Dyer element that is defined (unconditionally) in Definition 2.17.

Remark 4.17. In Corollary 6.6 below we will show that Conjecture 4.15 is a refinement
of the p-adic Birch-Swinnerton-Dyer Formula (from [30, Chap. II, §10]). Similarly, in
Corollary 6.7 we will show that Conjecture 4.8 leads to an explicit formula for the leading
term of the p-adic L-function (which we will refer to as a ‘p-adic Beilinson Formula’).

A key advantage of the formulations of Conjectures 4.8 and 4.15 is that they do not
involve the p-adic L-function and so are not in principle dependent on the precise reduction
type of E at p. In particular, the conjectures make sense (and are canonical) even when E
has additive reduction at p.

5. p-adic height pairings and the Bockstein regulator

In this section, as an important preliminary to the proofs of Theorem 1.9 and Corollaries
1.11 and 1.12, we shall make an explicit comparison of the Bockstein regulator RBoc

ω defined
in Definition 4.10 with the various notions of classical p-adic regulator (see Theorems 5.6
and 5.11 below).

In the following, we say ‘p is −’ if E has − reduction at p. For example, ‘p is good
ordinary’ means that E has good ordinary reduction at p.

In this section, we assume that E does not have additive reduction at p.
We shall use the same notations as in §2 and §4.

5.1. Review of p-adic height pairings. In this section, we give a review of the construc-
tion of p-adic height pairing using Selmer complexes.

5.1.1. The ordinary case. Suppose first that p is ordinary, i.e., good ordinary or multiplica-
tive. In this case we follow Nekovář’s construction of a p-adic height pairing in [32, §11].
(It is possible to treat this case in a more general context in §5.1.2 below, but it requires
the theory of (ϕ,Γ)-modules.)

We recall the definition of Nekovář’s Selmer complex.
To do this we note that, since p is ordinary, we have a canonical filtration F+V ⊂ V of

GQp-modules (due to Greenberg, see [19]).

We set F+T := T ∩ F+V . For any non-negative integer n, we also denote the unique
p-adic place of Qn by p.

Then, following the exact triangle given in (the third row of) [32, (6.1.3.2)], we define
the Selmer complex of T by setting

R̃Γf (Qn, T ) := Cone

RΓ(OQn,S , T )→ RΓ(Qn,p, T/F
+T )⊕

⊕
v∈SQn\{p}

RΓ/f (Qn,v, T )

 [−1].

(The local conditions are as in [32, (7.8.2)].)
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We set

H̃ i
f (Qn, T ) := H i(R̃Γf (Qn, T )) and H̃ i

f (Qn, V ) := Qp ⊗Zp H̃
i
f (Qn, T ).

We have a natural isomorphism

R̃Γf (Qn, T )⊗L
Zp[Gn]

Zp ' R̃Γf (Q, T )

(see [32, Prop. 8.10.1] or [17, Prop. 1.6.5(3)]), and so we can define (−1)-times the Bockstein
map

H̃1
f (Q, T )→ H̃2

f (Q, T )⊗Zp In/I
2
n

associated to the complex R̃Γf (Qn, T ) (in the same way as (2.3.2)). Taking lim←−n and
Qp ⊗Zp −, we obtain a map

β̃ : H̃1
f (Q, V )→ H̃2

f (Q, V )⊗Zp I/I
2.(5.1.1)

Combining this map with the global duality map

H̃2
f (Q, V )→ H̃1

f (Q, V )∗

(see [32, §6.3]), we obtain a pairing

〈−,−〉p : H̃1
f (Q, V )× H̃1

f (Q, V )→ Qp ⊗Zp I/I
2.

Noting that there is a natural embedding Qp⊗ZE(Q) ↪→ H̃1
f (Q, V ) (see Remark 5.1 below),

we obtain the p-adic height pairing

〈−,−〉p : E(Q)× E(Q)→ Qp ⊗Zp I/I
2.

Remark 5.1. If p is good ordinary or non-split multiplicative, then H̃1
f (Q, V ) coincides

with the usual Selmer group H1
f (Q, V ) (see [32, §0.10]). If p is split multiplicative, then we

have a canonical decomposition

H̃1
f (Q, V ) ' H1

f (Q, V )⊕Qp

(see [32, §11.4.2]). In any case, we have a canonical embedding Qp ⊗Z E(Q) ↪→ H̃1
f (Q, V ).

Remark 5.2. For comparisons of the above p-adic height pairing with the classical ones,
see [32, §§11.3 and 11.4].

5.1.2. The supersingular case. Suppose that p is good supersingular. In this case we follow
the construction of the p-adic height pairing due to Benois [2]. His construction uses Selmer
complexes associated to (ϕ,Γ)-modules, which was studied by Pottharst [35]. See also the
review in [3].

We fix one of the roots α ∈ Qp of the polynomial X2 − apX + p. We set

L := Qp(α).

We also set

VL := L⊗Qp V and DL := Dcrys(VL) = DdR(VL) ' L⊗Q H
1
dR(E/Q),
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which is endowed with an action of the Frobenius operator ϕ and also a natural decreasing
filtration {Di

L}i∈Z such that D0
L ' L⊗Q Γ(E,Ω1

E/Q). We set

tV,L := DL/D
0
L ' L⊗Q Lie(E).

Let Nα be the subspace of DL on which ϕ acts via αp−1. Explicitly, Nα is the subspace
generated by ϕ(ω)−α−1ω ∈ DL. Then the natural projection DL ↠ DL/D

0
L = tV,L induces

an isomorphism

Nα
∼−→ tV,L.(5.1.2)

A subspace of DL with this property is called a ‘splitting submodule’ in [2, §4.1.1].
We shall define a p-adic height pairing

〈−,−〉p = 〈−,−〉p,α : E(Q)× E(Q)→ L⊗Zp I/I
2.

Since there is a natural embedding Qp ⊗Z E(Q) ↪→ H1
f (Q, V ), it is sufficient to construct a

pairing
〈−,−〉p : H1

f (Q, V )×H1
f (Q, V )→ L⊗Zp I/I

2.

We recall some basic facts from the theory of (ϕ,Γ)-modules. Let D†
rig(VL) denote the

(ϕ,ΓQp)-module associated VL (where ΓQp := Gal(Qp(µp∞)/Qp)). (See [2, Th. 2.1.3].) By

[2, Th. 2.2.3], there is a submodule Dα ⊂ D†
rig(VL) corresponding to Nα ⊂ DL. (Note that

Nα has the filtration induced by that of DL.) For a general (ϕ,ΓQp)-module D, one can
define a complex (the ‘Fontaine-Herr complex’)

RΓ(Qp,D),

which is denoted by C•
φ,γQp

(D) in [2, §2.4]. When D = D†
rig(VL), this is naturally quasi-

isomorphic to RΓ(Qp, VL) (see [2, Prop. 2.5.2]). So there is a natural morphism in the
derived category of L-vector spaces

RΓ(ZS , VL)→ RΓ(Qp, VL) ' RΓ(Qp,D†
rig(VL))→ RΓ(Qp,D†

rig(VL)/Dα).
We define the Selmer complex by

R̃Γf (Q, VL) := Cone

RΓ(ZS , VL)→ RΓ(Qp,D†
rig(VL)/Dα)⊕

⊕
ℓ∈S\{p}

RΓ/f (Qℓ, VL)

 [−1].

(We adopt [3, (2.6)] as the definition.) We set H̃ i
f (Q, VL) := H i(R̃Γf (Q, VL)). It is known

that
H1
f (Q,VL) ' H̃1

f (Q, VL).
(See [2, Th. III].)

We next study the Iwasawa theoretic version. We set

H :=

{
f(X) =

∞∑
n=0

cnX
n ∈ L[[X]]

∣∣∣∣∣ f(X) converges on the open unit disk

}
.

Then, for a general (ϕ,ΓQp)-module D, one can define an Iwasawa cohomology complex of
H-modules

RΓIw(Qp,D).
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(See [2, §2.8].) We fix a topological generator γ ∈ Γ. Then Γ acts on H by identifying
X = γ − 1. We set

V L := VL ⊗L H,
where GQ acts on H via

GQ ↠ Γ
γ 7→γ−1

−−−−→ Γ.

When D = D†
rig(VL), we have a natural quasi-isomorphism RΓIw(Qp,D) ' RΓ(Qp, V L) (see

[2, Th. 2.8.2]). Thus there is a natural morphism in the derived category of H-modules

RΓ(ZS , V L)→ RΓ(Qp, V L) ' RΓIw(Qp,D†
rig(VL))→ RΓIw(Qp,D†

rig(VL)/Dα).
We define the Iwasawa Selmer complex by

R̃Γf,Iw(Q, VL) := Cone

RΓ(ZS , V L)→ RΓIw(Qp,D†
rig(VL)/Dα)⊕

⊕
ℓ∈S\{p}

RΓ/f (Qℓ, V L)

 [−1].

We know the following ‘control theorem’

R̃Γf,Iw(Q, VL)⊗L
H L ' R̃Γf (Q, VL).(5.1.3)

(See [35, Th. 1.12].)
We now give the definition of the p-adic height pairing. Let I := (X) be the augmentation

ideal of H. Note that I/I2 is identified with L⊗Zp I/I
2. From the exact sequence

0→ I/I2 → H/I2 → L→ 0,

we obtain the exact triangle

R̃Γf,Iw(Q, VL)⊗L
H I/I2 → R̃Γf,Iw(Q, VL)⊗L

H H/I2 → R̃Γf,Iw(Q, VL)⊗L
H L.

