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Abstract. This paper deals with links and braids up to link-homotopy, studied from the viewpoint
of Habiro’s clasper calculus. More precisely, we use clasper homotopy calculus in two main directions.
First, we define and compute a faithful linear representation of the homotopy braid group, by using
claspers as geometric commutators. Second, we give a geometric proof of Levine’s classification of
4-component links up to link-homotopy, and go further with the classification of 5-component links in
the algebraically split case.

1. Introduction

The notion of link-homotopy was introduced in 1954 by J.W. Milnor in [22], in the context of knot
theory. It is an equivalence relation on links that allows continuous deformations during which two
distinct components remain disjoint at all times, but each component can self-intersect. Any knot
is link-homotopic to the trivial one, but for links with more than one component this equivalence
relation turns out to be quite rich and intricate. Since Milnor’s seminal work, link-homotopy has
been the subject of numerous works in knot theory see e.g. [6, 17, 24, 8], but also more generally in
the study of codimension 2 embeddings (and in particular knotted surfaces in dimension 4) [20, 3, 2]
and link-maps (self-immersed spheres) [4, 14, 15, 25]. In this paper we are interested in the study of
link-homotopy for braids and links.

The homotopy braid group has been studied by many authors. In [6] Goldsmith gives an example
of a non-trivial braid up to isotopy that is trivial up to link-homotopy; she also gives a presentation of
the homotopy braid group. A representation of the homotopy braid group is given by Humphries in
[13]. He uses it to show that the homotopy braid group is torsion-free for less than 6 strands. Finally
the pure homotopy braid group has been studied by Habegger and Lin in [8] as an intermediate object
for the classification of links up to link-homotopy. As further developed below, our first main result
is another linear representation of the homotopy braid group (Theorem 3.23), which we prove to be
faithful (Theorem 3.31) and which is computed explicitly in Theorem 3.26.

We also address the problem initially posed by Milnor in [22], of classifying links in the 3-sphere up
to link-homotopy. Milnor himself answered the question for the 2 and 3-component case. Furthermore,
Habegger and Lin [8] proposed a complete classification, using a subtle algebraic equivalence relation
on pure braids, where two equivalent braids correspond to link-homotopic links. A more direct
algebraic approach had been proposed by Levine [17] just before the work of Habegger–Lin in the
4-component case. Our second main result is a new geometric proof of Levine’s classification of
4-component links up to link-homotopy (Theorem 4.7). This approach seems to apply, at least in
principle, to links with a higher number of components: we illustrate this in Theorem 4.10 with
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the case of algebraically split 5-component links (that is, 5-component links with vanishing linking
numbers).

The notion of clasper was developed by Habiro in [9]. These are surfaces in 3–manifolds with some
additional structure, on which surgery operations can be performed. In [9], Habiro describes the
clasper calculus up to isotopy, which is a set of geometric operations on claspers that yield equivalent
surgery results. It is well known to experts how clasper calculus can be refined for the study of
knotted objects up to link-homotopy (see for example [5, 26]). This homotopy clasper calculus, which
we review in Section 2, will be the key tool for proving all the main results outlined above.

The rest of this paper consists of three sections.
In Section 2, we review the homotopy clasper calculus: after briefly recalling from [9] Habiro’s

clasper theory, we recall how a fundamental lemma from [5], combined with Habiro’s work, produces
a set of geometric operations on claspers having link-homotopic surgery results.

Section 3 is dedicated to the study of braids up to link-homotopy. We start by reinterpreting braids
in terms of claspers. In Section 3.1 we define comb-claspers, a family of claspers corresponding to
braid commutators. They are next used to define a normal form on homotopy braids, thus allowing
us to rewrite any braid as an ordered product of comb-claspers. In Section 3.2 after a short algebraic
interlude, we give a presentation of the pure homotopy braid group (Corollary 3.20), using the work
of [6] and [23] as well as the technology of claspers. Finally, we define and study in Section 3.3 a
representation of the homotopy braid group which is in a sense the linearization of the homotopy
Artin representation. We give its explicit computation in Theorem 3.26 (see also Example 3.28 for
the 3-strand case) and show its injectivity in Theorem 3.31. Moreover, from the injectivity of the
representation follows the uniqueness of the normal form and thus the definition of the clasp-numbers,
a collection of braid invariant up to link-homotopy. Note that our representation has lower dimension
than Humphries one. The correspondence between the two representations has not been established
yet, but we wonder if our representation could open new leads on the torsion problem for more than
six strands.

The final Section 4 focuses on the study of links up to link-homotopy. The method used is based
on the precise description of some operations, which generate the algebraic equivalence relation men-
tioned above in the classification result of Habegger and Lin [8]; we provide them with a topological
description in terms of claspers. This new point of view allows us, for a small number of components,
to describe when two braids in normal form have link-homotopic closures. We translate in terms of
clasp-number variations the action of those operations on the normal form. In this way we recover the
classification results of Milnor [22] and Levine [17] for 4 or less components (Theorem 4.7). Moreover,
we also classify 5-component algebraically split links up to link-homotopy (Theorem 4.10).

