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Abstract A stochastic fractionally dissipative quasi-geostrophic equation with stochastic
damping is considered in this paper. First, we show that the null solution is exponentially
stable in the sense of ¢~-th moment of || - ||ze, where ¢ > 2/(2ac — 1) and ¢~ denotes the
number strictly less than ¢ but close to it, and from this fact we further prove that the
sample paths of solutions converge to zero almost surely in LY as time goes to infinity. In
particular, a simple example is used to interpret the intuition. Then the uniform bound-
edness of pathwise solutions in H® with s > 2 — 2o and « € (1/2,1) is established, which
implies the existence of non-trivial invariant measures of the quasi-geostrophic equation

driven by nonlinear multiplicative noise.
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1 Introduction

The quasi-geostrophic equation is an important model in geophysical sciences which de-
scribes a kind of dynamics of large-scale phenomena in the atmosphere and ocean, see [38]
for more details. The mathematical study of the quasi-geostrophic equation was initiat-
ed by Constantin, Majda and Tabak in [7], where they pointed out that it shared many
features with 3D Fuler equations.

The quasi-geostrophic equation has attracted much attention from both scientists and

mathematicians because of its mathematical importance and potential applications in
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meteorology and oceanography. The existence, uniqueness and regularity of solutions to
the quasi-geostrophic equation have been considered in [1, 9, 22, 26, 28, 47], and the
asymptotic behavior of the quasi-geostrophic equation has been studied in [8, 10, 13, 14,
15, 23, 41, 44]. The result of [11] has shown the nonlinear stability of steady states in
L?(R?) for the quasi-geostrophic equation. In [18], the existence of steady states to the
quasi-geostrophic equation has been proved, where the global solution were showed to
converge to the steady states in LP(R?), 1 < p < 2, as time goes to infinity. Recently, we
established the existence and uniqueness of the stationary solution to the quasi-geostrophic
equation with infinite delay, and used several different methods to analyze its stability in
[30]. For other interesting results on the steady state to the quasi-geostrophic equation,
we refer the reader to [4] and the references therein. See also the work [32] where the
existence and nonuniqueness of steady-state weak solutions to the Navier-Stokes equation
have been investigated in dimensions d > 4.

Despite an extensive literature on the quasi-geostrophic equation, the most results are
obtained in the deterministic case. This paper is devoted to the study of a class of s-
tochastic quasi-geostrophic equations with stochastic damping. The damping stems from
the resistance to the motion of the flow, it describes various physical situations such as
friction effects and some dissipative mechanisms [21]. Thanks to the surrounding environ-
ment and intrinsic uncertainties, the damping may be associated with hidden unresolved
processes. It may be positive or negative (for example, cyclones and anticyclones). Such
problem is very important in climate modeling and physical fluid dynamics; see, e.g. [17].

Consider the following quasi-geostrophic equation with stochastic damping on the pe-
riodic domain T? = R?/(277Z):

di(t) + (k(=A)*0(t) + u(t) - VO(t) + ((w(t))0(t))dt = G(t,6(t))dW (t),

(1.1)
dw(t) = h(w(t))dt + dB(t),

where o € (%, 1), k > 0 is a diffusivity coefficient, € represents the potential temperature,
W (t) is a Wiener process on a suitable probability space which will be given below, B(t) is
an n-dimensional Wiener process independent of W(t), ¢ : R" — R denotes the damping
rate, h : R™ — R is a vector-valued function, and the velocity u = (uj,u2) is determined

by 6 via the formula

oY 0
u = (ug,ug) = (_&i’ a;/]l), where (—A)%z/z = —0, (1.2)
or, in a more explicit way
u=(—Ra0,R10) = R0, (1.3)



where R;, j = 1,2, denote the standard 2D Riesz transforms (see, e.g. [35, p.299]).
Clearly, the velocity u = (u1,ug) is divergence-free. Without loss of generality we may

restrict the discussion to flows which have zero average, i.e.,

0(t,z)de =0, Vt>O0.
T2

This formulation can be found in many nonlinear models, such as stochastic parame-
terization Kalman filter, Lagrangian floater and turbulent passive tracer [2, 3, 33]. We also
refer to [43] for the two-dimensional advection-diffusion equation with random transport
velocity, and [19, 45] for the stochastic lattice model with random viscosity.

Stochastic stability has been one of the most active areas in stochastic analysis and
many mathematicians have devoted their interests to it. The reader may find a system-
atic presentation in the books [20, 31]. First we aim to analyze the exponential stability
of solutions to Eq. (1.1). In general, dissipative mechanisms may affect the asymptotic
behavior as well as the smoothness of solutions. For instance, the positive damping may
produce a stabilization effect on unstable systems. While we wonder how the stochas-
tic damping affects the stability of the system. The main difficulty lies in dealing with
the stochastic damping in Eq. (1.1) since some of standard techniques for verifying the
exponential stability of the system can not be directly applied to this type of equation.
Following the idea of [34], we construct a Lyapunov function that is the product of two
parts, one part is a potential that depends on w, the other part is roughly the moment of
f. Here we succeed in generalizing the analysis framework related to stochastic ordinary
differential equations to stochastic partial differential equations, which can be regarded as
an extension of [34].

From the fact that the solution to Eq. (1.1) converges to the null solution exponentially,
it is easy to obtain that the system (1.1) has an invariant measure degenerate at zero.
Another purpose of this work is to show the existence of non-trivial invariant measures
of the system (1.1). The invariant measure of the quasi-geostrophic equation has been
investigated; see, e.g. [40] for the case of non-degenerate additive noise and [6, 46] for the
case of degenerate additive noise. However, the invariant measure of the quasi-geostrophic
equation driven by multiplicative noise as in (1.1) has never been studied before. This
paper contributes to this issue by establishing a close relationship between the uniform
boundedness of pathwise solutions and the existence of non-trivial invariant measures.

The rest of paper is organized as follows. In Section 2, we introduce some notations,
and briefly recall some necessary estimates and preliminaries related to functional analysis
and probability theory. The moment exponential stability and almost sure exponential

stability of solutions to Eq. (1.1) is established in Section 3. In Section 4, we first show the



uniform boundedness of pathwise solutions in H® with s > 2 —2a and a € (1/2,1). Then
we study the Feller property of solutions, and prove the existence of non-trivial invariant

measures for the corresponding Feller semigroup.

2 Preliminaries and notations

2.1 The functional framework

Denote A = (—A)%. The fractional Laplacian A® can be defined for s € R by

Asf(k) = |k[*f(k),
where fdenotes the Fourier transform of f. Let LP denote the Banach space of Lebesgue
integrable functions and [P denote the space of sequences. The following standard notations

are used:

1A = /TZ [f(@)[Pd,  |[fllLe = ess sup [f()],

z€T?2

oo
Izl =Y laPy 2l = sup |-
j*l j€Z+

For any tempered distribution f on T? and s € R, we define
£l = IA°FIF2 = > K F(R)P,
kez?

and H*® denotes the Sobolev space of all f for which || f||zs is finite. For 1 < p < oo and
s € R, the space H®P is a subspace of LP, consisting of all f which can be written in the
form f = A"%g, g € LP, and the H*P norm of f is defined by

1AW = IAFILp-

In a similar way, we can define these kinds of spaces for vector functions. For convenience,
we will use the same notation to denote the norms for vector and scalar functions. For

example, if v(z) = (vi(z),v2(z),...) is an [>-valued measurable function on T2, then

ol = [ lote)lfade = | (ki |vk<x>12)gda:.
=1

We denote by (-,-) and (,-) the inner products of L? and [? respectively. Given a Banach
space X and its dual X', we also denote the dual pairing between X and X’ by (-, ),

unless noted otherwise.