By the control theorem (5.1.3), we have

R̃Γf (Q, VL)⊗L
L I/I2 → R̃Γf,Iw(Q, VL)⊗L

H H/I2 → R̃Γf (Q, VL).
The (−1)-times connecting homomorphism of this triangle gives a map

H̃1
f (Q, VL)→ H2(R̃Γf (Q, VL)⊗L

L I/I2) = H̃2
f (Q, VL)⊗L I/I2.

Composing this map with the global duality map

H̃2
f (Q, VL)→ H̃1

f (Q, VL)∗

(see [2, Th. 3.1.5]), we obtain

H̃1
f (Q, VL)→ H̃1

f (Q, VL)∗ ⊗L I/I2.
This gives the desired p-adic height pairing.

Remark 5.3. The above construction makes sense even when p is good ordinary. In this
case, α is canonically chosen so that ordp(α) < 1, and we can take Nα to be Dcrys(F

+V ).
One sees that the p-adic height pairing with this choice coincides with that in §5.1.1.

Remark 5.4. Comparisons of this p-adic height pairing with the classical ones are studied
in detail by Benois [2]. In particular, this p-adic height pairing coincides with the one
constructed by Nekovář in [31], which is used by Kobayashi in [26].
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5.2. A comparison result. We shall define the p-adic regulator and compare it with the
Bockstein regulator RBoc

ω . In this subsection, we assume Hypothesis 2.2.

5.2.1. Let L be the splitting field of the polynomial X2 − apX + p over Qp. Note that
L = Qp unless p is supersingular.

Let
〈−,−〉p : E(Q)× E(Q)→ L⊗Zp I/I

2

be the p-adic height pairing defined above. (When p is supersingular, this depends on the
choice of a root α of X2 − apX + p.)

Definition 5.5. The p-adic regulator

Rp = Rp,α ∈ L⊗Zp Q
r

is defined to be the discriminant of the p-adic height pairing, i.e.,

Rp := det(〈xi, xj〉p)1≤i,j≤r
with {x1, . . . , xr} a basis of E(Q)tf .

The p-adic height pairing induces a map

E(Q)× (Qp ⊗Z E(Q))⊗Zp Q
r−1 → L⊗Zp Q

r(5.2.1)

(x, (a⊗ y)⊗ b) 7→ a · b · 〈x, y〉p,
which we denote also by 〈−,−〉p.

The following gives a relation between Rp and RBoc
ω .

Theorem 5.6. For any x ∈ E(Q) we have

〈x,RBoc
ω 〉p = logω(x) ·Rp.

5.2.2. The proof of Theorem 5.6 will be given in §5.2.3. However, we first need to prove
several preliminary technical results.

Lemma 5.7. The p-adic height pairing is symmetric, i.e.,

〈x, y〉p = 〈y, x〉p
for any x, y ∈ E(Q).

Proof. See [32, Cor. 11.2.2] and [2, Th. I] in the ordinary and supersingular cases respec-
tively. □
Lemma 5.8. The following diagram is commutative.

E(Q) //

lim←−n
βn ))RR

RRR
RRR

RRR
RRR

R (L⊗Z E(Q))∗ ⊗Zp I/I
2

(2.2.2)
����

L⊗Qp H
2(ZS , V )⊗Zp I/I

2,

where the horizontal arrow is the map induced by the p-adic height pairing

x 7→ (y 7→ 〈x, y〉p).
(For the definition of βn := βQn, see (2.3.2).)
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Proof. We first suppose that p is ordinary. We have the commutative diagram

R̃Γf (Q, T )⊗L
Zp
In/I

2
n

//

��

R̃Γf (Qn, T )⊗L
Zp[Gn]

Zp[Gn]/I2n //

��

R̃Γf (Q, T )

��
RΓ(ZS , T )⊗L

Zp
In/I

2
n

// RΓ(OQn,S , T )⊗L
Zp[Gn]

Zp[Gn]/I2n // RΓ(ZS , T ),

whose rows are exact triangles. The map βn is defined by the connecting homomorphism
of the bottom triangle. On the other hand, the p-adic height pairing is defined by the
connecting homomorphism of the top triangle. Thus the claim follows from the functoriality
of the connecting homomorphism, i.e., the commutativity of the diagram

H̃1
f (Q, T ) //

��

H̃2
f (Q, T )⊗Zp In/I

2
n

��
H1(ZS , T ) // H2(ZS , T )⊗Zp In/I

2
n,

where the horizontal arrows are connecting homomorphisms.
Next, suppose that p is good supersingular. With the notations in §5.1.2, we have the

commutative diagram with exact rows

R̃Γf (Q, VL)⊗L
L I/I2 //

��

R̃Γf,Iw(Q, VL)⊗L
H H/I2 //

��

R̃Γf (Q, VL)

��
RΓ(ZS , VL)⊗L

L I/I2 // RΓ(ZS , V L)⊗L
H H/I2 // RΓ(ZS , VL).

Since the map lim←−n βn coincides with the map defined by the connecting homomorphism of

the bottom triangle (by Shapiro’s lemma), the claim follows by the same argument as in
the ordinary case. □

Lemma 5.9. LetM and N be L-vector spaces of dimension r and r−1 respectively. Suppose
that an exact sequence

0→ N
ι−→M

ℓ−→ L→ 0(5.2.2)

and L-linear maps f :M →M∗ and g :M → N∗ are given. Assume the following.

(a) The diagram

M
f //

g !!D
DD

DD
DD

D M∗

ι∗����
N∗

is commutative.
(b) The map f satisfies f(x)(y) = f(y)(x) for any x, y ∈M .
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Then for any x ∈M the following diagram is commutative.∧r
LM

∧r f //

∧r−1 g

��

∧r
LM

∗

ℓ(x)×

''NN
NNN

NNN
NNN

∧r
LM

∗

M ⊗L
∧r−1
L N∗

δ

' // M ⊗L
∧r
LM

∗.

f(x)⊗id

88ppppppppppp

(5.2.3)

Here δ is the natural isomorphism induced by (5.2.2), and the left vertical arrow is defined
by(∧r−1

g
)
(x1 ∧ · · · ∧ xr) =

r∑
i=1

(−1)i+1xi ⊗ g(x1) ∧ · · · ∧ g(xi−1) ∧ g(xi+1) ∧ · · · ∧ g(xr).

Proof. Let {x1, . . . , xr} be a basis of M and fix x ∈M . It is sufficient to prove

f(x) ◦ δ ◦
(∧r−1

g
)
(x1 ∧ · · · ∧ xr) = `(x) · f(x1) ∧ · · · ∧ f(xr).

We shall describe the left hand side explicitly. Using assumption (a), we have

δ ◦
(∧r−1

g
)
(x1 ∧ · · · ∧ xr)(5.2.4)

=
r∑
i=1

xi ⊗ f(x1) ∧ · · · ∧ f(xi−1) ∧ ` ∧ f(xi+1) ∧ · · · ∧ f(xr).

Thus we have

f(x)◦δ◦
(∧r−1

g
)
(x1∧· · ·∧xr) =

r∑
i=1

f(x)(xi)·f(x1)∧· · ·∧f(xi−1)∧`∧f(xi+1)∧· · ·∧f(xr).

Suppose first that f is bijective. Then {f(x1), . . . , f(xr)} is a basis of M∗ and we can
write

` =

r∑
i=1

aif(xi) in M
∗

with some a1, . . . , ar ∈ L. By assumption (b), we have f(x)(xi) = f(xi)(x) and so we
compute

r∑
i=1

f(x)(xi) · f(x1) ∧ · · · ∧ f(xi−1) ∧ ` ∧ f(xi+1) ∧ · · · ∧ f(xr)

=
r∑
i=1

aif(xi)(x) · f(x1) ∧ · · · ∧ f(xr)

= `(x) · f(x1) ∧ · · · ∧ f(xr).
This proves the lemma in this case.



34 DAVID BURNS, MASATO KURIHARA AND TAKAMICHI SANO

Suppose next that f is not bijective. Then {f(x1), . . . , f(xr)} is linearly dependent so
we may assume

f(x1) =
r∑
i=2

aif(xi)

with some a2, . . . , ar ∈ L.
We then compute

r∑
i=1

f(x)(xi) · f(x1) ∧ · · · ∧ f(xi−1) ∧ ` ∧ f(xi+1) ∧ · · · ∧ f(xr)

=

r∑
i=1

f(xi)(x) · f(x1) ∧ · · · ∧ f(xi−1) ∧ ` ∧ f(xi+1) ∧ · · · ∧ f(xr)

=

(
r∑
i=2

aif(xi)(x)

)
· ` ∧ f(x2) ∧ · · · ∧ f(xr)

+
r∑
i=2

f(xi)(x) ·

 r∑
j=2

ajf(xj)

 ∧ f(x2) ∧ · · · ∧ f(xi−1) ∧ ` ∧ f(xi+1) ∧ · · · ∧ f(xr)

=

r∑
i=2

aif(xi)(x) · ` ∧ f(x2) ∧ · · · ∧ f(xr)

+
r∑
i=2

aif(xi)(x) · f(xi) ∧ f(x2) ∧ · · · ∧ f(xi−1) ∧ ` ∧ f(xi+1) ∧ · · · ∧ f(xr)

= 0.