Acknowledgement : The author thanks the referee for his/her careful reading and insightful sugges-
tions. This work is partially supported by the project AlMaRe (ANR- 19-CE40-0001-01) of the ANR.
The author thanks P. Bellingeri and J.B. Meilhan for their great advises and helpful discussions.

2. Clasper calculus up to link-homotopy

Clasper calculus has been developed by Habiro in [9] in the context of tangles up to isotopy.
Claspers turn out to be in fact a powerful tool to deal with link-homotopy. In this section we first
define claspers and their associated vocabulary. Then we describe how to handle claspers up to
link-homotopy.
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2.1. General definitions. Let M be a smooth compact and oriented 3-manifold.

Definition 2.1. An n-component tangle in M is a smooth embedding of an n-component ordered
and oriented 1-manifold (a disjoint union of circles and intervals) into M .

‚ We say that two tangles are isotopic if they are related by an ambient isotopy of M that fixes
the boundary.

‚ We say that two tangles are link-homotopic if there is a homotopy between them fixing the
boundary, and such that the distinct components remain disjoint during the deformation.

Definition 2.2. A disk T smoothly embedded in M is called a clasper for a tangle θ if it satisfies the
following three conditions:

- T is the embedding of a connected thickened uni-trivalent graph with a cyclic order at each
trivalent vertex. Thickened univalent vertices are called leaves, and thickened trivalent ver-
tices, nodes.

- θ intersects T transversely, and the intersection points are in the interior of the leaves of T .
- Each leaf intersects θ in at least one point.

Diagrammatically a clasper is represented by a uni-trivalent graph corresponding to the one to be
thickened. The trivalent vertices are thickened according to Figure 1. On the univalent vertices we
specify how the corresponding leaves intersect θ, and we also indicate how the edges are twisted using
markers called twists (see Figure 1).

Figure 1. Local diagrammatic representation of claspers.

Definition 2.3. Let T be a clasper for a tangle θ. We define the degree of T denoted degpT q as its
number of nodes plus one, or equivalently its number of leaves minus one. The support of T denoted
supppT q is defined to be the set of the components of θ that intersect T .

Definition 2.4. A clasper T for a tangle θ is said to be simple if every leaf of T intersects θ exactly
once. A leaf of a simple clasper intersecting the l-th component is called an l-leaf.

Definition 2.5. We say that a simple clasper T for a tangle θ has repeats if it intersects a component
of θ in at least two points.

Given a disjoint union of claspers F for a tangle θ, there is a procedure called surgery detailed in
[9] to construct a new tangle denoted θF . We illustrate on the left-hand side of Figure 2 the effect of
a surgery on a clasper of degree one. Now if F contains some claspers with degree higher than one,
we first apply the rule shown on the right-hand side of Figure 2, at each trivalent vertex: this breaks
up F into a disjoint union of degree one claspers, on which we can perform surgery.

Note that clasper surgery commutes with ambient isotopy. More precisely for i an ambient isotopy
and F a disjoint union of claspers for a tangle θ we have that ipθF q “ pipθqqipF q. This is an elementary
example of clasper calculus, which refers to the set of operations on unions of a tangles with some
claspers, that allow to deform one into another with isotopic surgery result. These operations are
developed in [9], and we give in the next section the analogous calculus up to link-homotopy.
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Figure 2. Rules of clasper surgery.

2.2. Clasper calculus up to link-homotopy. In the whole section, T and S denote simple claspers
for a given tangle θ. We use the notation T „ S, and say that T and S are link-homotopic when the
surgery results θT and θS are so. For example if i is an ambient isotopy that fixes θ, then T „ ipT q.
Moreover, if θT is link-homotopic to θ, we say that T vanishes up to link-homotopy and we denote
T „ H.

We begin by recalling a fundamental lemma from [5]; more precisely, the next result is the case
k “ 1 of [5, Lemma 1.2], where self C1-equivalence corresponds to link-homotopy.

Lemma 2.6. [5, Lemma 1.2] If T has repeats then T vanishes up to link-homotopy.

It is well known to the experts that combining Lemma 2.6 with the proofs of Habiro’s technical
results on clasper calculus [9], yields the following link-homotopy clasper calculus.1

Proposition 2.7. [9, Proposition 3.23, 4.4, 4.5 and 4.6] We have the following link-homotopy equiv-
alences (illustrated in Figure 3).

(1) If S is a parallel copy of T which differs from T only by one twist (positive or negative), then
S Y T „ H.

(2) If T and S have two adjacent leaves and if T 1YS1 is obtained from T YS by exchanging these

leaves as depicted in (2) from Figure 3, then T YS „ T 1YS1Y T̃ , where T̃ is as shown in the
figure.

(3) If T 1 is obtained from T by a crossing change with a strand of the tangle θ as depicted in (3)

from Figure 3, then T „ T 1 Y T̃ , where T̃ is as shown in the figure.
(4) If T 1YS1 is obtained from T YS by a crossing change between one edge of T and one of S as

depicted in (4) from Figure 3, then T Y S „ T 1 Y S1 Y T̃ , where T̃ is as shown in the figure.
(5) If T 1 is obtained from T by a crossing change between two edges of T then T „ T 1.