The following result can be obtained by the fact that the Riesz transforms commute
with (—A)! and the boundedness of the Riesz transforms in LP; see [42, Chapter III] for

more details.
Lemma 2.1. Let 1 <p < oo andl > 0. Then there exists a constant C(l,p) such that
I(=2)ullze < CUp)[I(=2)'0| 0. (2.1)
If p =2, the inequality (2.1) can be strengthened to
1(=2) ull 2 = [1(=2)"8]| 2. (2.2)
We recall some important estimates which will be used frequently in the sections below.

Lemma 2.2. Suppose that s >0 and 1 <p < oo. If f,g € S, the Schwartz class, then

1A°(fg) — FA°glle < CrLIV fllzellgllga=1me + 1f lrows 9]l o)

and

IA*(flle < Co([[f Lo gl zswa + [ f1[mors [lgllLea)
with pa, p3 € (1,00) such that
1 1 1 1 1
S=p =
p P P2 P3 P4
0,

Lemma 2.3. Suppose that s € [0,2], 0, A*0 € LP, where p > 2. Then

R 2
167~ 20A°0dz > 2 Az(6)2) dx. (2.3)
T2 P Jr2

Lemma 2.2 is the famous commutator estimates which have been proved in [24, 25],
and Lemma 2.3 is an improved version of the positivity lemma presented in [23]. When p
is even, we can also refer to [9].

Let Y be a Banach space with the norm || - ||. Next we introduce the notions of the

exponential stability.

Definition 2.4. The null solution to Eq. (1.1) is said to be exponentially stable in p-th

moment with p > 2, if there exist some constants a > 0 and M > 0 such that
E0()|5 < Me™, t>0.

Definition 2.5. The null solution to Eq. (1.1) is said to be almost surely exponentially
stable in Y, if there exists 7 > 0 such that

1
lim —log||é(t)|ly < —7, almost surely.
t—oo t



2.2 The stochastic framework

Given a filtered probability space (Quw, Fw, {Fwt >0, Pw, {Wk }i>1), where {Wy }i>1 is
a sequence of mutually independent standard one dimensional Brownian motions adapted
to a complete and right continuous filtration { Fy}+>0. Let (2p, Fp, {FBt}t>0, P, B) be
another filtered probability space, where B is an n-dimensional Wiener process indepen-

dent of {W}x>1. Define the product probability space by
(Q’f,P) = (QW X QBa‘FW ><-F'Ba]:)VV X PB)

Let E denote the expectation under the probability measure P. We denote by X a Hilbert
space with the inner product (-,-)x and norm || - || x. Let U be a separable Hilbert space
with an orthonormal basis {ey};>1. Define W by taking

W(t)=> Wi(t)ex, t=>0.

Such W (t) is a cylindrical Wiener process evolving over Y. Let Lo(U, X) be the collection
of all Hilbert-Schmidt operators from 4 to X, endowed with the norm

||<Z5”%2(u,X) = Z ||¢€kH,2X-
k=1

Similarly we adopt for any p > 2,

16000, = | (Zr¢ Ja?) "

For any T > 0, given an X-valued adapted process G € L?(Qu x [0, T]; L2 (U, X)), we can
define the It6 stochastic integral

t o0 t
Mt = / GdW = Z/ deWk, where Gk = Gek, t e [O,T].
0 — 4, J0

Clearly {M;}:>0 is an X-valued square integrable martingale (cf. [39]). Particularly, the
Burkholder-Davis-Gundy inequality holds which in the present context takes the form

t r T %
IE( sup /de )ch(/ \|G||32(ux)dt>2, (2.4)
tef0,7] 11J0 X 0 '

where r > 1 and C' is a positive constant depending only on r.

In the following lemma, we present a general integration by parts formula [37, p.55]

and the general It6 formula [37, p.48].



Lemma 2.6. Let X(t) and Y (t) be Ité processes in R. Then
AX@®)Y(t) = X@)dY (t) + Y()dX (t) + dX(t) - dY (¢). (2.5)

In order to study the stability of the system (1.1), we shall also need the notion of

asymptotical contraction.

Definition 2.7. Given two probability measures p and v on R", we use d(u, ) to denote
the Wasserstein-1 distance between p and v, generated by the R™ norm. Let P}’ denote
the distribution of w(t) with initial value w. We say w(t) is asymptotically contractive if

there are constants C.,,y > 0 such that
d(P{", Py) < Cye™ " |lwr — walgn
holds for all wy, w9 and ¢ > 0.

The following lemma will provide an example to show that a stable OU process is

asymptotically contractive.

Lemma 2.8. Consider the one-dimensional OU process dwy = —~widt + dB; with ini-
tial datum wy = w, where By is one-dimensional Wiener process. If v > 0, then wy is

asymptotically contractive.

Proof. Consider another one-dimensional OU process dv; = —vyuvdt + dBy with initial

datum vy = v, where B; is the same as the one in the SDE of w;. We observe that
d(wy —vy) = —y(wp — vy)dt = |wy — vy] = e 7w — ).
We denote by P;’ and P/ the distributions of w; and v, respectively. Then
d(PP,PY) < e Mw — ),
which implies that w; is asymptotically contractive. O

To describe the conditions imposed for the systems in this paper, we introduce some
notations. For any pair of Banach spaces 2", %, we denote by Bnd, (2", %) the collection
of all mappings g = g(t,z) : [0,00) X 2 — % which are essentially bounded in time,

continuous in x and {F;}4>0 adapted such that
lg(t, 2)lz < llgllBna(l + [lzll2), for any ¢t >0 and all z € 27,

where ||g||pnq is a positive constant, which is independent of ¢ so that g is uniformly
bounded in ¢. If, in addition, g € Bnd, (2", %) satisfies

lg(t,z) — g(t,Y)llo < llgllLiplle — yll2-, for any t >0 and all z,y € 27,



we say that ¢ is in Lip, (2", %). Here and below, ||g|/1ip denotes the Lipschitz constant
of any function g € Lip, (2 ,%).

Let C denote a real positive constant which can vary from a line to another and even
in the same line. If the constant C' depends on some variable x, we denote it by C,. For

r € R, we denote by r~ the number strictly less than r but close to it.

3 Exponential stability of the solution

The global existence of pathwise solutions to Eq. (1.1) can be established by a similar
method to the one in the proof of [29, Theorem 3.4].