Since
∧r f is also zero in this case, this proves the desired commutativity. □

5.2.3. We are now ready to prove Theorem 5.6.
To do this we first apply Lemma 5.9 with M := L⊗ZE(Q), N := L⊗Qp H

2(ZS , V )∗ and
the exact sequence

0→ L⊗Qp H
2(ZS , V )∗ → L⊗Z E(Q)

logω−−→ L→ 0,

which is obtained from (2.2.2) (so we let ` in (5.2.2) be logω). We fix a Zp-basis of I/I2

and identify it with Zp. By letting

f :M →M∗; x 7→ (y 7→ 〈x, y〉p)
and

g := lim←−
n

βn :M → N∗,

we see that assumptions (a) and (b) in Lemma 5.9 are satisfied by Lemmas 5.8 and 5.7
respectively.

Let {x1, . . . , xr} be a basis of E(Q)tf ⊂M . By the definition of Rp, we have(∧r
f
)
(x1 ∧ · · · ∧ xr) = Rp · x∗1 ∧ · · · ∧ x∗r ∈

∧r

L
M∗.
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On the other hand, we have

δ ◦
(∧r−1

g
)
(x1 ∧ · · · ∧ xr) = RBoc

ω ⊗ (x∗1 ∧ · · · ∧ x∗r) ∈M ⊗L
∧r

L
M∗,(5.2.5)

where δ is as in (5.2.3). This again follows from the definition of RBoc
ω . Hence, for any

x ∈ E(Q), the commutativity of (5.2.3) implies

f(x)(RBoc
ω ) = `(x) ·Rp,

i.e.,

〈x,RBoc
ω 〉p = logω(x) ·Rp.

This completes the proof of Theorem 5.6.

5.3. Schneider’s height pairing. We now consider the case that p is split multiplicative.
In this case, the classical p-adic height pairing constructed by Schneider [40] is different
from that of Nekovář constructed above. Explicitly, Schneider’s p-adic height pairing

〈−,−〉Schp : E(Q)× E(Q)→ Qp ⊗Zp I/I
2

is related to Nekovář’s height pairing 〈−,−〉p by

`p(〈x, y〉Schp ) = `p(〈x, y〉p)−
logω(x) logω(y)

logp(qE)
in Qp,(5.3.1)

where `p denotes the isomorphism

`p : Qp ⊗Zp I/I
2 γ−1 7→γ−−−−−→ Qp ⊗Zp Γ

χcyc−−→ Qp ⊗Zp (1 + pZp)
logp−−→ Qp,(5.3.2)

with χcyc the cyclotomic character, and qE ∈ Qp is the p-adic Tate period of E. (See [32, Th.
11.4.6], where Schneider’s height is denoted by hnormπ .) Note that, by the so-called ‘Saint
Etienne Theorem’ of Barré-Sirieix, Diaz, Gramain and Philibert [1], one has logp(qE) 6= 0

and so the above formula makes sense. Since the relation (5.3.1) characterizes 〈−,−〉Schp ,
we adopt it as the definition of Schneider’s p-adic height pairing.

Definition 5.10. We define Schneider’s p-adic regulator

RSch
p ∈ Qp ⊗Zp Q

r

by the discriminant of Schneider’s p-adic height pairing, i.e.,

RSch
p := det(〈xi, xj〉Schp )1≤i,j≤r

with {x1, . . . , xr} a basis of E(Q)tf .

We identify Qp⊗Zp I/I
2 = Qp via the isomorphism `p. By using the relation (5.3.1), one

checks that

RSch
p = Rp−

1

logp(qE)

r∑
i=1

logω(xi) det


〈x1, x1〉p 〈x1, x2〉p · · · logω(x1) · · · 〈x1, xr〉p
〈x2, x1〉p · · · · · · logω(x2) · · · 〈x2, xr〉p

...
...

...
〈xr, x1〉p · · · · · · logω(xr) · · · 〈xr, xr〉p

 ,
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where the vector (logω(xj))j is put on the i-th column in the matrix on the right hand side.
In fact, this follows from the elementary formula

det(aij + cbibj) = det(aij) + c
r∑
i=1

bi det


a11 a12 · · · b1 · · · a1r
a21 · · · · · · b2 · · · a2r
...

...
...

ar1 · · · · · · br · · · arr


(with the vector (bj)j put on the i-th column). Furthermore, by (5.2.4) and (5.2.5), we have

RBoc
ω =

r∑
i=1

xi ⊗ det


〈x1, x1〉p 〈x1, x2〉p · · · logω(x1) · · · 〈x1, xr〉p
〈x2, x1〉p · · · · · · logω(x2) · · · 〈x2, xr〉p

...
...

...
〈xr, x1〉p · · · · · · logω(xr) · · · 〈xr, xr〉p

 ,

and hence we have

RSch
p = Rp −

logω(R
Boc
ω )

logp(qE)
.

From this and Theorem 5.6, we obtain the following.

Theorem 5.11. For any x ∈ E(Q) we have

〈x,RBoc
ω 〉Schp = logω(x) ·RSch

p .

6. The Generalized Rubin Formula and consequences

In this section we relate Conjectures 4.8 and 4.15 to the p-adic analogue of the Birch
and Swinnerton-Dyer conjecture formulated by Mazur, Tate and Teitelbaum in [30] (see
Corollaries 6.6 and 6.7).

In particular, we continue to assume in this section that E does not have additive reduc-
tion at p.

6.1. Review of the p-adic L-function. In this subsection, we review the p-adic L-
function of Mazur-Tate-Teitelbaum [30]. See also the review in [23, §16.1].

When p is good, let α ∈ Qp be a root of X2−apX+p such that ordp(α) < 1 (an ‘allowable
root’), and β(:= p/α) the other root. Note that, when p is good ordinary, α is uniquely
determined by this property.

When p is split (resp. non-split) multiplicative, we set α := 1 (resp. −1) and β := p
(resp. −p).

We set

L := Qp(α).

Note that L = Qp unless p is supersingular.

Recall that Q∞/Q denotes the cyclotomic Zp-extension and Γ := Gal(Q∞/Q). Let Γ̂

denote the set of Q-valued characters of Γ of finite order.
Recall also that an embedding Q ↪→ C is fixed. For a positive integer m, let ζm ∈ Q be

the element corresponding to e2π
√
−1/m ∈ C. We also fix an isomorphism C ' Cp. From
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this, we obtain an embedding Q ↪→ Qp. Thus each character in Γ̂ is regarded both Qp and
C-valued.

As in §2, we fix a Néron differential ω ∈ Γ(E,Ω1
E/Q). Let ξ be the element of SL2(Z)

used in the construction of Kato’s Euler system (and normalized as in (2.1.3). Let Ωξ be
the real period associated to (ω, ξ) (see (2.1.4)).

We fix a topological generator γ of Γ. Then we have a natural identification

OL[[Γ]] = OL[[γ − 1]].

Let | − |p : Cp → R≥0 denote the p-adic absolute value normalized by |p|p = p−1. For a
positive integer h, we define

Hh :=

{ ∞∑
n=0

cn(γ − 1)n ∈ L[[γ − 1]]

∣∣∣∣∣ lim
n→∞

|cn|p
nh

= 0

}
and

H∞ :=
⋃
h

Hh.

For any continuous character χ : Γ → Q×
p and f =

∑
n cn(γ − 1)n ∈ H∞, we can define a

natural evaluation

χ(f) :=
∑
n

cn(χ(γ)− 1)n ∈ Qp.

It is known that there is a unique element (the ‘p-adic L-function’ of E)

LS,p = LS,p,α,ω,ξ ∈ H1

that has the following property: for any character χ ∈ Γ̂ one has

χ(LS,p) =


(
1− 1

α

)(
1− 1

β

)−1 LS(E, 1)

Ωξ
if χ = 1,

τ(χ)

αn
LS(E,χ

−1, 1)

Ωξ
if χ has conductor pn > 1.

Here in the latter case τ(χ) denotes the Gauss sum

τ(χ) :=
∑

σ∈Gal(Q(µpn )/Q)

χ(σ)ζσpn ,

and LS(E,χ
−1, s) denotes the S-truncated Hasse-Weil L-function of E twisted by χ−1. For

the construction of LS,p from Kato’s Euler system, see Theorem 6.10 below.
Let I := (γ − 1) be the augmentation ideal of H∞. For a non-negative integer a, we set

Qa := Ia/Ia+1.

Note that we have a natural identification

Qa = L⊗Zp Q
a.

We know the following ‘order of vanishing’ (which is actually a consequence of Proposition
4.4).
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Proposition 6.1 ([23, Th. 18.4]). Set r := rankZ(E(Q)). Then we have

LS,p ∈

{
Ir if p is good or non-split multiplicative,

Ir+1 if p is split multiplicative.

6.2. The Generalized Rubin Formula. Let L(r)S,p (resp. L(r+1)
S,p ) denote the image of

LS,p ∈ Ir (resp. Ir+1) in Qr (resp. Qr+1) when p is good or non-split multiplicative (resp.
split multiplicative).

Recall some notations. Let

〈−,−〉p = 〈−,−〉p,α : E(Q)× (Qp ⊗Z E(Q))⊗Zp Q
r−1 → L⊗Zp Q

r = Qr

be the map induced by the p-adic height pairing (see (5.2.1)). Let logω : E(Qp) → Qp be
the formal logarithm associated to the fixed Néron differential ω. Let

κ∞ ∈ H1(ZS , V )⊗Zp Q
r−1 ' (Qp ⊗Z E(Q))⊗Zp Q

r−1.

be the Iwasawa-Darmon derivative in Definition 4.5.
The following is a generalization of ‘Rubin’s formula’ for the higher rank case.