❑∼❑Ø
ST  

❑∼❑
θ θ

T  ’T  ~
T  ❑∼❑

T ’

S’

T

S

~
T  

(1)(1) (2)(2) (3)(3)

❑∼❑

~
T  

❑∼❑(4)(4) (5)(5)

S’T ’ST T ’T ’TT 

θθ

Figure 3. Basic clasper moves up to link-homotopy.

1Those moves are contained in [26] and [21] together with [5].
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Idea of proof. The result of [9] used here are up to Ck-equivalence, that is, up to claspers of degree up
to k. The key observation is that, by construction, all such higher degree claspers have same support
as the initial ones, hence they are claspers with repeats. Lemma 2.6 then allows to delete them up to
link-homotopy. �

Remark 2.8. Lemma 2.6 combined with Proposition 2.7 gives us some further results:

- First, statement p4q implies that if |supppT q X supppSq| ě 1 then we can realize crossing
changes between the edges of T and S.

- Moreover, if |supppT qX supppSq| ě 2 thanks to statement (2) we can also exchange the leaves
of T and S.

- Furthermore, statement (3) allows crossing changes between T and a component of θ in the
support of T

Indeed, in each case the clasper T̃ involved in the corresponding statement has repeats and can thus
be deleted up to link-homotopy.

The next remark describes how to handle twists up to link-homotopy.

Remark 2.9. We have the following link-homotopy equivalences (illustrated in Figure 4).

(6) If T 1 is obtained from T by moving a twist across a node then T „ T 1.
(7) If T and T 1 are identical outside a neighborhood of a node, and if in this neighborhood T and

T 1 are as depicted in (8) from Figure 4, then T „ T 1.

❑∼❑(7)❑∼❑(6)

T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  

Figure 4. How to deal with twist up to link-homotopy.

Remark 2.10. Remark 2.9 allows us to bring all the twists on a same edge and then cancel them
pairwise. Therefore we can consider only claspers with one or no twist.

Proposition 2.7 together with Remark 2.9 give us most of the necessary tools to understand clasper
calculus up to link-homotopy. The missing ingredient is the relation IHX which we give in the following
proposition.

Proposition 2.11. [9] Let TI , TH , TX be three parallel copies of a given simple clasper that coincide
everywhere outside a 3-ball, where they are as shown in Figure 5. Then TI Y TH Y TX „ H. We say
that TI , TH and TX verify the IHX relation.

T
I

T
I

T
I

T
I

T
I

T
I

T
I

T
I

T
I

T
I

T
H

T
H

T
H

T
H

T
H

T
H

T
H

T
H

T
H

T
H

T
X

T
X

T
X

T
X

T
X

T
X

T
X

T
X

T
X

T
X

Figure 5. The IHX relation for claspers.
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3. Braids up to link-homotopy.

This section is dedicated to braids up to link-homotopy. Our main result is a representation of
the homotopy braid group, defined and studied using clasper calculus. In the next two subsections
we introduce the main tools for this result: first the notion of comb-claspers for braids, that yields a
normal form result up to link-homotopy, and next their algebraic counterpart with the family F .

3.1. Braids and comb-claspers. Let D be the unit disk with n fixed points tpiuiďn on a diameter
δ, and I the unit interval r0, 1s. Set also I1, . . . , In, n copies of I, and

Ů

iďn
Ii their disjoint union.

Definition 3.1. An n-component braid β “ pβ1, . . . , βnq is a smooth proper embedding

pβ1, . . . , βnq :
ğ

iďn

Ii Ñ D ˆ I

such that βip0q “ ppi, 0q and βip1q “ ppπpβqpiq, 1q with πpβq some permutation of t1, . . . , nu associated
to β. We also require the embedding to be monotonic, which means that βiptq P D ˆ ttu for any
t P r0, 1s. We call (the image of) βi the i-th component of β. We say that a braid is pure if its
associated permutation is the identity.

We emphasize that the braids are here oriented from top to bottom.
The set of braids up to ambient isotopy, resp. link-homotopy, equipped with the stacking operation

forms a group: the braid group denoted by Bn, resp. the homotopy braid group, denoted by B̃n.
Elements of B̃n are called homotopy braids. The set of pure braids up to isotopy, resp. link-homotopy,
forms a subgroup of Bn, resp. B̃n, denoted by Pn, resp. P̃n. Note that we do not require isotopy or
link-homotopy to preserve the monotonic property during the deformation.

Remark 3.2. Braids are tangles without closed components, and with boundary and monotonic con-
ditions. But any (pure) tangle without closed components is link-homotopic to a (pure) braid (in the
pure case, such tangles are called string links in the literature). Thus, when regarding braids up to
link-homotopy we can freely consider them as tangles, i.e. we can forget the monotonic condition.
This is useful from the clasper point of view since clasper surgery does not respect this condition in
general.

We introduce next comb-claspers and their associated notation. Consider the usual representative
1 of the trivial n-component braid given by 1i “ tpiuˆ I for i P t1, . . . , nu. Denote by pDˆ Iq` and
pD ˆ Iq´ the two half-cylinders determined by the plane δ ˆ I, where δ is the fixed diameter on D.
In figures, we choose pD ˆ Iq` to be above the plane of the projection.

Definition 3.3. We call comb-clasper a simple clasper without repeats for the trivial braid such that:

- Every edge is in pD ˆ Iq`.
- The minimal path running from the smallest to the largest component of the support meets all

nodes.
- At each node, the edge that does not belong to the minimal path leaves “to the left” as locally

depicted in Figure 6.