Theorem 3.1. Fiz o € (1,1), s > 2 — 2 and a stochastic basis (Q, F,{Fi}i>0, P,W).
Suppose that G € Bnd, (L1, Ly(U, L)) N Lip,(H*, Lo(U, H®)) with ¢ > 52, and ((w) €
[—L, L] for some positive constant L. Then for any initial valve 0(0) € H® N L4, there
exists a unique global pathwise solution 0 to Eq. (1.1) such that for any T > 0,

0(t) € L*(Q;C(0,T; H*)) N L3(Q; L*(0,T; H5T®)). (3.1)

It is clear that the null solution is a stationary solution to Eq. (1.1). In the following,
we analyze the exponential stability of the null solution to Eq. (1.1). Hence in the rest
of this work, we assume that the conditions in Theorem 3.1 are always satisfied, and let 0
be the unique global pathwise solution to Eq. (1.1).

First we present a result on the stability of the system (1.1) when the damping term

is a positive constant, i.e., the stability of the following equation
do(t) + (k(—=A)*0(t) + u(t) - VO(t) + (ob(t))dt = G(t,0)dW (1), (3.2)
with the initial datum 6(0), where (p is a positive constant.

Lemma 3.2. Let ¢ > ﬁ with o € (%, 1). Assume G € Lip, (L9, L,(U, L?)) satisfying
G(t,0) =0 for allt > 0. If

2G0 > (¢ — V)|IG|Isp: (3.3)
then the solution 0 to Eq. (3.2) converges to zero exponentially in q-th moment, namely,

there exists a constant ag > 0 such that
E[0(t)[1T, < e ' E[I6(0)]|F,, t>0.

Proof. Let ¢ > 0 be a smooth function with supp¢ C [1,2] and fooo ¢(t)dt = 1. For e > 0,
define

UL[6)(t) = / " o) (e * RO)(t — er)dr,

8



where p. is the periodic Poisson kernel in T? given by p.(€) = e¢El, ¢ € Z2, and we set
0(t) = 0 for t < 0. Take a sequence £, — 0 and consider the equation

A0 (£) + (K(—A)0,(t) + un(t) - VOu(t) + Cobn(£))dt = pe, * G(t,0,)dW(E),  (3.4)

with initial data 6,(0) = p., * 6(0) and u, = Ug, [0,], where p., * G(t,6,) means for
y € U, pe, x G(t,0,)(y) := pe, * (G(t,0,)(y)). Let ap > 0 be a fixed constant which will

be determined later on. By Lemma 5.1 in [27], we have
e [6n() [ = 12, *OO) -+ (a0 ~ o) | (1)
—qK /Ot [EQ €10, (1) 20, (1) (— A) 6, (r)dadr
- q/ot /T2 €0, (1)]9720, (1) (un (1) - VOy(r))dadr

Q(q - 1) ! agr q—2 - 2
+ 0 ()2 Y |pe, * G(r, 0p) (er) | *dadr
2 0 Jr2 P

t
+q/ / €70, (19720, (1) pe,, * G(r, 0,)dzdW (r). (3.5)
0 Jr2
For the third term on the right-hand side of (3.5), it can be deduced from Lemma 2.3 that
t
gx / / 6, (1) |20, () (— A) 0, () drdr
0o J12
t o a\ 2
< —2,%/ / e (~8)5 0|2 ) dedr < 0. (3.6)
0o Jr2

Note that V - u,, = 0. Then we infer that

2 00
9720, (1) (un (1) - r))dx = ™20, (r Uy (T
Q/TQ 100 ()76 (r) (un (1) - VO (r))d Q/EQ |05 ()] 9= 0n( );:1 ni(r)

~(r)d
2 1)z

— |9n(r)yqz *(r)dx = 0, (3.7)

where uy, ; denotes the i-th component of u,, ¢ = 1,2. Combining (3.5)-(3.7) and taking

expectation, we obtain

t
B0 ()70 < Ellpe, * 0(0)[ 74 + (a0 — qu)E/O e |6 (r) | Lodr



-1 ¢ e
+q<q g / / e |0n (M| |pe, * G(r, 0n) (ex) Pdadr.  (3.8)
2 0 Jr2 pt

By the Holder inequality, the last term on the right-hand side of (3.8) is bounded by

-1 t o=
Q(qQ )IE/ /Zeaoqen(r)w 23" |pe, * G(r,00) (er) Pdadr
0 JT E—1

1 . _
< gala=1E [ 10, GG 0)IE, g

IN

1 ! agr
30— DIGIELE [ 10,3, (39)

It follows from (3.8) and (3.9) that
a 1 ¢ aogr
B0y < Elle, = 0O + (a0 - a0+ 5ta = DIGIE, )E [ 16,0 Ly

]‘ ! aor
< EIOO) + (a0 - a0 + 5000~ DIGIE ) [ 16,0 L
In view of the condition (3.3), we choose ag > 0 sufficiently small such that

1
ag — qo + §q(q - 1)HG||2L'L'p <0.

Then we obtain that
E[0. ()7, < e ™E0(0)},, t>0.

Arguing as in the proof of [40, Theorem 3.3], we conclude that 6,, converge to the solution
0 of Eq. (3.2). Thus we further obtain that

El0(t)]|7, < e " E6(0)]|7q, t>0.

The proof is therefore complete. O

Remark 3.3. In the following estimates concerning the Krylov’s LY It6 formula, we use
the same idea of approximation as in the proof of Lemma 3.2, since the solution 6, to
Eq. (3.4) satisfy the conditions of Lemma 5.1 in [27]. But for simplicity, we consider the
solution 0 to Eq. (1.1) instead of 6,, directly.

It can be seen from the above lemma that the system (1.1) with {(w(t)) = (o is stable
if the damping coefficient (j is sufficiently large. In the following, we investigate how the
damping function affects the stability of the system if the damping function is considered
as a random variable. Arguing as in the proof of Lemma 3.2, we obtain

t

1
B0, < EBO)L + B [ e (oo - actwr) + gala ~ DGR, 100

10



Due to the appearance of ((w(r)), the same method as in Lemma 3.2 can not be used to
analyze the stability of Eq. (1.1). Inspired by [34], we shall look for a Lyapunov function
that is the product of two parts, one part is a potential that depends on w, the other
part is roughly the moment of 6. Before proceeding to this issue, we consider a function
£ :R™ — R as follows

Ew) = - /0 T ECC(w(t)) — (¢ m) dt, (3.10)

where (¢, 7 fRn m(dw) is the average of ¢ under the equilibrium distribution .
It follows from Lemma A.2 in [34] that the function defined in (3.10) is well defined for
any Lipschitz function ¢ when w(t) is asymptotically contractive. Moreover, the following

properties hold.