Theorem 6.2 (The Generalized Rubin Formula). Under Hypothesis 2.2, we have the fol-
lowing.

(i) If p is good or non-split multiplicative, then for any x ∈ E(Q) we have

〈x, κ∞〉p =
(
1− 1

α

)−1(
1− 1

β

)
logω(x) · L

(r)
S,p in Qr.

(ii) If p is split multiplicative, then for any x ∈ E(Q) we have

〈x, κ∞〉Schp · 1

ordp(qE)
(1− recp(qE)) =

(
1− 1

p

)
logω(x) · L

(r+1)
S,p in Qr+1.

Here qE ∈ Q×
p denotes the p-adic Tate period of E and recp : Q×

p → Γ the local
reciprocity map.

Remark 6.3. When r = 1, we have κ∞ = zQ (see Remark 4.7), so Theorem 6.2(i) asserts

〈x, zQ〉p =
(
1− 1

α

)−1(
1− 1

β

)
logω(x) · L

(1)
S,p in I/I2.

When p is good ordinary, this formula is proved by Rubin [36, Th. 1(ii)], which we call
‘Rubin’s formula’ (following Nekovář [32, (11.3.14)]). (Note that ‘L′

z,ω(1)’ in [36, Th. 1(ii)]

corresponds to our
(
1− 1

α

)
L(1)S,p.) Thus Theorem 6.2(i) is regarded as a ‘higher rank’ gen-

eralization of Rubin’s formula.

Remark 6.4. The element
1

ordp(qE)
(1− recp(qE)) ∈ Qp ⊗Zp I/I

2

appearing in Theorem 6.2(ii) is essentially the ‘L-invariant’. In fact, one checks that the
image of this element under the isomorphism

Qp ⊗Zp I/I
2 γ−1 7→γ−−−−−→ Qp ⊗Zp Γ

χcyc−−→ Qp ⊗Zp (1 + pZp)
logp−−→ Qp
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(see (5.3.2)) is the usual L-invariant
logp(qE)

ordp(qE)
.

Remark 6.5. When r = 1, Theorem 6.2(ii) is obtained by Venerucci [44, Th. 12.31] and
Büyükboduk [12, Th. 3.22].

A proof of Theorem 6.2 will be given in §6.4. We state here some consequences of the
theorem. Recall that vξ ∈ Q× is defined by Ω+ = vξ · Ωξ (see (4.3.3)).

Corollary 6.6. Conjecture 4.15 implies the p-adic Birch-Swinnerton-Dyer Formula in [30,
Chap. II, §10], i.e.,(

1− 1

α

)−1(
1− 1

β

)
· L(r)S,p = vξ

 ∏
ℓ∈S\{∞}

Lℓ

 #X(E/Q) · Tam(E)

#E(Q)2tors
Rp

if p is good or non-split multiplicative, and

L(r+1)
S,p =

1

ordp(qE)
(1− recp(qE)) · vξ

 ∏
ℓ∈S\{∞,p}

Lℓ

 #X(E/Q) · Tam(E)

#E(Q)2tors
RSch
p

if p is split multiplicative.
If Rp 6= 0 (resp. RSch

p 6= 0), then the converse also holds when p is good or non-split
multiplicative (resp. split multiplicative).

Proof. We only treat the case when p is good or non-split multiplicative. The case when p
is split multiplicative is treated similarly, by using Theorem 5.11.

Conjecture 4.15 asserts

κ∞ = vξ

 ∏
ℓ∈S\{∞}

Lℓ

 #X(E/Q)Tam(E)

#E(Q)2tors
·RBoc

ω in (Qp ⊗Z E(Q))⊗Zp Q
r−1.

Take x ∈ E(Q) such that logω(x) 6= 0. Taking 〈x,−〉p to both sides, we obtain(
1− 1

α

)−1(
1− 1

β

)
logω(x) · L

(r)
S,p = vξ

 ∏
ℓ∈S\{∞}

Lℓ

 #X(E/Q)Tam(E)

#E(Q)2tors
logω(x)Rp

by Theorems 6.2 and 5.6. Since logω(x) 6= 0, we can cancell it from both sides and obtain
the desired formula.

If Rp 6= 0, then the map y 7→ (x 7→ 〈x, y〉p) is injective, and so the converse holds. □

Similarly, we also obtain the following.

Corollary 6.7. Conjecture 4.8 implies the p-adic Beilinson Formula, i.e.,(
1− 1

α

)−1(
1− 1

β

)
· L(r)S,p =

L∗
S(E, 1)

Ωξ ·R∞
Rp(6.2.1)
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if p is good or non-split multiplicative, and

L(r+1)
S,p =

1

ordp(qE)
(1− recp(qE)) ·

L∗
S\{p}(E, 1)

Ωξ ·R∞
RSch
p(6.2.2)

if p is split multiplicative.
If Rp 6= 0 (resp. RSch

p 6= 0), then the converse also holds when p is good or non-split
multiplicative (resp. split multiplicative).

Proof. This follows by the same argument as the proof of Corollary 6.6, using Proposition
4.14. □

Remark 6.8. When p is good and ran = r = 1, the formula (6.2.1) was proved by Perrin-
Riou [33, Cor. 1.8] in the ordinary case, and by Kobayashi [26, Cor. 1.3] in the supersingular
case. (It is essentially the ‘p-adic Gross-Zagier Formula’.) When p is split multiplicative
and ran = r = 0, the formula (6.2.2) was first proved by Greenberg and Stevens [20] and
then by Kobayashi [25] and by Kato, Tsuji and the second author (unpublished).

6.3. Review of the Coleman map. As a preliminary of the proof of Theorem 6.2, we
review the construction of the Coleman map. We follow the explicit construction due to
Rubin [37, Appendix]. See also [27, §3].

We set

D := Dcrys(V ).

Let ϕ denote the Frobenius operator acting on D. For a finite extension K/Qp, we set

DK := K ⊗Qp D.

Let

[−,−]K : (K ⊗Qp DdR(V ))×DK → K

denote the natural pairing.
We use the following fact.

Lemma 6.9 ([23, Th. 16.6(1)]). Set L := Qp(α). There exists a unique ν = να,ω ∈ DL

such that

ϕ(ν) = αp−1ν = β−1ν and [ω, ν]L = 1.

Let Qn,p denote the completion of Qn at the unique prime lying above p. We set

Ln := L ·Qn,p.

Let ν ∈ DL be as in Lemma 6.9 and set

δn :=
1

pn+1
TrL(µpn+1 )/Ln

(
n∑
i=0

ζpn+1−iϕi−n−1(ν) + (1− ϕ)−1(ν)

)
(6.3.1)

=
1

αn+1
TrL(µpn+1 )/Ln

(
n∑
i=0

ζpn+1−i − 1

βi
+

β

β − 1

)
ν ∈ DLn .

This element satisfies

TrLn+1/Ln
(δn+1) = δn
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and for any character χ of Gn

∑
σ∈Gn

σ(δn)χ(σ) =


(
1− 1

α

)(
1− 1

β

)−1

ν if χ = 1,

τ(χ)

αm
ν if χ has conductor pm > 1

(6.3.2)

in DL(µpn+1 ) (see [37, Lem. A.1] or [27, Lem. 3.1]).

As in §4.2, we set
H i
n := H i(OQn,S , T ) and Hi := lim←−

n

H i
n.

We define a map
Coln : H1

n → L[Gn]

by

Coln(z) :=
∑
σ∈Gn

TrLn/L([exp
∗
n(z), σδn]Ln)σ,

where
exp∗n = exp∗Qn,p,V : H1

n → H1(Qn,p, T )→ Qn,p ⊗Qp DdR(V )

denotes the Bloch-Kato dual exponential map. This map induces a map on the inverse limit

Col := lim←−
n

Coln : H1 → H∞.

This is the definition of the Coleman map.
We set

tc,d := cd(c− σc)(d− σd) ∈ Zp[[Γ]].(6.3.3)

Here σa ∈ Γ is the restriction of the automorphism of Q(µp∞) characterized by ζσapn = ζapn
for every n.

The following result is well-known.

Theorem 6.10 (Kato [23, Th. 16.6(2)]). We have

Col((c,dzn)n) = tc,d · LS,p.

6.4. The proof of Theorem 6.2. In this subsection, we prove Theorem 6.2.

6.4.1. We first establish several important preliminary results.
We initially suppose that p is good or non-split multiplicative, and give a proof of Theorem

6.2(i).
We shall use the derivative introduced by Nekovář in [32, §11.3.14], based on the idea of

Rubin in [36].
With the notations in §5.1, we set

F−V :=

{
V/F+V if p is ordinary,

D†
rig(VL)/Dα if p is supersingular.

For y ∈ H1, we define ‘Rubin’s derivative’

D(y) ∈ H1(Qp, F
−V )⊗Zp I/I

2
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as follows. (Compare the definition given by Nekovář in [32, §11.3.14], where the symbol
‘DxIw’ is used.)