An example is given in Figure 7.

The second condition of Definition 3.3 implies that every node is related (by an edge and a leaf)
to a component of 1 that is not the smallest or the largest of the support. Using that, we can order
the support of a comb-clasper: we start with the smallest component, then we order the components
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Minimal 
 path

Edge on 
the left

Figure 6. Local orientation at each node of a comb-clasper.

according to the order in which we meet them along the minimal path, and finally, we end with the
largest one. For example in Figure 7 the ordered support is t1, 2, 6, 4, 5, 8u.

Once the ordered support ti1, i2, . . . , ilu is fixed, the only remaining indeterminacy in a comb-
clasper is the embedding of the edges in pDˆ Iq`. This depends on the relative position of the edges,
and on the number of twists on each of them. However, up to link-homotopy the relative position of
the edges is irrelevant (by move (5) from Proposition 2.7). Besides, by Remark 2.10, we can always
suppose that a comb-clasper contains either one or no twist; moreover by Remark 2.9 we can freely
assume that the potential twist is located on the edge connected to the il-th component. We can thus
unambiguously (up to link-homotopy) denote by pi1,i2, ¨ ¨ ¨ ,ilq the comb-clasper with such a twist and
by pi1,i2, ¨ ¨ ¨ ,ilq

´1 the untwisted one; we call them respectively twisted and untwisted comb-claspers.
For example the twisted comb-clasper p126458q is illustrated in Figure 7.

2 51 4 6 873

Figure 7. The twisted comb-clasper p126458q.

In what follows we blur the distinction between comb-claspers and the result of their surgery up
to link-homotopy. From this point of view a comb-clasper is a pure homotopy braid and the product
pαqpα1q of two comb-claspers is the product 1pαq1pα

1q. In particular according to move (1) from
Proposition 2.7 the inverse of a comb-clasper pαq is given by pαq´1.

Definition 3.4. We say that a pure homotopy braid β P P̃n given by a product of comb-claspers
β “ pα1q

˘1pα2q
˘1 ¨ ¨ ¨ pαmq

˘1 is :

‚ stacked if pαiq “ pαjq for some i ď j implies that pαiq “ pαkq for any i ď k ď j,
‚ reduced if it contains no redundant pair i.e. two consecutive factors are not the inverse of

each other.
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If β is reduced and stacked we can then rewrite β “
ś

pαiq
νi for some integers νi and with pαiq ‰ pαjq

for any i ‰ j. Moreover, given an order on the set of twisted comb-claspers, we say that a reduced
and stacked writing is a normal form of β for this order if pαiq ď pαjq for all i ď j.

We stress that the notion of normal form is relative to a given order on the set of twisted comb-
claspers. The following example will be relevant for Section 4.

Example 3.5. Given two twisted comb-claspers pαq “ pi1 ¨ ¨ ¨ ilq and pα1q “ pi11 ¨ ¨ ¨ i
1
l1q we can choose

the order pαq ď pα1q defined by:

‚ maxpsupppαqq ă maxpsupppα1qq, or
‚ maxpsupppαqq “ maxpsupppα1qq and degpαq ă degpα1q, or
‚ maxpsupppαqq “ maxpsupppα1qq and degpαq “ degpα1q and i1 . . . il ălex i

1
1 . . . i

1
l,

where ălex denotes the lexicographic order. With respect to this order the normal form of an element
β P P̃4 is given by 12 integers tν12, . . . , ν1324u as follows:

β “ p12qν12p13qν13p23qν13p123qν123p14qν14p24qν24p34qν34p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 .

The next result is shown by the same arguments as for Theorem 4.3 of [26].2

Theorem 3.6. [26, Theorem 4.3] Any pure homotopy braid β P P̃n can be expressed in a normal
form, for any order on the set of twisted comb-claspers.

3.2. Algebraic counterpart.

3.2.1. Reduced group and commutators. For any a,b in a group we denote ra,bs :“ aba´1b´1.

Definition 3.7. Let G be a group generated by tx1, . . . , xnu. We define JG Ÿ G to be the normal
subgroup generated by elements of the form rxi,λxiλ

´1s, for all i P t1, . . . , nu, and for all λ P G. We
call reduced quotient, the quotient G{JG and we denote it by RG. This definition depends on the
choice of the generators tx1, . . . , xnu.

In what follows we work essentially with the free group Fn on n generators x1, . . . , xn. The reduced
quotient RFn “ Fn{J of the free group is called reduced free group, where J :“ JFn .

Definition 3.8. A commutator in x1, . . . , xn of weight k pk ě 1q is an element of Fn defined
recursively, as follows:

‚ The commutators of weight one are x1, . . . , xn.
‚ The commutators of weight k are words rC1,C2s where C1, C2 are commutators verifying
k “ wgpC1q ` wgpC2q where wgpC) denotes the weight of C.

Definition 3.9. We denote OccipCq “ r and we say that xi occurs r times in a commutator C if
one of the following holds:

‚ If C “ xj, then r “ 1 if i “ j and r “ 0 if i ‰ j.
‚ If C “ rC1,C2s, then r “ OccipC1q `OccipC2q.