Lemma 3.4. Let L denote a differential operator on C?*(R™) of the form

n
L= ;hl( 8w1 t3 Z 8w28w]

7]_

Assume that w(t) is asymptotically contractive and ¢ : R™ — R is Lipschitz. Then &(w)
defined in (3.10) satisfies

and the gradient of £&(w) with respect to w is bounded, more precisely,

C
V& (w)iz < TWHCHLip- (3.12)

- /ooo / (@) = (¢ m))pp (=) dzdt,

where p}” is the density of P} . By the Kolmogorov backward equation

Proof. Note that

api” = Lp;’,

we obtain & € C?(R™). Thus the operator £ can be applied to &, and the remaining results

follow from a combination of Lemma A.2 and Lemma 2.7 in [34]. O

Theorem 3.5. Let ¢ > 525 with o € (3,1). Consider ¢ € Lip,(R",R) and G €
Lip, (LY, Ly(U, L?)) with G(t,0) =0 for all t > 0. In addition to the assumptions

(A1) w(t) is asymptotically contractive,

(Az) w(t) is ergodic and 7 is its equilibrium distribution,

11



(A3) h dissipates the energy, that is for some constants X\ and M)y,

(h(w), w) < =Aljwlfz + M, (3.13)

we assume that )

C
2(¢,m) > (g — 1)”G||%ip+q,yifgy”<”%ip‘ (3.14)

Then there exist some constants a1 > 0 and M; = M;(6(0),w(0)) > 0 such that
E|0(t)|9, < Mie~™*, ¢ >0. (3.15)

Proof. Applying the It6 formula to the function F,(6) = ||0]|%, gives

=—q/</ 0(1)|7720(t) (—A)*0(t)dzdt — qC(w(t))]|0(t) |7, dt

(t)]72 Z IG(t,0(t))ex|*dzdt

+ q/T2 0(t)|9720(t)G(t, 0(t))dzdW (t), (3.16)

where we have used (3.7). With the aid of the It6 formula for £(w) € C?(R™) defined in
(3.10) and Lemma 3.4, we find that

Z i Gwl ))dt + Z 8wl Z 8w18w] ))dt
= (C(w(?)) — (¢, m))dt + (Vuw&(w(t)), dB(t)). (3.17)

Applying the Itd formula to g(w) = %) again yields

dg(w(t)) = qg(w(t))d§(w(t)) + 1q2g(w(f))dE(w(7f))clﬁ(w(t‘))

2
= (al€wt) = (€.m) + 5 IVt ) stw)e
+ ag(w(0)(Vub(w(t)), dB(). (3.18)

Take a constant o > 0 and let Uj(¢,0,w) = e’ Fy(0)g(w). Since W (t) and B(t) are
mutually independent, in view of Lemma 2.6, it follows from (3.16) and (3.18) that

dUL(t,0(¢), w(t)) = oUy(t, 0(t), w(t))dt + e g(w(t))dF,(6(t))
+ e Fy(0(1))dg(w(t)) + e dFy(0(1))dg(w(t))

= ULt 0(t), w(t))dt — gre”tg(w(?)) /T 10)120(6) (~A) 6 (et

12



n Q(qz— l)eatg(w(t)) /2 16(t)]92 Z |G(t,0(t))ex|*dxdt

— (WU, 0(0), w(t))dt + ¢ [V w(e) B0 (1, 0(0), w(t)d
4 geg(w / 0(1)[920(+)G (1, 0(t))drd W (1)
- qUL (¢, 8(t), w(8)) (V w (w(t)), dB(2)). (3.19)

Similar to the arguments of (3.6), the second term on the right-hand side of the above

inequality is bounded by

—qre’tg(w / 10(t)|7726(t) (—A)*0(t)dx < 0. (3.20)

For the third term on the right-hand side of (3.19), we make use of the Hélder inequality

and the conditions imposed on G to obtain

q(q; 1)ec’tg(w(lt)) . 06|72 |G (¢, 0(t))ex | da
k=1

< Sala = Ve g0 521G 00)IR 1.1

Sa(a = DICI3,01(t,00), w(t). (3.21)

IA

Then integrating the equality (3.19) over [0,¢] and taking expectation result in

UL 1,000, w(8) < EUL(0.0(0),0(0) + (o + jala — DIGIE,

e, >+1q2”H<HLw) [ o omwenin 22

where we have used (3.12), (3.20) and (3.21). By the condition (3.14), we choose o
sufficiently small such that

1 1 ,C?
o+ §Q(q - 1)||GH%zp <C7 > + q2JHCHL2p <0.

Therefore,
E (100)l1f,e#®) < = E (]16(0)4, ). (3.23)

In order to remove g(w(t)) inside the expectation, we need an estimate of g(w(t)).

Applying the It6 formula to Il with B < A, we obtain

Al _ BlwO)% | / " Bla(r), h(w())eP O g
0

13



t
+ [ 08+ 287wl ) 71O
0
t 2
+25/ 1Ol (), dB(r)).
0

Set H(t) = EI Ol Then
H(0) < 6 (=200 B)lw) [ +n+ 204 H(0), (3.22)

thanks to the condition (3.13). When (A — 8)||w(t)[|% < n + 2M),

B(n+2My)
H(t) <e *F | (3.25)
otherwise,
H'(t) < —B(n+ 2M))H(t). (3.26)

Combining (3.24)-(3.26) gives

B(n+2My)

H'(t) < —B(n+2M\HE) + B(n+2My)e -5

Applying the Gronwall lemma results in

B(n+2My)

H(t) < e*ﬁ(nJrQMA)t’,L[(O) +e B

Blw(®)I?

which implies that Ee 12 is uniformly bounded in time ¢. By the Young inequality,

for any constant k € R,
Eg(w(t))* = Eek€(w®) < Eelkal(l€]lLipllw®)ll2+£(0))
< ESIOIEHC < CEH(w(t)) < oo, (3.27)

where we have used the fact that ¢ is Lipschitz from (3.12).
Finally, using the Holder inequality, it follows from (3.23) and (3.27) that there exists
a real number M; = M;(6(0),w(0)) such that

a—q

q

sl = (2 (s o) (Batner+7) T e

which completes the proof. O

The above theorem indicates that wether {(w(t)) is positive or not, the null solution
to Eq. (1.1) is stable in the sense of moments of order ¢~ as long as the average damping

(¢, m) > 0 is sufficiently large. Here we use some simple example to explain the intuition.

14



Example 3.6. Consider the affine function ((w(t)) = aw(t) +b and the one-dimensional
stochastic process

dw(t) = —yw(t)dt + dB(t),

where a € R, b,y > 0 are constants and the initial datum w follows the equilibrium
distribution m which is a normal distribution with zero mean.
By the Duhamel formula, its solution is given by
¢
w(t) = e "w + / e~ =dB(r).
0
Therefore, £&(w) can be written explicitly as below
o0 o0
E(w) = —a/ E%w(t)dt = —aw/ et = - 22
0 0 v
Thanks to Lemma 2.8, we obtain that w(t) is asymptotically contractive with C, = 1.
Moreover, it is easy to see that w(t) is geometrically ergodic (see more details in [34,
Theorem 2.3] and [36, Theorem 2.5]) and dissipative. Applying the Ité formula to g(w) =

_ gaw

et (W) = 775 results in

q2a2 qa
datw(t) = (qau() + L5 ) atw)de — “g(w0)dB (),
Let Uy(t,0,w) = e"tHGH%qG_%. Similar to the arguments of (3.19) and (3.22), we have

EUy(t,0(t), w(t)) < EUy(0, 6(0), w(0))

1 9 q2a2 t
+{ o+ 5ala = DIGILiy —ab+ 7)), EUo(r,0(r), w(r))dr.