Suppose first that p is ordinary. We have a commutative diagram with exact rows and
columns

R̃Γf (Q, V )⊗L
Zp
I/I2 //

��

RΓ(ZS , V )⊗L
Zp
I/I2 //

��

RΓ(Qp, F
−V )⊗L

Zp
I/I2

i

��
R̃Γf,Iw(Q, V )⊗L

Λ Λ/I2 //

��

RΓIw(ZS , V )⊗L
Λ Λ/I2

locp //

��

RΓIw(Qp, F
−V )⊗L

Λ Λ/I2

��
R̃Γf (Q, V ) // RΓ(ZS , V ) // RΓ(Qp, F

−V ).

(6.4.1)

Here R̃Γf (Q, V ) := R̃Γf (Q, T )⊗L
Zp

Qp and

R̃Γf,Iw(Q, V ) :=

(
lim←−
n

R̃Γf (Qn, T )

)
⊗L

Zp
Qp.

RΓIw(ZS , V ) and RΓIw(Qp, F
−V ) are defined in a similar way.

We regard y ∈ H1 as an element of H1(RΓIw(ZS , V )⊗L
Λ Λ/I2). Since y0 lies in H̃1

f (Q, V )

(see (2.2.1)) and H0(Qp, F
−V ) = 0, a diagram chasing shows that there exists a unique

element D(y) ∈ H1(Qp, F
−V )⊗Zp I/I

2 such that

locp(y) = i(D(y)) in H1(RΓIw(Qp, F
−V )⊗L

Λ Λ/I2).

This gives the definition of Rubin’s derivative in this case.
When p is supersingular, Rubin’s derivative is defined in the same way, by considering

the commutative diagram with exact rows and columns

R̃Γf (Q, VL)⊗L
Zp
I/I2 //

��

RΓ(ZS , VL)⊗L
Zp
I/I2 //

��

RΓ(Qp, F
−V )⊗L

Zp
I/I2

��
R̃Γf,Iw(Q, VL)⊗L

H H/I2 //

��

RΓ(ZS , V L)⊗L
H H/I2 //

��

RΓIw(Qp, F
−V )⊗L

H H/I2

��
R̃Γf (Q, VL) // RΓ(ZS , VL) // RΓ(Qp, F

−V ).

Let

(−,−)p : H1
f (Qp, V )×H1(Qp, F

−V )→ H2(Qp, L(1)) ' L
be the pairing defined by the cup product. This pairing induces

(−,−)p : E(Q)× (H1(Qp, F
−V )⊗Zp I/I

2)→ L⊗Zp I/I
2 = I/I2.(6.4.2)

The following is an abstract version of Rubin’s formula.
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Theorem 6.11 (Rubin, Nekovář). Suppose that p is not split multiplicative. For any
x ∈ E(Q) and y = (yn)n ∈ lim←−nH

1
n = H1, we have

〈x, y0〉p = (x,D(y))p in I/I2.
Proof. This is proved in [32, Prop. 11.3.15]. We give a proof for the reader’s convenience.
We treat only the ordinary case, since the supersingular case is treated in a similar way.

Recall that the map β̃ : H̃1
f (Q, V ) → H̃2

f (Q, V ) ⊗Zp I/I
2 in (5.1.1) is defined to be

(−1)-times the connecting homomorphism of the left vertical triangle of (6.4.1). Let δ :

H1(Qp, F
−V ) ⊗Zp I/I

2 → H̃2
f (Q, V ) be the connecting homomorphism of the upper hor-

izontal triangle of (6.4.1). Then, by the compatibility of connecting homomorphisms (see
[32, Lem. 1.2.19]), we have

β̃(y0) = δ(D(y)).
We identify H̃2

f (Q, V ) = H̃1
f (Q, V )∗ = Qp ⊗Z E(Q)∗ by global duality. Then for any x ∈

E(Q) we have

β̃(y0)(x) = 〈x, y0〉p
by the definition of the p-adic height pairing. On the other hand, by the compatibility
between local and global duality, we have

δ(D(y))(x) = (x,D(y))p.
Thus we have

〈x, y0〉p = (x,D(y))p.
□

We shall now apply Theorem 6.11 in our setting.

Lemma 6.12. Let c,dκ∞ ∈ H1
0 ⊗Zp Q

r−1 be the Iwasawa-Darmon derivative in Definition

4.5. Then there exists a unique w = (wn)n ∈ lim←−nH
1
n = H1 such that

c,dzn = (γ − 1)r−1wn

for every n and

c,dκ∞ = w0 ⊗ (γ − 1)r−1.

Proof. By the proof of Proposition 4.4, we have c,dz∞ ∈ Ir−1 · H1. Since H1 is a free Λ-
module of rank one, there exists a unique w ∈ H1 such that c,dz∞ = (γ − 1)r−1w. The
description of c,dκ∞ follows from (4.2.1). □

By Lemma 6.12, we can define the ‘Rubin’s derivative of the Iwasawa-Darmon derivative’

D(c,dκ∞) := D(w) · (γ − 1)r−1 ∈ H1(Qp, F
−V )⊗Zp Q

r.

Applying Theorem 6.11 to this element, we obtain the following.

Corollary 6.13. For any x ∈ E(Q), we have

〈x, c,dκ∞〉p = (x,D(c,dκ∞))p in Qr,
where

(−,−)p : E(Q)× (H1(Qp, F
−V )⊗Zp Q

r)→ Qr

is the map induced by (6.4.2).
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Lemma 6.14. Let y ∈ H1. Then we have

Col(y) ∈ I

and

Col(y) = (exp0(δ0),D(y))p in I/I2,
where exp0 = expQp,V : DL → L⊗Qp H

1
f (Qp, V ) denotes the Bloch-Kato exponential map.

Proof. We shall show the first claim. By the construction of the Coleman map, it is sufficient
to show that ∑

σ∈Gn

TrLn/L ([exp
∗
n(yn), σδn]Ln) = 0

for every n. The left hand side is equal to [exp∗0(y0), δ0]L. Since y0 lies in H1
f (Q, V ), we

know that exp∗0(y0) = 0 and so we have proved the first claim.
Next, we shall show the second claim. Note that, by construction, we have

Coln(yn) =
∑
σ∈Gn

(expn(δn), σyn)Lnσ
−1,

where expn : DLn → H1
f (Ln, V ) denotes the Bloch-Kato exponential map and

(−,−)Ln : H1
f (Ln, V )×H1(Qn,p, F

−V )→ L

denotes the cup product pairing. Noting this, one verifies

Col(y) = (exp0(δ0),D(y))p in I/I2

by the definition of D(y). □

6.4.2. Proof of Theorem 6.2(i). Let w ∈ H1 be the element in Lemma 6.12. We compute

tc,d · LS,p = Col((c,dzn)n) (by Theorem 6.10)

= Col(w) · (γ − 1)r−1 (by Lemma 6.12)

∈ Ir (by Lemma 6.14).

Hence, in the quotient Qr = Ir/Ir+1, we compute

tc,d · L
(r)
S,p = (exp0(δ0),D(w))p · (γ − 1)r−1 (by Lemma 6.14)

= (exp0(δ0),D(c,dκ∞))p.

By (6.3.2), note that

δ0 =

(
1− 1

α

)(
1− 1

β

)−1

ν.

Since [ω, ν]L = 1 by Lemma 6.9, we have(
1− 1

α

)−1(
1− 1

β

)
logω(x) exp0(δ0) = x in H1

f (Qp, V )
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for any x ∈ E(Q). Thus we have(
1− 1

α

)−1(
1− 1

β

)
logω(x)tc,d · L

(r)
S,p = (x,D(c,dκ∞))p

= 〈x, c,dκ∞〉p (by Corollary 6.13).

Upon multiplying both sides by t−1
c,d we obtain the desired formula.

This completes the proof of Theorem 6.2(i).

6.4.3. We now suppose that p is split multiplicative and prepare for the proof of Theorem
6.2(ii).

Note first that, by Tate’s uniformization, we have an exact sequence of GQp-modules

0→ Zp(1)→ T → Zp → 0.(6.4.3)

This means that F+V ' Qp(1) and F
−V := V/F+V ' Qp.

Since H0(Qp, F
−V ) does not vanish in this case, Rubin’s derivative D(y) is not deter-

mined uniquely, so we impose more condition to define it. Let

ρp : H
0(Qp, F

−V )→ H1(Qp, F
−V )⊗Zp I/I

2

be the connecting homomorphism obtained from the right vertical exact triangle in (6.4.1).
We know that

im(ρp) = 〈logp χcyc〉 ⊗Zp I/I
2,

where we regard logp χcyc : GQp → Qp as an element of H1(Qp, F
−V ) = H1(Qp,Qp) =

Homcont(GQp ,Qp). (See the proof of [44, Lem. 15.1] for example.) Let

πp : H
1(Qp, V )⊗Zp I/I

2 → H1(Qp, F
−V )⊗Zp I/I

2

be the map induced by V ↠ F−V . Then one sees that im(ρp)∩im(πp) = 0 (since logp(qE) 6=
0), by which one can take a unique element

D(y) ∈ im(πp)

such that locp(y) = i(D(y)) in H1(RΓIw(Qp, F
−V ) ⊗L

Λ Λ/I2). Compare Venerucci’s con-
struction [44, Lem. 15.1] (where I/I2 is identified with Zp).

An analogue of Theorem 6.11 is as follows.

Theorem 6.15. Suppose that p is split multiplicative. For any x ∈ E(Q) and y = (yn)n ∈
lim←−nH

1
n = H1, we have

〈x, y0〉Schp = (x,D(y))p in Qp ⊗Zp I/I
2.