We say that a commutator C has repeats if OccipCq ą 1 for some i. We call support of the commu-
tator C, the set of indices i such that OccipCq ą 0 and we denote it supppCq.

The following is a reformulation of Definition 3.7 that is used throughout the paper.

Proposition 3.10. [17, Proposition 3] The subgroup J is generated by commutators in x1, . . . , xn
with repeats. Hence these commutators are trivial in the reduced free group.

2Although a different notion of comb-clasper is used in [26], the strategy of proof is strictly the same.
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The notion of basic commutators was first introduced in [11] and was further studied in [18, 10, 19]
to describe the lower central series of the free group. It was then naturally adapted in [17] to the
framework of the reduced free group. In the next definition we set a well chosen family of commutators.
This family will replace reduced basic commutators from [17] and will follow us throughout the whole
paper.

Definition 3.11. Let us define the following family of commutators without repeats in RFn:

F “ tri1, . . . , ils | i1 ă ik, 2 ď k ď lulďn .

Here, we use the notation ri1,i2, ¨ ¨ ¨ , ils :“ rr¨ ¨ ¨ rrxi1 ,xi2s,xi3s, ¨ ¨ ¨ ,xil´1
s,xils. This is a finite set and

we can thus choose an arbitrary order on it, F “ trα1s, rα2s, . . . , rαmsu.

Example 3.12. For two commutators rαs “ ri1 ¨ ¨ ¨ ils and rα1s “ ri11 ¨ ¨ ¨ i
1
l1s we can choose the order

given by rαs ď rα1s if:

‚ wgpαq ă wgpα1q, or
‚ wgpαq “ wgpα1q and i1 . . . il ălex i

1
1 . . . i

1
l.

With respect to this order the normal form of an element ω P RF3 “ xx1, x2, x3y is given by 8 integers
te1, . . . , e8u as follows:

ω “ r1se1r2se2r3se3r12se4r13se5r23se6r123se7r132se8 .

The following theorem is a kind of reduced analogue of Hall’s basis theorem [10, Theorem 11.2.4].
It is to be compared with [17, Proposition 6], where a different family of commutators is used, see
Remark 3.15.

Theorem 3.13. For any word ω P RFn there exists a unique ordered set of integers te1, . . . , emu
associated to the ordered family of commutators F “ trα1s, rα2s, . . . , rαmsu such that

ω “ rα1s
e1rα2s

e2 ¨ ¨ ¨ rαms
em .

Proof. We first show for ω P RFn the existence of a decomposition ω “
ś

αPF rαs
eα . We recall that

two commutators commute up to commutators of strictly higher weight, and any commutator of
weight strictly bigger than n has repeats and is then trivial according to Proposition 3.10. Thus it is
sufficient to express any commutator C as a product of commutators in F . To do so we use the three
following relations in RFn.

(i) rX,Y s´1 “ rY,Xs “ rX´1,Y s “ rX,Y ´1s with X,Y commutators.
(ii) rX,rY,Zss “ rrX,Y s,Zs ¨ rrX,Zs,Y s´1 with X,Y,Z commutators.

(iii) rUV,Xs “ rU,XsrV,Xs with U,V commutators such that supppUq X supppV q ‰ H.

Relation (i) allows us to move the generator xi1 with i1 “ minpsupppCqq at the desired position;
we obtain C “ r¨ ¨ ¨ rxi1 ,C1s, ¨ ¨ ¨ ,Cks

˘1. Relations (i) and (ii) are used to decrease the weight of the
commutator Ci in this expression. We start with C1 “ rC

1
1,C

1
2s supposing its weight is bigger than

one, and we get:

C “ r¨ ¨ ¨ rxi1 ,rC
1
1,C

1
2ss, ¨ ¨ ¨ ,Cks

˘1

“ r¨ ¨ ¨ rrxi1 ,C
1
1s,C

1
2s ¨ rrxi1 ,C

1
2s,C

1
1s
´1, ¨ ¨ ¨ ,Cks

˘1

“ r¨ ¨ ¨ rrxi1 ,C
1
1s,C

1
2s, ¨ ¨ ¨ ,Cks

˘1r¨ ¨ ¨ rrxi1 ,C
1
2s,C

1
1s
´1, ¨ ¨ ¨ ,Cks

˘1

“ r¨ ¨ ¨ rrxi1 ,C
1
1s,C

1
2s, ¨ ¨ ¨ ,Cks

˘1r¨ ¨ ¨ rrxi1 ,C
1
2s,C

1
1s, ¨ ¨ ¨ ,Cks

¯1.

Since wgpC 11q ă wgpCq and wgpC 12q ă wgpCq we know that by iterating this operation on the new
terms we can rewrite C as a product of commutators of the form r¨ ¨ ¨ rxi1 ,xi2s,C2s, ¨ ¨ ¨ ,Cks. We finish
by repeating the process on C2, . . . , Ck.
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To prove the unicity of the decomposition we work with the unit group Un of the ring of power
series in non-commuting variables X1, . . . , Xn. More precisely we consider its quotient Ũn in which
the monomials Xα “ Xα1Xα2 ¨ ¨ ¨Xαn vanish when they have repetition (i.e. αi “ αj for some i ‰ j).