If we take b > 0 sufficiently large such that

qa®

292’

then by a similar method to the one in the proof of Theorem 3.5, we can obtain that the

1
b> 5(a—DIGI3, +

null solution to Eq. (1.1) is stable in the sense of moments of order q— .

Based on the result in Theorem 3.5, we further show that the sample paths of solutions

converge to the null solution almost surely as time goes to infinity.

Theorem 3.7. Let the assumptions in Theorem 3.5 be satisfied. Then any pathwise
solution O(t) to Eq. (1.1) converges to the null solution almost surely exponentially in L9,
i.e., there exists Qg C Q with P(Qy) = 0, such that for w ¢ Qo there exists a random
variable T'(w) > 0 such that

16(t)[|2a < Mae™ 2", ¥t > T(w),

for some positive constants My = M2(6(0), w(0)) > 0 and az > 0.

15



Proof. Applying the It6 formula to Uz(6,w) = F,(0)g(w) and arguing as in (3.19), we
obtain that for any natural number N and ¢t > N,

Ua(6(t), w(t)) = Us(O(N), w(N)) — gr / / 10(7)|720(r) (—~ A)6(r)ddr
+q(qz—1/ / |6(r)]9™ 2§:|G7“6? ek| dxdr

- /(g,mU ((r), w(r)) dr+*q / IVw€(w(r)[U2(0(r), w(r))dr

/ ) [, 1012006 (r,6r)) ¥ (1)

/N Ua(6(r), w(r)) (Vo (w(r), dB(r). (3.28)

By the Burkholder-Davis-Gundy inequality, the Holder inequality and the Young inequal-

ity, in view of the conditions on G, we deduce that
qE sup

Neiga4+1 / / 0(r)|*~20(r)G(r, 0(r))dxdW (r)
SCqE(/NH< / 10(r)]*~ 1<Z|Gre ek|2> dm) )
ch< :

N+1 2

/ g<w<r>>2||e<r>ui(£”HG(r,9<r>>u%q<u,m>dr)
N+1

cqxa( sup  (g(w(r)0(r)]|%,) /N g(w(r»nemuiqdr)

-

IN

N
N<r<N+1

IN

IN

1 N+1
4IE<N;1§11]3V+1U2(9(7“),10(7“))> + CqIE/N Uz(0(r), w(r))dr, (3.29)

and

/N Un(0(r), w(r)) (Vut (w(r)), dB(r))

qgE sup
N<t<N+1

<ca( ) w<r>>2uvw§<w<r>>\?2dr)é

N
N+1

ngIE< sup UQ(H(T),w(T))/ Ug(t9(7°),u;(7'))clr>é

N<r<N+1 N

1 N+1
< 4E<N§i1§15)\7+1 Us(0(r), w(r))) + Cq]E/N Us(0(r), w(r))dr, (3.30)

16



where we have used the estimate (3.12) in (3.30). Combining (3.28)-(3.30) and arguing as
in (3.22), we have

E( sup Ug(@(?‘),ﬂ)(?“)))SEUQ(H(N),w(N))
N<r<N+1

1 1 02 N-+1
T (2q<q =~ DG, — aldom) + 2q27;||<||%ip)1€ | vl wear

) N+1
+ 2E<N§§}§1}?\/+1 Us(6(r), w(r))) +C,E /N Uz(0(r), w(r))dr.

Thanks to the condition (3.14), it can be deduced that

1 N+1
2E< sup UQ(Q(T), w(?"))) < EUQ(H(N)7 w(N)) + CqE/ UQ(H(T)a w(r))dr.
N<r<N+1 N

Then by the Markov inequality, the Holder inequality and the estimate (3.27), we infer
that for any eny > 0,

P( sup ||e<r>u%qzeN)SeN1E< sup ||9<r)u7-ﬂ)
N<r<N+1 N<r<N+1

q q_ q 9—q

<€]_V1<E< sup le(r)ll‘ifzeqﬂw(r)))f) ! (E( sup e_qﬁ(w(r))>q_q_) “
N<r<N+1 Nerant

q

q

< Ceyl <E ( Ngilglll)\/+1 Ua(0(r), w@’))) )

N+1 L
< Oyl (EUQ(G(N),w(N))+E /N UQ(H(T),w(T))dr) .

Therefore, it follows from (3.23) that there exists a constant My = M5(6(0),w(0)) > 0
such that
i < sup [[6(r)[14, > €N> < Myeple” 7N,
N<r<N+1

-4 6N
Let ey = Mse 2¢°7". We find that

P( sup  [|0(r)||%, > Mze"zq"N) <e mN,
N<r<N+1

Using the Borel-Cantelli lemma, we conclude that there exists Qp C Q with P(Qg) = 0,
such that for w ¢ Qg there exists a random variable Ny(w) > 0 such that if N > Ny(w),

sup  [|0(r)|%, < Mye™ 57N,
N<r<N+1

Thus the proof is complete. O
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The Lipschitz requirement of G in Theorem 3.5 can be relaxed to include all the

functions satisfying (3.31). The more general result is stated in the following theorem.

Theorem 3.8. Fiz ¢ > 52 with o € (3,1). Let the conditions (A1)-(A3) be satisfied
and ¢ € Lip,(R™,R). Assume that G satisfies

IG(OZ, @Loy < () + (bo + L2(t)) 10N L, (3.31)

where £y > 0 is a constant and £1(t), €2(t) are nonnegative integrable functions such that

there exist real number 6 > 0 such that

/ 4 (t)eltdt < oo, / lo(t)dt < . (3.32)
0 0
If it holds that
1 1,00 e
q(¢,m) > 6+ 5‘](61 =Dl + 5 ?HCHLipa (3.33)

there exist some positive constants a3 and Ms = M3(0(0),w(0)) such that
E|0(t)|9, < Mze > 0.
Furthermore, almost sure exponential stability of the null solution also holds true.