Proof. We identify Qp ⊗Zp I/I
2 = Qp via the isomorphism `p in (5.3.2). By the same

argument as in Venerucci [44, Prop. 15.2], we have

logω(x) · D(y)(Frp) = −
logp(qE)

ordp(qE)
〈x, y0〉Schp .

(See also [44, (127)].) Here D(y)(Frp) means the evaluation of D(y) ∈ H1(Qp,Qp) =
Homcont(GQp ,Qp) at the arithmetic Frobenius Frp (this corresponds to Derp(x) in [44, §15],
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where x corresponds to our y). Since D(y)(Frp) = − logp(qE)

ordp(qE) exp
∗
ω(D(y)) (see [25, (6)] or

(6.4.4) below) and logp(qE) 6= 0, we have

logω(x) exp
∗
ω(D(y)) = 〈x, y0〉Schp .

Since the left hand side is equal to (x,D(y))p, we obtain the desired formula. □
Theorem 6.15 immediately implies the following, which is an analogue of Corollary 6.13.

Corollary 6.16. For any x ∈ E(Q), we have

〈x, c,dκ∞〉Schp = (x,D(c,dκ∞))p in Qp ⊗Zp Q
r.

Since E over Qp is a Tate curve, we have an isomorphism E(Qp) ' Q×
p /〈qE〉. We denote

by λp the composite map

λp : Q×
p → (Q×

p /〈qE〉)⊗Qp ' E(Qp)⊗Qp → H1(Qp, V )

where the final map is the Kummer map. This map λp also coincides with the composite
Q×
p → H1(Qp,Qp(1)) = H1(Qp, F

+V ) → H1(Qp, V ) where the first map is the Kummer

map. Therefore, for any a ∈ Q×
p and z ∈ H1(Qp, V ) we have

(λp(a), z)p = (a, πp(z))Gm

where πp : H1(Qp, V ) → H1(Qp,Qp) is the natural map induced by V ↠ F−V = Qp,
and (−,−)Gm is the pairing induced by the cup product H1(Qp,Qp(1)) × H1(Qp,Qp) →
H2(Qp,Qp(1)) ' Qp.

The following result explains how the L-invariant occurs in our generalized version of
Rubin’s formula.

Lemma 6.17. For any z ∈ H1(Qp, V ) we have

(λp(p), z)p · (γ − 1) = (p, πp(z))Gm · (γ − 1) = −
logp χcyc(γ)

ordp(qE)
exp∗ω(z)(1− recp(qE))

in Qp ⊗Zp I/I
2.

Proof. We write logqE : (Q×
p /〈qE〉)⊗Qp → Qp for the logarithm that vanishes on 〈qE〉 and

note that this coincides with the formal logarithm via the isomorphism E(Qp) ' Q×
p /〈qE〉.

We also write expqE for the inverse of logqE .
Then, by using the equality of functions

logqE = logp−
logp(qE)

ordp(qE)
· ordp

(cf. the proof of [45, Cor. 3.7]), one computes that

λp(p) = λp(expqE (logqE (p)))

= λp

(
expqE

(
−
logp(qE)

ordp(qE)

))
= − expQp,V

(
logp(qE)

ordp(qE)
ν

)
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in E(Qp)⊗Qp. Thus we have

(λp(p), z)p = −
logp(qE)

ordp(qE)
exp∗ω(z).(6.4.4)

(See also [25, (6)].) The claim follows by noting

1− recp(qE) =
logp(qE)

logp χcyc(γ)
· (γ − 1) in Qp ⊗Zp I/I

2.

□

Let U1
n be the group of principal local units in Qn,p. Let (dn)n ∈ lim←−n U

1
n be the system

constructed by Kobayashi in [25, §2]. This system is related to our (δn)n defined in (6.3.1)
by

δn = logp(dn) · ν in Qn,p ⊗Qp Dcrys(V ).

Since d0 = 1, Hilbert’s theorem 90 implies that there exists xn ∈ Q×
n,p such that

dn =
γxn
xn

.

We regard xn ∈ H1(Qn,p,Zp(1)) via the Kummer map. The element CorQn,p/Qp
(xn) is

well-defined in H1(Qp,Z/pn(1)), i.e., independent of the choice of xn. We define

d′ := (CorQn,p/Qp
(xn))n ∈ lim←−

n

H1(Qp,Z/pn(1)) ' H1(Qp,Zp(1)).

For each field Qn,p with n ≥ 0 we also write

(−,−)Gm : H1(Qn,p,Zp(1))×H1(Qn,p,Zp)→ H2(Qn,p,Zp(1)) ' Zp(6.4.5)

for the pairing defined by the cup product. Let

πp : H
1
n = H1(OQn,S , T )→ H1(Qn,p, T )→ H1(Qn,p,Zp)

be the map induced by the surjection T ↠ Zp in (6.4.3).
We define

Col′n : H1
n → Z/pn[Gn]

by

Col′n(z) :=
∑
σ∈Gn

(σxn, πp(z))Gmσ

and set

Col′ := lim←−
n

Col′n : H1 → lim←−
n

Z/pn[Gn] ' Λ.

Lemma 6.18.

(i) The Coleman map Col : H1 → Λ coincides with (γ−1 − 1) · Col′.
(ii) Let y ∈ H1. Then we have

Col′(y) ∈ I
and

Col′(y) = (d′,D(y))Gm in Qp ⊗Zp I/I
2,
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where

(−,−)Gm : H1(Qp,Qp(1))× (H1(Qp,Qp)⊗Zp I/I
2)→ Qp ⊗Zp I/I

2

is induced by (6.4.5).

Proof. Claim (i) follows directly from construction. (See also Kobayashi’s computation of
Coln(z) in [25, p. 573].)

Claim (ii) is proved in the same way as Lemma 6.14 and so, for brevity, we omit the
proof. □

6.4.4. Proof of Theorem 6.2(ii). Let w ∈ H1 be the element in Lemma 6.12. We compute

tc,d · LS,p = Col((c,dzn)n) (by Theorem 6.10)

= Col(w) · (γ − 1)r−1 (by Lemma 6.12)

= Col′(w) · (γ−1 − 1)(γ − 1)r−1 (by Lemma 6.18(i))

∈ Ir+1 (by Lemma 6.18(ii)).

Thus, in Ir+1/Ir+2 = Qr+1, we further compute

tc,d · L
(r+1)
S,p

= −Col′(w) · (γ − 1)r

= −(d′,D(w))Gm · (γ − 1)r (by Lemma 6.18(ii))

Since

(d′,D(w))Gm =

(
1− 1

p

)−1

(logp χcyc(γ))
−1(p,D(w))Gm

(see Kobayashi [25, p. 574, line 2], note that ‘Nxn’ in [25] is congruent to d′ modulo pn),
Lemma 6.17 implies that

−(d′,D(w))Gm · (γ − 1)r =

(
1− 1

p

)−1

exp∗ω(D(w)) ·
1

ordp(qE)
(1− recp(qE)) · (γ − 1)r−1.

Note that, for any x ∈ E(Q) and y ∈ H1(Qp, V ), we have

logω(x) exp
∗
ω(y) = (x, y)p.

Hence we have (
1− 1

p

)
logω(x)tc,d · L

(r+1)
S,p

= (x,D(w))p ·
1

ordp(qE)
(1− recp(qE)) · (γ − 1)r−1

= (x,D(c,dκ∞))p ·
1

ordp(qE)
(1− recp(qE))

= 〈x, c,dκ∞〉Schp · 1

ordp(qE)
(1− recp(qE)) (by Corollary 6.16).

Upon multiplying both sides by t−1
c,d we obtain the desired formula.

This thereby completes the proof of Theorem 6.2.
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7. The Iwasawa Main Conjecture and descent theory

The aim of this section is to directly relate Conjectures 4.8 and 4.15 with a natural main
conjecture of Iwasawa theory. The main results in this section are Theorems 7.3 and 7.6.

As before, we always assume that p is odd and that H1(ZS , T ) is Zp-free.

7.1. Review of the Iwasawa Main Conjecture. We use the notations in §4.2.
We set

Cn := RHomZp(RΓc(OQn,S , T
∗(1)),Zp[−2])

and C∞ := lim←−nCn. Then we have a canonical isomorphism

H0(C∞) ' H1

and an exact sequence

0→ H2 → H1(C∞)
f−→ Λ⊗Zp T

∗(1)+,∗ → 0.(7.1.1)

(See (4.1.1) and (4.1.2).) Let Q(Λ) denote the quotient field of Λ. Kato proved that

Q(Λ)⊗Λ Hi

{
' Q(Λ) if i = 1,

= 0 if i = 2.

(See [23, Th. 12.4].) Hence, we have a canonical isomorphism

Q(Λ)⊗Λ detΛ(C∞) ' Q(Λ)⊗Λ (H1 ⊗Zp T
∗(1)+).(7.1.2)

We set

c,dz∞ := (c,dzn)n ∈ lim←−
n

H1
n = H1

and
z∞ := t−1

c,d · c,dz∞ ∈ Q(Λ)⊗Λ H1,

where tc,d ∈ Λ is as in (6.3.3). We then define

z∞ ∈ Q(Λ)⊗Λ detΛ(C∞)

to be the element corresponding to

z∞ ⊗ e+δ(ξ) ∈ Q(Λ)⊗Λ (H1 ⊗Zp T
∗(1)+)

under the isomorphism (7.1.2), where δ(ξ) ∈ Zp ⊗Z H ' T ∗(1) is defined in §2.1.