The elements in Ũn are of the form 1 ` Q with Q a sum of monomials of degree higher than one,
and p1 ` Qq´1 “ 1 ` Q̄ with Q̄ “ ´Q ` Q2 ´ Q3 ` ¨ ¨ ¨ p´1qnQn. Now we can define the reduced

Magnus expansion M̃ . This is a homomorphism from the reduced free group RFn to Ũn, defined by
M̃pxiq “ 1`Xi. The following computation shows that M̃ respects the relations of the reduced free

group, meaning that M̃prxi,λxiλ
´1sq “ 1 for any generator xi and any λ in RFn:

M̃pλxiλ
´1qM̃pxiq “

´

M̃pλqp1`XiqM̃pλ
´1q

¯

p1`Xiq

“ 1`Xi ` M̃pλqXiM̃pλ
´1q

“ p1`Xiq

´

M̃pλqp1`XiqM̃pλ
´1q

¯

“ M̃pxiqM̃pλxiλ
´1q.

An easy induction on the weight l of rαs P F gives the following:

Claim 3.14. For every rαs “ rα1, ¨ ¨ ¨ ,αls P F , M̃prαsq “ 1 ` Xα ` QlpXα1 , ¨ ¨ ¨ ,Xαlq where Ql is
a sum of monomials of degree l “ wgprαsq not starting by Xα1, and where each variable Xαi for
i P t1, . . . , lu appears exactly once.

Now, we take ω “
ś

αPF rαs
eα “

ś

αPF rαs
e1α two decompositions of an element ω P RFn. We prove

by induction on the weight of rαs that eα “ e1α for any commutator rαs P F . Suppose that eα “ e1α
for any rαs of weight ă k and compare the coefficients of monomial Xα in both M̃p

ś

αPF rαs
eαq and

M̃p
ś

αPF rαs
e1αq for a fixed commutator rαs of degree k. According to Claim 3.14, commutators of

weight ą k do not contribute to this coefficient and the only contributing weight k commutator is rαs
itself with coefficient eα, resp. e1α. Commutators of weight ă k may also contribute to this coefficient
but the induction hypothesis ensures that the contribution is the same in both expressions. This
proves that eα “ e1α for any rαs of weight k and concludes the proof. �

Remark 3.15. Unlike Levine’s proof of [17, Proposition 6], this proof does not require Hall’s basis
theorem [10, Theorem 11.2.4].

Definition 3.16. To the ordered set of commutators F “ trα1s, . . . , rαmsu in RFn we associate a
Z-module V formally generated by tα1, . . . , αmu. We also define the linearization map φ : RFn Ñ V
by:

φpωq “ e1α1 ` ¨ ¨ ¨ ` emαm where rα1s
e1 ¨ ¨ ¨ rαms

em is the normal form of ω.

We keep calling “commutators” the generators of V and we define the support and the weight of α to
be those of rαs.

We stress that the normal form and the linearization map φ both depend on the ordering on F .

Lemma 3.17. The Z-module V is of rank,

rkpVq “
ÿ

0ďlďkăn

k!

l!
.
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Moreover we can decompose V into a direct sum of submodules Vi generated by the commutators of
weight i. Then we obtain that:

rkpViq “
ÿ

i´1ďkăn

k!

pk ´ i` 1q!
.

Proof. The first equality comes by counting the cardinality of F . To do so we first count the elements
rαs with first term α1 “ k. To choose α2, α3, . . . , αl with 0 ď l ă n´ k we only have to respect the
condition that α1 ă αi. Thus they can be freely chosen in tk ` 1, . . . , nu and therefore:

rkpVq “
n
ÿ

k“1

n´k
ÿ

l“0

pn´ kq!

pn´ k ´ lq!
“

n´1
ÿ

k“0

k
ÿ

l“0

k!

pk ´ lq!
“

n´1
ÿ

k“0

k
ÿ

l“0

k!

l!
.

For the second equality, we follow the same kind of reasoning, but this time α1 “ k must be chosen
in t1, . . . , n ´ i ` 1u, then we choose the i ´ 1 last numbers α2, . . . , αi without restriction in
tk ` 1, . . . , nu. We obtain:

rkpViq “
n´i`1
ÿ

k“1

pn´ kq!

pn´ k ´ i` 1q!
“

n´1
ÿ

k“i´1

k!

pk ´ i` 1q!
.

�

3.2.2. Braid groups. In this section we use the usual Artin braid generators σi for i P t1, . . . , n´ 1u
illustrated in Figure 8 and the usual pure braid generators Aij “ σj´1σj´2 ¨ ¨ ¨σi`1σ

2
i σ
´1
i`1 ¨ ¨ ¨σ

´1
j´2σ

´1
j´1

for 1 ď i ă j ď n illustrated in Figure 9.

ni1 i+1

Figure 8. The Artin genera-
tor σi.

j-1i+1 nji1

Figure 9. The pure braid gen-
erator Aij .

The following theorem is based on the result of [6].

Theorem 3.18. Let J Ÿ Bn denote the normal subgroup generated by all elements of the form
rAij ,λAijλ

´1s where λ belongs to Pn. We obtain the homotopy braid group B̃n as the quotient:

B̃n “ Bn{J.