Proof. Let Us(t,0,w) = e F,(0)g(w). Similar to the arguments of (3.19), then taking

expectation yields

EUs(t, 0(t), w(t)) = EU3(0,0(0),w(0)) + JE /Ot Us(r,0(r),w(r))dr

— grE /Ot e eas(w(r) |0( 9720(r) (= A) 20 (r)dzdr

+q(q—1)E/ (O € (w(r)) / 10(r)| 7 2Z\Gr0 (r))ex|*dzdr
0

2
k=1

t

o{¢, mE / Us(r, 0(r), w(r))dr
0

1 t

+ QQQE/O V€ (w () [[EUs (r, 6(r), w(r))dr. (3.34)
By the Holder inequality, the Young inequality and the condition (3.31), we have

q(g—1) 5 _qt(w 2
5 E/ e’ |0 )4 Z]G 7, 0(r))ex|*dxdr

t
a(q— DE / 5 O o) |95 G r, B2, oy

l\)\l—‘
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IN

%q(q - 1)E/ e O 0(r) |57 (1(r) + (Lo + L2(r))|0(r)|70) dr
0

IN

1 ! ! r_q&(w(r
Sala— 1)£O]E/0 Ug(r,H(r),w(r))dr+CqE/O 01 (r)e’ e () gy
+ CqE/O (1(r) + L2(r)) Us(r,0(r), w(r))dr. (3.35)
Inserting (3.35) into (3.34) results in
EU3(t? e(t)> w(t)) < EU3(Oa 0(0)7 ’LU(O))
C?2 t
(54 qata = 1t~ alcom) + 3¢ 613 )B [ Vatrn 0001, wtr))in
+ O, /t 1(r)e’ et @M dr 4+ C,E /t (b1(r) + La(r)) Us(r, 0(r),w(r))dr, (3.36)
0 0

where we have used (3.6) and (3.12). In view of the condition (3.33), the second term
on the right-hand side of (3.36) is negative. Then the inequality (3.36), combined with

(3.27), can be transformed as follows
t
EUs(t, 0(t), w(t)) < EU3(0,0(0), w(0)) + C, / 0 (r)e dr
0

+C,E /0 (1(r) + €2(r)) Us(r, 0(r), w(r))dr

By the Gronwall lemma, we arrive at
t
EU;(t,0(t), w(t)) < EUs(0,60(0),w(0)) exp (Cq/ O (r) + Eg(?“)d?“)
0
t t
+ C'q/ exp <C'q/ 0 (7) + Eg(T)dT) l1(r)e’"dr.
0 T

This together with the condition (3.32) implies that there exists a positive constant M =
M (6(0),w(0)) such that
E (J16(t),e®)) < e

Using the Holder inequality and (3.27), we deduce that there exists a real number M3 =
M35(0(0),w(0)) such that

- — a—q B
Ello@))e, < (E (He(t)H%qeqawu))))T <Ee—j_‘g_s(w<m> C e

This completes the proof of the first part of the theorem. The rest of the theorem can be

proved by the same way as in the proof of Theorem 3.7, and thus we omit it here. O
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Remark 3.9. It is easy to find two functions such that (3.32) holds true. For example, if
2 (t) = Mgl 6732 gg(t) = Mg2678t,

with & > 4, then the condition (3.32) will be satisfied.

4 Feller properties and invariant measures

We have shown that the null solution to Eq. (1.1) is stable in L. However, it is impossible
to obtain the stability of the null solution in H?® because of the quadratic nonlinear term.
In this section, we shall establish the uniform boundedness of pathwise solutions in H*
with s > 2 — 2a, which implies the existence of non-trivial invariant measures. From now
on, we assume that G is independent of time ¢. Hence the solution to Eq. (1.1) is a

time-homogeneous Markov process with the state space H®.

4.1 Uniform boundedness of solutions

In this subsection, we prove that the solution to Eq. (1.1) is uniformly bounded in H*

provided that the average damping (¢, ) is sufficiently large.

Lemma 4.1. Let G € Bnd,(L?,L,(U,L")) and ¢ € Lip,(R",R), with 2 < p < oo.
Assume that the assumptions (A1)-(As) and

2

1 1 C
(Cm) > 5 - DGl + *pv%llélliip (4.1)

2

hold true. Then for any initial valve 6(0) € LP, there exists a positive constant C' =
C(6(0),w(0)) such that

E (07,5 <c, >0, (12)
where 0 is the solution to Fq. (1.1) and {(w) is defined as in (3.10).

Proof. The same arguments as in (3.19) leads to
10117, P = [|6(0) 7, () —p%/ el / 0(r)[P=20(r) (= A)*0(r) dwdr

L= o) [ )P S Y |G 00) e Pddr
) / 2 ?2 k

p(C, / 16(r) | s
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+ p / V& (w ”12”9( )H pepﬁ(w(r ) dr
+p / PEw(r)) 100 )P=20(r)G(0(r))dzdW (r)

+z(/’u0 upep5 (V€ (w(r)), dB(r)).

Let Z(t) = E (]|0(t)|/%,eP$*®)). Then the above inequality can be transformed as follows

Z'(t) = —prE <ep§‘ |0( )I”‘29<t)(—A)“9(t)dx>
+ p(’% <epf / 10(t)|P~2 Z |G(0 ek|2daz>
szw@+¢%mmmwmmwwW&f ). (4.3)
By the condition (4.1), there exists a constant €9 > 0 sufficiently small such that
220+ 20~ DGl — ) + 20 S 1CI, <O (4.4

For this g > 0, taking into account that G € Bnd,(L”, L,(U, L”)), we make use of the
Hoélder inequality and the Young inequality to obtain that

P =V ( e ot
= —E (ef<<>>j42|9u>| 22§;|c%e<w>eu2dw>

1 " _

< 5p(p = DE (“CW)0(0) 7,21 GO0) 13, 01

< Lo = DIGIZdE (FEE O () 2521+ 116(8) 1)

< 50 = DIIGIBagE (D007, (1 + 0(0)]|2)
1

< 52(p = DGl Z(t) + 0 Z(t) + CpE ). (45)

Using (3.6) and (3.12), we conclude from (4.3) and (4.5) that

2@+@aws@w+}@—mm%m <a>+%*%mmﬁ (1) + CpEeret(®).
Furthermore, it follows from (4.4) that
Z/(t) + g0 2(t) < CpEePS 1),
Applying the Gronwall lemma gives
Z(t) < e *0'Z(0) + C / o(t=r)EePs(w() g,

which, together with the estimate (3.27), completes the proof. O
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Lemma 4.2. Let a € (3,1) and s > 2 — 2a. Assume that, in addition to the as-

sumptions imposed in Lemma 4.1 for p = 2n* = 22(12_;%0), ¢ € Lip,(R",R) and G €
s+2—a— = 1

Lip,(H?®, La(U, H®)) with G(0) = 0, where ny = —ta S G0 = qog= and a” € (%,a).
If the assumptions (A1)-(As) and

02
267+ 2(¢, ) > IIG\I%¢p+27§!\C\\%ip (4.6)

hold true, then for any initial valve §(0) € LP N H?, the solution to Eq. (1.1) is uniformly

bounded in the sense of 1-th moment of || - || ms.