Conjecture 7.1 (Iwasawa Main Conjecture). We have

〈z∞〉Λ = detΛ(C∞).

Remark 7.2. Since Λ is a regular local ring, we see by [22, Chap. I, Prop. 2.1.5] that
Conjecture 7.1 is equivalent to

z∞ ∈ H1 and charΛ(H1/〈z∞〉Λ) = charΛ(H2).

Thus Conjecture 7.1 is equivalent to [23, Conj. 12.10] (by letting f in loc. cit. be the
normalized newform corresponding to E). We prefer the formulation as in Conjecture
7.1 to the classical one using characteristic ideals as above, since one can formulate an
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equivariant Iwasawa Main Conjecture as a direct generalization of Conjecture 7.1. (See [7,
Conj. 3.1] in the case of Tate motives.)

7.2. Consequences of the Iwasawa Main Conjecture. We now state main results of
this section.

Theorem 7.3. Assume Hypothesis 2.2. Then Conjecture 7.1 (Iwasawa Main Conjecture)
implies Conjecture 4.15 up to Z×

p , i.e., there exists u ∈ Z×
p such that

κ∞ = u · vξ

 ∏
ℓ∈S\{∞}

Lℓ

 #X(E/Q) · Tam(E)

#E(Q)2tors
·RBoc

ω in (Qp ⊗Z E(Q))⊗Zp Q
r−1.

Combining this theorem with Corollary 6.6, we immediately obtain the following.

Corollary 7.4. Assume Hypothesis 2.2. Then Conjecture 7.1 (Iwasawa Main Conjecture)
implies the p-adic Birch-Swinnerton-Dyer Formula up to Z×

p , i.e., there exists u ∈ Z×
p such

that (
1− 1

α

)−1(
1− 1

β

)
· L(r)S,p = u · vξ

 ∏
ℓ∈S\{∞}

Lℓ

 #X(E/Q) · Tam(E)

#E(Q)2tors
Rp

if p is good or non-split multiplicative, and

L(r+1)
S,p = u · 1

ordp(qE)
(1− recp(qE)) · vξ

 ∏
ℓ∈S\{∞,p}

Lℓ

 #X(E/Q) · Tam(E)

#E(Q)2tors
RSch
p

if p is split multiplicative.

Remark 7.5. Corollary 7.4 improves upon results of Schneider [41, Th. 5] (good ordi-
nary case), Jones [21, Th. 3.1] (multiplicative case) and Perrin-Riou [34, Prop. 3.4.6]
(good supersingular case) in which it is shown that the Iwasawa Main Conjecture and non-
degeneracy of the p-adic height pairing together imply the p-adic Birch-Swinnerton-Dyer
Formula up to Z×

p .

Theorem 7.6. Assume Hypothesis 2.2. Assume also that

• Conjecture 7.1 (Iwasawa Main Conjecture) is valid,
• Conjecture 4.8 (Generalized Perrin-Riou Conjecture at infinite level) is valid, and
• the Bockstein regulator RBoc

ω in Definition 4.10 does not vanish.

Then the p-part of the Birch-Swinnerton-Dyer Formula is valid so that there is an equality

L∗(E, 1) · Zp =
(
#X(E/Q)[p∞] · Tam(E) ·#E(Q)−2

tors · Ω+ ·R∞
)
· Zp

of Zp-sublattices of Cp .

Remark 7.7. Theorem 7.6 explains the precise link between the natural main conjecture
of Iwasawa theory and the classical Birch-Swinnerton-Dyer Formula, even in the case of
additive reduction. We note also that this result is, in effect, an analogue of the main result
[7, Th. 5.2] of the current authors, where, roughly speaking, the following result is proved
in the setting of the multiplicative group: if one assumes the validity of
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• the Iwasawa Main Conjecture for Gm (cf. [7, Conj. 3.1]),
• the Iwasawa-Mazur-Rubin-Sano Conjecture for Gm (cf. [7, Conj. 4.2]), and
• the injectivity of a certain Bockstein homomorphism (which is implied by the con-
dition ‘(F)’ in [7, Th. 5.2]: see [7, Prop. 5.16]),

then the equivariant Tamagawa Number Conjecture for Gm is also valid.

7.3. The descent argument. In the following, we assume both Hypothesis 2.2 and the
validity of Conjecture 7.1.

7.3.1. A key commutative diagram. We shall first give quick proofs of Theorems 7.3 and 7.6
by using the following key result.

Theorem 7.8. Let x be a Zp-basis of
∧r−1

Zp
H2(ZS , T )tf . Then there is a commutative

diagram

detΛ(C∞)
Π∞ //

N∞

����

Ir−1 ·H1

N∞

''NN
NNN

NNN
NNN

N

H1
0 ⊗Zp Q

r−1

detZp(C0)
Πx

//
∧r

Zp
H1

0

Boc∞,x

88ppppppppppp

(7.3.1)

with the following properties:

(a) Π∞(z∞) = z∞;
(b) N∞(z∞) = κ∞;
(c) 〈ηKato

x 〉Zp = #H2(ZS , T )tors ·
∧r

Zp
H1

0 , where η
Kato
x := Πx(N∞(z∞));

(d) 〈Boc∞,x(η
Kato
x )〉Zp = Zp ·vξ

(∏
ℓ∈S\{∞} Lℓ

)
#X(E/Q)[p∞]Tam(E)#E(Q)−2

tors ·RBoc
ω .

Admitting this, we give proofs of Theorems 7.3 and 7.6.

Proof of Theorem 7.3. It is sufficient to show that

〈κ∞〉Zp = Zp · vξ

 ∏
ℓ∈S\{∞}

Lℓ

#X(E/Q)[p∞]Tam(E)#E(Q)−2
tors ·RBoc

ω .

By the commutativity of (7.3.1) and properties (a) and (b), we have

κ∞ = Boc∞,x(η
Kato
x ).(7.3.2)

Hence the claim follows from the property (d). □
Proof of Theorem 7.6. We assume Conjecture 4.8 and RBoc

ω 6= 0, in addition to Hypothesis
2.2 and Conjecture 7.1. Recall that Conjecture 4.8 asserts the equality

κ∞ = Boc∞,x(η
BSD
x ).

Combining this with (7.3.2), we have

Boc∞,x(η
BSD
x ) = Boc∞,x(η

Kato
x ).
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Since the non-vanishing of RBoc
ω is equivalent to the injectivity of Boc∞,x by construction,

we have

ηBSD
x = ηKato

x .

By the property (c) in Theorem 7.8, we have

Zp · ηBSD
x = #H2(ZS , T )tors ·

∧r

Zp

H1
0 .

By Proposition 2.6, this is equivalent to the p-part of the Birch-Swinnerton-Dyer Formula,
so we have completed the proof. □

The rest of this section is devoted to the proof of Theorem 7.8.

7.3.2. Definitions of maps. First, we give definitions of the maps Π∞,N∞,N∞ and Πx in
the diagram (7.3.1).

• The map

Π∞ : detΛ(C∞)→ Ir−1 ·H1

is induced by

Q(Λ)⊗Λ detΛ(C∞)
(7.1.2)
' Q(Λ)⊗Λ (H1 ⊗Zp T

∗(1)+) ' Q(Λ)⊗Λ H1,

where the second isomorphism is induced by

T ∗(1)+ ' Zp; e+δ(ξ) 7→ 1.

By Remark 7.2, the image of detΛ(C∞) under this isomorphism is charΛ(H2) · H1.
Since charΛ(H2) ⊂ Ir−1, we see that the image of detΛ(C∞) is contained in Ir−1 ·H1

and thus Π∞ is defined. By this construction, it is obvious that Π∞(z∞) = z∞, i.e.,
the property (a) of Theorem 7.8 holds.
• The construction of the map

N∞ : Ir−1 ·H1 → H1
0 ⊗Zp Q

r−1

is done in the same way as the construction of c,dκ∞ from (c,dzn)n in §4.2.1. See
the discussion after Proposition 4.4. (In fact, N∞ is defined to be the limit of the
Darmon norm NQn/Q.) It is obvious that N∞(z∞) = κ∞, i.e., the property (b) in
Theorem 7.8 holds.
• The surjection

N∞ : detΛ(C∞) ↠ detZp(C0)

is defined to be the augmentation map

detΛ(C∞) ↠ detΛ(C∞)⊗Λ Zp ' detZp(C0),

where the last isomorphism follows from the fact C∞ ⊗L
Λ Zp ' C0.

• The map

Πx : detZp(C0)→
∧r

Zp

H1
0
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is induced by

Qp ⊗Zp detZp(C0) ' Qp ⊗Zp

(
detZp(H

0(C0))⊗Zp det
−1
Zp

(H1(C0))
)

' Qp ⊗Zp

(∧r

Zp

H1
0 ⊗Zp

∧r−1

Zp

H2(ZS , T )∗tf ⊗Zp T
∗(1)+

)
' Qp ⊗Zp

∧r

Zp

H1
0 ,

where the second isomorphism follows from (4.1.1) and (4.1.2), and the last isomor-
phism is induced by∧r−1

Zp

H2(ZS , T )∗tf ⊗Zp T
∗(1)+ ' Zp; x∗ ⊗ e+δ(ξ) 7→ 1.