Proof. In [6], the homotopy braid group B̃n appears as the quotient Bn{J
1, where J 1ŸBn is the normal

subgroup generated by elements of the form rAij ,λAijλ
´1s where λ belongs to the normal subgroup

generated by tA1,j , . . . , Aj´1,ju. Our result relies on the observation that J “ J 1. Obviously J 1 Ă J
thus we only need to show that J Ă J 1. This is equivalent to showing that for any Λ P Pn, Aij and

ΛAijΛ
´1 commute up to link-homotopy. Let us remind that Aij is the surgery result 1pijq of the

comb-clasper pijq. Thus the conjugate ΛAijΛ
´1 is the surgery result of the clasper C “ ιpijq, where ι

is the ambient isotopy sending ΛΛ´1 to the trivial braid 1. Now it is clear that supppCq “ supppijq,
hence according to Remark 2.8, pijqC „ Cpijq and the result is proved. �

In order to obtain a similar result for the pure homotopy braid group we need the following.
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Lemma 3.19. The subgroup JŸBn normally generated in Bn by elements of the form rAij ,λAijλ
´1s

for λ P Pn, seen as a subgroup of Pn, coincides with the normal subgroup of Pn generated by elements
of the form rAij ,λAijλ

´1s for λ P Pn.

Proof. For k P t1, . . . , n´ 1u, 1 ď i ă j ď n and λ P Pn we compute:

σkrAij ,λAijλ
´1sσ´1

k “

$

’

’

’

’

&

’

’

’

’

%

rAi`1j ,λ1Ai`1jλ
´1
1 s if i “ k and j ‰ k ` 1

rAi`1j ,λ2Ai`1jλ
´1
2 s if j “ k

Akk`1rAi´1j ,λ3Ai´1jλ
´1
3 sA´1

kk`1 if i “ k ` 1

Akk`1rAij´1,λ4Aij´1λ
´1
4 sA´1

kk`1 if i ‰ k and j “ k ` 1
rAij ,λAijλ

´1s otherwise,

with λi P Pn for i P t1, 2, 3, 4u. Therefore the conjugates σkrAij ,λAijλ
´1sσ´1

k are always conjugates
of rAi1j1 ,λ

1Ai1j1pλ
1q´1s in Pn for some 1 ď i1 ă j1 ď n and λ1 P Pn and the proof is done. �

Corollary 3.20. Let J ŸPn be the normal subgroup generated by elements of the form rAij ,λAijλ
´1s

for any λ P Pn. We obtain the pure homotopy braid group P̃n as the following quotient:

P̃n “ Pn{J “ RPn.

This induces the following presentation for P̃n:

P̃n “ xAij
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rArs,Aijs “ 1 r ă s ă i ă j or r ă i ă j ă s
rArs,Arjs “ rArj ,Asjs “ rAsj ,Arss r ă s ă j
rAri,Asjs “ rrAij ,Arjs,Asjs r ă s ă i ă j
“

Aij ,λAijλ
´1
‰

“ 1 i ă j and λ P P̃n
y.

Proof. The quotient statement is a direct consequence of Proposition 3.18 and Lemma 3.19. The
presentation is obtained from that of [23, Theorem 3.8] re-expressed in terms of commutator and

using the relation rArs,A
´1
ij s “ rArs,Aijs

´1 which holds in P̃n. �

We next recall two classical representations of braid groups that are known to be faithful (see [1]
and [8] for more details).

Definition 3.21. We call Artin representation the homomorphism ρ : Bn Ñ AutpFnq defined as
follows:

ρpσiq :

$

&

%

xi ÞÑ xi`1,
xi`1 ÞÑ xi`1xix

´1
i`1,

xk ÞÑ xk if k R ti, i` 1u.

Similarly the homomorphism ρ̃ : B̃n Ñ AutpRFnq defined by the same expressions is called the
homotopic Artin representation.

3.3. A linear faithful representation of the homotopy braid group.

3.3.1. Algebraic definition. Let GLpVq be the general linear group of the Z-module V introduced

in Definition 3.16. In order to define the linear representation γ : B̃n Ñ GLpVq, we state the
following preparatory lemma. Let us denote by Nj the subgroup normally generated by xj in RFn
for j P t1, . . . , nu; note that Nj is an abelian group.

Lemma 3.22. Let β P B̃n be a homotopy braid. For any commutator C P Nj, if the product
rα1s

e1 ¨ ¨ ¨ rαms
em is a normal form of ρ̃pβqpCq then we have that ei “ 0 if rαis R Nπ´1pβqpjq. Here

π´1pβqpjq is the image of j under the permutation induced by β´1.
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In other words in the image by ρ̃pβq of C P Nj , xπ´1pβqpjq occurs in each factor of the normal form.

Proof. The proof comes from the fact that any element ofNj is sent by ρ̃pβq to an element ofNπ´1pβqpjq.
This is clear for the Artin generators σi and so it is for any braid β. Thus we conclude using the fact
that the normal form ω “ Ce11 ¨ ¨ ¨C

em
m of any element ω P Nk, for any k contains only commutators

in Nk. To see this we use the homomorphism of RFn defined by xk ÞÑ 1 which sends the normal form
of ω to 1. �

Recall from Definition 3.16 the linearization map φ : RFn Ñ V.