Proof. Applying A* to Eq. (1.1) and using the It6 formula to the function [|A®6]|7., we
deduce that

dl|0t)I7rs = —26[10) | Feradt — 2 (w())10() || 7ot — 2(A°0(E), A*(u(t) - VO(2)))dt

+tr (ASG(G(t))(ASG(H(t)))*> dt + 2(A*0(t), ASG(O(¢))dW (£)).
Since B(t) is independent of W(t), by Lemma 2.6 and (3.18) for the case ¢ = 2, we have
16(8) |12 ®) 4 2, /0 t 2@ G(1)]12 oy adr
= [16(0)|[7-€* ) — 2 /0 t X (AG(r), A*(u(r) - VO(r)))dr

+ /0 t ) gy <ASG(0(7~))(ASG(9(T)))*> dr

~2(¢m) [ O+ 2 [ IV ORI

+2 /0 t €M ASG (1), ASG(O(r))dW (1))

+ 2/; 16(r) [>T (V& (w(r)), dB(r)).
Let V(t) = E (]|0(t)[| %), Then it follows that

V(1) + 26E (200 6(1) .. )

— _9F <62§(w(t))<Asg(t), A5 (u(t) - V@(t))))
IR <625(w(t))tr (ASG(H(t))(ASG(H(t)))*>>

= 2, mV(E) + E (| Vak(w(D) B 003X )
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= A+ I+ I3+ . (47)

By the condition (4.6), we choose g9 > 0 sufficient small such that

02
2e0 — 26AT + [|Gl1L;p — 2(¢,m) > +27;HCH%ip <0. (4.8)

Note that V - u = 0. Making use of the Schwarz inequality and Lemmas 2.1-2.2 yields
J1 <2E (e%(“’(t”\IAS“_“(U(t)@(t))IIm||As+a9(t)||L2)
< CE (O (fut) 0 1000 se+1-00 + ) 1000 [600) 150) 1060) 10 )
< CE (0O 10(0) |10 6(1) | ges1-o00 |0 s ) (4.9)
1

where pg = 2@2_1, qo = 7—5= and o~ denotes a number strictly less than « but close to

2
it. With the Sobolev embedding H¥7% % ¢ g5Hl-a and the following Nirenberg-
Gagliardo inequality (cf. [5]):

1—
161l r2-a- 2 < ClON IOl

sH+2—a—2

where 0 < 79 = — 1% < 1, in view of the Young inequality and the Sobolev embedding

LPo C L2 the first term on the right-hand side of (4.7) can be further bounded by

71 < CE (X0 o) |11 100)]170" )

€0 o ( 2t(wlt) 2 26 (u(t)) R
< fop (e ||9(t)||Hs+a> +CE(e [GIs

228
€0 g (L26®) |1 g(p) |12 €0 26(w () R

< S E (D00 Frsa ) + TV + CE( Do) ™ ). (4.10)
1

Recall that G € Lip,(H*®, Lo(U, H®)) with G(0) = 0. We estimate the second term on the
right-hand side of (4.7) as follows

7y <E (X0 GOW)IR, ue)) < IGIEV(0). (4.11)

Inserting (4.10)-(4.11) into (4.7) results in

2(2—mnq)
V(1) + eoV(t) < CE (e%(w“”He(t)HL;o"o )

02
+ (220 - 2008 +1GI, ~ 26,7 + 231G, VO, (412
where we have used (3.12) and the following inequality:

A0 < 1100 Fera- (4.13)
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Due to (4.8), we leave out the last term on the right-hand side of (4.12) and apply the

Gronwall lemma to obtain that

t 2(2—mng)
V(t) < e 5 (0) + C / e—fo@—rhE(e?f(w(T))He(r)HL;g"O )dr. (4.14)
0
Note that

. 1 * * Lo ot —2)e(w(r
E (€2€(w(r))‘|0(7‘)||2p0) < §E (HQ(T)HQLZ"* e2n E(w(r))) + iEe 2(n*=2)¢(w(r)) oo, (4.15)

where n* := M and we have used (4.2), (3.27) and the embeddin L2 ¢ LPo. Then
n =m0 g

we conclude from (4.14) and (4.15) that
V(t) is uniformly bounded. (4.16)

Using the Holder inequality and (3.27), we find that

E|0()]| s < (E (||9(1t)||§{Se25<w<t>>))é (Ee—zf<w<t>>)5 < o0,

which completes the proof. O

4.2 Feller property of solutions

To mark the dependence of the solution 6(¢) to Eq. (1.1) on each fixed initial value
0o = x € H® with s > 2 — 20 and « € (3, 1), we denote it by 6(¢;2) (whose existence is

guaranteed by Theorem 3.1). Next we present a continuous dependence estimate.
Lemma 4.3. Let the conditions of Lemma 4.2 be satisfied. Then for any fired T > 0 and

r1,x0 € H?,

E( sup [|0(t;z1) — 0(t; .%'2)”%{g> < Orllzy — 22| %-. (4.17)
te[0,7)

Proof. Let 01(t) := 0(t;x1) and 02(t) := 6(t;x2) be global solutions to Eq. (1.1) with

initial values x1 and x9, respectively. Define the stopping time

t
S { L1 e+ 102 s + 102 n}
t>0 0

Clearly this is an increasing sequence. Furthermore, since 6; and 65 are global solutions,
we may infer from (3.1) that lim,_ o 7, = 00 a.s. Set p(t) = 01(t) — 02(¢). Applying the
It6 formula to the function | o||%. yields

dllo(t)|[3rs + 26l 0(t) 77+ dt
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= —2(A%(u1(t) - V01 (1) — ua(t) - VO2(t)), Ao(t))dt
= 2¢(w(®)lo(®)|[F=dt + |G(01()) — G(Oa()I7, 04,11y A1
+ 2(A*(G(61(1)) — G(02(1)))dW (1), A% o(1)). (4.18)

Fix n and stopping times 7,, 7 such that 0 < 7, <7, < 7, AT. Integrating (4.18) in time

and taking supremum, finally taking expectation we arrive at

Tb
E( ooy +2 [ HQH%{smdt)
Ta

tE[ra,7p)
< Bllo(ra) - + 28 [ (A% (0)- Vo), Mool
+2E /Tb [(A%((u1(t) —ua(t)) - VOa()), A%o(t))|dt

1o [ clw®)o(t)3edt + E / PG O1(1) — GO, g eyt

Ta Ta

+ 2Et s[up ] /t<AS (G(01(t)) — G(O2(t))) dW (L), A°0(t))
:=Ello(ta)l3rs + T+ To + I3 + Iy + Is, (4.19)

where u; = R101, us = R0, and we have used the bilinearity of the nonlinear term.
Note that
(ur - V(A%p),A%0) = 0.