Since the image of detZp(C0) under this isomorphism is #H2(ZS , T )tors ·
∧r

Zp
H1

0 ,

the map Πx is defined. This also shows that the property (c) in Theorem 7.8 holds.

7.3.3. The property (d). We have already seen that the properties (a), (b) and (c) in The-
orem 7.8 are satisfied.

We shall now verify property (d), i.e., that there is an equality of Zp-lattices

Zp ·
(
Boc∞,x(η

Kato
x )

)
= Zp · cE ·RBoc

ω ,

where

cE := vξ ·

 ∏
ℓ∈S\{∞}

Lℓ

 ·#X(E/Q)[p∞] · Tam(E) ·#E(Q)−2
tors.

One checks that the element Boc∞,x(η
Kato
x ) is independent of the choice of a non-zero

element x ∈
∧r−1

Qp
H2(ZS , V ). (Note that both Boc∞,x and ηKato

x are defined for such x by

linearlity.) So we take x to be as in §4.3.2, by fixing a basis {x1, . . . , xr} of E(Q)tf .
By the definition of RBoc

ω (see Definition 4.10), it is sufficient to show that

〈ηKato
x 〉Zp = Zp · cE · logω(x1) · x1 ∧ · · · ∧ xr.(7.3.3)

By the property (c) and (2.5.2), we have

〈ηKato
x 〉Zp = 〈ηalgx 〉Zp .

(Here ηalgx is defined in Definition 2.17, where the finiteness of X(E/Q) is assumed. But we

may define ηalgx , replacing X(E/Q) by X(E/Q)[p∞] since we only consider the Zp-modules
here. Then we need only the finiteness of X(E/Q)[p∞].) On the other hand, one checks in
the same way as (4.3.2) that

〈ηalgx 〉Zp = Zp · cE · logω(x1) · x1 ∧ · · · ∧ xr.

From this, we obtain the desired equality (7.3.3). Hence we have proved that the property
(d) holds.
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7.4. The proof of Theorem 7.8. In this subsection, we prove the commutativity of the
diagram (7.3.1) and thus complete the proof of Theorem 7.8. Our argument is similar to
[6, Lem. 5.22], [7, Lem. 5.17] and [11, Th. 4.21].

Fix a non-negative integer n. It is sufficient to show the commutativity of the following
‘n-th layer version’ of (7.3.1):

detZp[Gn](Cn)
Πn //

Nn

����

Ir−1
n ·H1

n

Nn

''NN
NNN

NNN
NNN

N

H1
0 ⊗Zp Q

r−1
n

detZp(C0)
Πx

//
∧r

Zp
H1

0 .

Bocn,x

77ppppppppppp

(7.4.1)

We shall describe maps Π∞, Πn, Πx and Bocn,x explicitly by choosing a useful represen-
tative of the complex C∞. Then the commutativity of the diagram is checked by an explicit
computation.

7.4.1. Choice of the representative. We make a similar argument to [6, §5.4] or [11, Prop.
A.11].

One sees that the complex C∞ is represented by

P ψ−→ P,

where P is a free Λ-module of rank, say, d. We have an exact sequence

0→ H1 → P ψ−→ P π−→ H1(C∞)→ 0.(7.4.2)

Also, setting Pn := P⊗Λ Zp[Gn], we have an exact sequence

0→ H1
n → Pn

ψn−−→ Pn
πn−→ H1(Cn)→ 0.(7.4.3)

Let {b1, . . . , bd} be a basis of P. We denote the image of bi in Pn by bi,n. We set

xi := π(bi) ∈ H1(C∞) and xi,n := πn(bi,n) ∈ H1(Cn).

By the argument of [11, Prop. A.11(i)], one may assume

(i) f(x1) = 1⊗ e+δ(ξ)∗, where f : H1(C∞)→ Λ⊗Zp T
∗(1)+,∗ is as in (7.1.1);

(ii) 〈x2, . . . , xd〉Λ = H2 ⊂ H1(C∞);
(iii) {x2,0, . . . , xr,0} is a Zp-basis of H2(ZS , T )tf ⊂ H1(C0).

We set

ψi := b∗i ◦ ψ : P→ Λ

and

ψi,n := b∗i,n ◦ ψn : Pn → Zp[Gn].
Note that the property (iii) implies that

imψi,n ⊂ In for every 1 < i ≤ r.(7.4.4)
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7.4.2. Explicit descriptions of Π∞, Πn and Πx. With the above representative of C∞, we
have an identification

detΛ(C∞) =
∧d

Λ
P⊗Λ

∧d

Λ
P∗.

We define a map

Π∞ :
∧d

Λ
P⊗Λ

∧d

Λ
P∗ → P

by

a⊗ (b∗1 ∧ · · · ∧ b∗d) 7→ (−1)d−1
(∧

1<i≤d
ψi

)
(a).(7.4.5)

(See [6, §4.1] for the construction of the map
∧

1<i≤d ψi.) We denote this map by Π∞,

since it coincides with Π∞ defined in §7.3.2 (see [6, Lem. 4.3]). In particular, its image is
contained in Ir−1 ·H1. (We regard H1 ⊂ P via (7.4.2).)

Similarly, we have an identification

detZp[Gn](Cn) =
∧d

Zp[Gn]
Pn ⊗Zp[Gn]

∧d

Zp[Gn]
P ∗
n

and we define a map

Πn :
∧d

Zp[Gn]
Pn ⊗Zp[Gn]

∧d

Zp[Gn]
P ∗
n → Pn

by

a⊗ (b∗1,n ∧ · · · ∧ b∗d,n) 7→ (−1)d−1
(∧

1<i≤d
ψi,n

)
(a).(7.4.6)

It is clear by construction that the inverse limit lim←−nΠn coincides with Π∞. Since the image

of Π∞ is contained in Ir−1 ·H1, we see that the image of Πn is contained in Ir−1
n ·H1

n.
Finally, we give an explicit description of Πx. Here we take

x := x2,0 ∧ · · · ∧ xr,0.

We have an identification

detZp(C0) =
∧d

Zp

P0 ⊗Zp

∧d

Zp

P ∗
0 .

We define a map

Πx :
∧d

Zp

P0 ⊗Zp

∧d

Zp

P ∗
0 →

∧r

Zp

P0

by

a⊗ (b∗1,0 ∧ · · · ∧ b∗d,0) 7→ (−1)r(d−r)
(∧

r<i≤d
ψi,0

)
(a).(7.4.7)

This map coincides with Πx defined in §7.3.2 (by [6, Lem. 4.3]). In particular, its image is
contained in

∧r
Zp
H1

0 .
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7.4.3. Explicit Bockstein maps. We shall describe the Bockstein regulator map Bocn,x ex-
plicitly.

For an integer i with 1 < i ≤ r, we define a map

βi,n : P0 → In/I
2
n

by

βi,n(a) := ψi,n(ã) (mod I2n),

where for a ∈ P0 we take an element ã ∈ Pn such that
∑

σ∈Gn
σ(ã) = a (we regard P0 ⊂ Pn

by identifying P0 with PGn
n ). Note that ψi,n(ã) ∈ In by (7.4.4) and its image in In/I

2
n is

independent of the choice of ã. Hence the map βi,n is well-defined.
Let βQn : H1

0 → H2(ZS , T )tf ⊗Zp In/I
2
n be the Bockstein map defined in (2.3.2). One

checks by the definition of the connecting homomorphism that

−βi,n = x∗i,0 ◦ βQn on H1
0 .

From this, we see that the map

Bocn,x := (−1)r−1
∧

1<i≤r
βi,n :

∧r

Zp

P0 → P0 ⊗Zp Q
r−1
n(7.4.8)

coincides with Bocn,x = BocQn,x defined in §2.3 on
∧r

Zp
H1

0 .

7.4.4. Completion of the proof. We prove the commutativity of (7.4.1). We may assume
x = x2,0 ∧ · · · ∧ xr,0.

In view of the explicit descriptions (7.4.6), (7.4.7) and (7.4.8), it is sufficient to prove
that

(7.4.9) (−1)d−1Nn ◦
(∧

1<i≤d
ψi,n

)
(b1,n ∧ · · · ∧ bd,n)

= (−1)r−1+r(d−r)
(∧

1<i≤r
βi,n

)
◦
(∧

r<i≤d
ψi,0

)
(b1,0 ∧ · · · ∧ bd,0).

By computation, we have(∧
1<i≤d

ψi,n

)
(b1,n ∧ · · · ∧ bd,n) =

d∑
k=1

(−1)k+1 det(ψi,n(bj,n))j 6=k · bk,n

(see [6, Prop. 4.1]) and so

Nn ◦
(∧

1<i≤d
ψi,n

)
(b1,n ∧ · · · ∧ bd,n)

=

d∑
k=1

(−1)k+1bk,0 ⊗ det(ψi,n(bj,n))j 6=k in P0 ⊗Zp Q
r−1
n .

By noting

ψi,n(bj,n) ≡ ψi,0(bj,0) (mod In) for every r < i ≤ d,
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we compute(∧
1<i≤r

βi,n

)
◦
(∧

r<i≤d
ψi,0

)
(b1,0 ∧ · · · ∧ bd,0)

= (−1)(r−1)(d−r)
d∑

k=1

(−1)k+1bk,0 ⊗ det(ψi,n(bj,n))j 6=k in P0 ⊗Zp Q
r−1
n .

Since we have

(−1)r−1+r(d−r)+(r−1)(d−r) = (−1)d−1,

we therefore obtain the desired equality (7.4.9).
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