Since V and A® are commutable [22], we make use of Lemmas 2.1 and 2.2 to obtain
71 =28 [ 1A ur(0) - Vilt) ~ wa0) - V(A°0(e). A°ol0)
<28 [ A0 Volt) — ust) - A(Tot) 2140 2
<CE /TTb(”Ul(t)HHLPS lo(@) [ z=ps + lur (E) | rewa [ ()| e )| 0(8) || s it

Tb
< CE/ 101 (D) ] s @) | sr+a | o() | dt, (4.20)

a

where p3 = %, Dy = % and we have used the Sobolev embeddings H*t® c H'P* and

H3T> c H%P4, We estimate the term Zy as follows
Th
Iy < 2E/ (A ((ua(t) — ua(t) - VO2(t)) — (ur(t) — ua(t)) - V(A0a2(t)), A°0(t))|dt

4 OF /Tb [{(ur(t) — ua(t)) - V(A*02(t)), A®o(t))dt
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= 1-271 —{—1272. (421)

For Z, 1, arguing as in (4.20), we deduce that

Tb
Ty, < CE / 1020) s+ o) 7=l 0(0) | 7=l (4.22)

Ta
By the Hélder inequality and Lemmas 2.1 and 2.2, in view of the fact that V-u; = V-uy =
0, Zo 2 is bounded by

Lo | AT (6) — un(8)) Ao (t)) | 2 AT o (0) | ol

Tb
< CE/ (lua (®) = w2 ()l Lo 102(8)]] grs+1-0.00
+ [lua (2) — ua ()| zr-evs [02(8) || opa )| () || s+ dt

T
< CE/ ()|l zs 102(E) || e[| 0() | o+ it (4.23)

where p; = %, po = ﬁ, p3 = %, P4 =7 2a, and we have used the Sobolev embeddings
H® C LPr, Ht> c Hstl-on [s ¢ HI=%Ps Hst® ¢ H5P4, Inserting (4.22) and (4.23)
into (4.21) gives

T
I < CE/ 1026 prs+o [ @(E)]] prte [ @) || o . (4.24)
Taking into account that G € Lip,(H?®, Lo(U, H®)) and |((w)| < L, we find that
Tb
T, +T,< CE / lo(t)|%- . (4.25)

For the last term on the right-hand side of (4.19), using the Burkholder-Davis-Gundy

inequality and the Young inequality, in view of the assumptions on G, we have

1

1, < e / " 1GO(0) — GO, O )

<ca(( s i) ( /Tb||G<el<t>>—G<92<t>>||%2<uﬂs>dt>2>

te[Tme]
1 b 9
<SE( sw le®llF ) +CE | fo(®)lF-dt (4.26)
tE(Ta,m) Ta
Combining (4.20) and (4.24)-(4.26), by the Young inequality, it follows from (4.19) that

Th
E( o o0+ [ \g(t)\%[s+adt>

te[TaaTb]

Tb
< 2B o(ra) 7 + CE/ (10207 + 102() [ Fese + Dll(t) 7ot

Ta

Then we apply the stochastic Gronwall lemma, as in [16], to complete the proof. O
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Let Py(x, A) be the corresponding transition function defined by
Pi(x,A) = P(O(t;x) € A), t>0,x € H°,Aec B(H®).

This defines the transition semigroup, also denoted by {P;}:>0,

Prp(z) = E(p(0(t; x))) = / p(y)Pi(w,dy), >0,z € H* € CP(H),

s

where CII)OC(H %) denotes the Banach space of all real valued, bounded, locally uniformly

continuous functions, endowed with the sup norm
[@lloo := sup [p(6)].
0cHs

We will show below that {P;}+>¢ is Feller, meaning that P, maps Cl°(H®) into C°¢(H*)
for every t > 0.

Theorem 4.4. Under the assumptions of Lemma 4.2, the transition semigroup is Feller

on H® with s > ﬁ, where 1y s given in Lemma 4.2, i.e.,
Py : Clo¢(H®) — Cl¢(H?®),  for any t > 0.

Remark 4.5. It is worth mentioning that

2(2—ng)

H°CcL 1m0

, for s>

— o
Recall that g, given in Lemma 4.2, belongs to (0,1). Hence s > ﬁ follows immediately

as long as we assume that s > 1 in Lemma 4.2.

Proof. Let ¢ € CéOC(H ¥) be given arbitrarily. Now it suffices to prove that for any ¢t > 0
and m € N,
lim sup |Prp(x) — Prp(xo)| =0, (4.27)

0=0 3 30 € B, ||z —m0]| s <6
where B,, denotes a closed ball in H® centered at zero with radius m.
Thanks to Lemma 4.2, there exists a constant R > m sufficiently large such that for
any r € By,
El0(t; )| ms < R.

For this R, since ¢ is uniformly continuous on Bpr, we choose n > 0 such that for any
e > 0 and any 60,02 € Br with |01 — 02]|gs <,

(1) — @(Ba)| <

IR
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Let
VEn

VAllelr=Ce’

where C} is the constant appearing in (4.17). Using the Chebyshev inequality and Lemma

4.3, we obtain that for any x,xg € By, with || — zo|/zs < 0,

Prp(x) = Prp(zo)| = [E(p(0(t; x))) — E(p(0(t; 20)))]

€
< 5 +2)ellz= P00t 2) = 00t 20)ll = > 1)
2 o0
< = + H<p|2|L ]E( sup |0(r;z) —9(r;x0)||12gs> <e, (4.28)
2 n rel0,t]
which implies (4.27) as desired. Thus the proof is complete. O

4.3 Existence of invariant measures

For any Borel probability measure ;1 and ¢ > 0, we define the dual semigroup P; by
Piu(A) = Pi(z, A)u(dz), Ae B(H?).
Hs
Then p is an invariant measure for {P;}i>o if P/p = p for all ¢ > 0. In the following

theorem, we establish the existence of non-trivial invariant measures.

Theorem 4.6. Under the assumptions of Lemma 4.2, there exists an invariant measure
associated with {P}i>0 on H® with s > 2 — 2a.

Proof. Let us return to the proof of Lemma 4.2. Putting (4.7), (4.10) and (4.11) together,
in view of (3.12) and (4.13), we have

t
V() + OB [ Do)
0

2(2—ng)

t
< V(0) + CE / ZEO||g(r) | = dr
0

02 t
+ <2€0 —2kAG 4 (G2 — 2(C,m) + 27;||¢||%ip) /0 V(r)dr.

By (4.15) and (4.8), we obtain that there exists a positive constant Cp = Cy(6(0), w(0))
such that

t
“E / 20N (|91 2,0 1adt < V(0) + Co.
1 0

28



Then using the Young inequality and (3.27), we deduce that

T T 1 T
B [ 160)]eredt <E [ OO00) nd+ B [ e 00O
0 0 0
= 2—1 (V(0) + CoT) + CT, (4.29)
0

which, by the Markov inequality, implies that
R—oo T—o0

1 T
Jim liminfT/ P 0@l gese > R) dt
0

T
< lim liminf RTE/ 10(t)]] rs+adt

R—oo T—oo

AT A Co
< — .
lim lim inf <€0TV( )+ - —|—C> (4.30)

Consider the sequence of time average measures

1 Ty Tn
pn(T) := 7 Pi(z,T')d / Ddt, I e B(H?).
n JO

To obtain the existence of invariant measures, it suffices to show that u,, is weakly compact,
due to the classical Krylov-Bogoliubov method (cf. [12, Theorem 11.7]). For any R > 0,
let B = {6 € H*" : ||0||gs+a < R} and BY"* = {0 € H* : ¢ Bg}. It is clear that
Bpr is compact in H® and therefore by (4.30), for any € > 0, there exists a compact set
Bpr C H? such that

pn(H*\BRr) = pn(B7") <e, foralln > 1.
By the well-known Prokhorov theorem (see, e.g. [12, Theorem 2.3]), the family {pp n>1
is weakly compact as desired. O
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