Theorem 3.23. The map

γ : B̃n Ñ GLpVq

defined for β P B̃n and rαs P F by γpβqpαq “ φ˝ ρ̃pβqprαsq is a well defined homomorphism. Moreover
γ does not depend on the chosen order on F .

Proof. Since φ is not a homomorphism in general, it is not clear that γ is a representation. Yet we
do have that γpββ1q “ γpβqγpβ1q for any two homotopy braids β and β1. Let rαs be a commutator in
F and α its corresponding commutator in V. We choose some j P suppprαsq so that rαs is in Nj . Set
γpβ1qpαq “

ř

i eiαi for some commutators αi P V associated to the commutators rαis P F and some
integers ei. Then we have that

γpββ1qpαq “ φ ˝ ρ̃pβqρ̃pβ1qprαsq “ φ ˝ ρ̃pβq
´

ź

i

rαis
ei
¯

“ φ
´

ź

i

ρ̃pβqprαisq
ei
¯

.

Now, using Lemma 3.22 we know that rαis is in Nπ´1pβ1qpjq for any i. Besides, Lemma 3.22 implies
that any commutator in the normal form of ρ̃pβqprαisq is in the abelian group Nπ´1pββ1qpjq for any i.
But note that for C1, . . . , Ck a collection of commutators in F such that rCi,Cjs “ 1 for any i, j we
have that φpC1 ¨ ¨ ¨Ckq “ φpC1q ` ¨ ¨ ¨ ` φpCkq. Hence φ behaves like a homomorphism on the product
ś

i ρ̃pβqprαisq
ei , and finally,

φ
´

ź

i

ρ̃pβqprαisq
ei
¯

“
ÿ

i

eiφ
´

ρ̃pβqprαisq
¯

“
ÿ

i

eiγpβqpαiq “ γpβq
´

ÿ

i

eipαiq
¯

“ γpβqγpβ1qpαq.

This shows that γ is a well defined homomorphism.
To prove the independence on the chosen order on F we use Lemma 3.22 again. For any β P B̃n

and any rαs P F , all the commutators in the normal form of ρ̃pβqprαsq commute with each other. In
particular if we set two orderings trα1s, . . . , rαmsu and trασp1qs, . . . , rασpmqsu on F then the two
associated normal forms

ρ̃pβqprαsq “ rα1s
e1 ¨ ¨ ¨ rαms

em “ rασp1qs
e1
σp1q ¨ ¨ ¨ rασpmqs

e1
σpmq

satisfy ei “ e1i for any i and therefore φ ˝ ρ̃ “ φ1 ˝ ρ̃ for the two linearization maps φ and φ1 associated
to the orderings. �

Remark 3.24. The homomorphism γ is in fact injective. Since φ is clearly injective, this can be
shown using the injectivity of ρ̃, proved in [8]. However we will give below another proof of this result
in Theorem 3.31 using clasper calculus, which in turn reproves the injectivity of ρ̃. Furthermore our
approach by clasper calculus allows for explicit computations of the representation, as shown in the
next section.
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3.3.2. Clasper interpretation. We first give a topological interpretation of the Artin, resp. homotopy
Artin, representation. We can see the free group Fn, resp. reduced free group RFn, on which Bn,
resp. B̃n, acts as the fundamental group, resp. the reduced fundamental group, of the complement
of the n-component trivial braid. Therefore an element of Fn, resp. RFn, can also be seen as the
homotopy, resp. the reduced homotopy3, class of an pn ` 1q-th component in this complement. On
the diagram, we place this new strand to the right of the braid and we label it by “8”. Thus, the
generators xi of Fn (resp RFn) are given by the pure braids Ai8 shown in Figure 10, which can
be reinterpreted with the comb-claspers pi,8q depicted in the same figure. There and in subsequent
figures, we simply represent with a circled “8” the leaf intersecting the 8-th component.

∞ (i,∞)

ni1∞ni1 22 n-1 n-1

x
i

Figure 10. Pure braid and clasper interpretations of the generator xi.

In this context the image ρpβq of an element β P Bn, resp. B̃n, is given on a generator xi P Fn, resp.

RFn, by considering the conjugation β1pi,8qβ´1 illustrated in Figure 11. Then we apply an isotopy,

∞

β

β-1

Figure 11. Clasper interpretation of the Artin representation.

transforming β1β´1 into 1. By doing so the clasper pi,8q is deformed into a new clasper which we
are able to reinterpret as an element of Fn or RFn. More precisely in the link-homotopic case we
have a nice correspondence between the family F and the comb-claspers with 8 in their support, by
the following proposition.

Proposition 3.25. Let pαq “ pi1 ¨ ¨ ¨ in´18q and pα1q “ pi1 ¨ ¨ ¨ in´1in8q be two comb-claspers. Then
we have the relation:

pα1q „ rpαq,pin8qs “ pαq ¨ pin8q ¨ pαq
´1 ¨ pin8q

´1.

For example in Figure 12 we illustrate the equivalence p12548q „ rp1258q,p48qs.

Proof. Consider the product of comb-claspers α ¨ pin8q ¨ α
´1 ¨ pin8q

´1 (as for example on the right-
hand side of Figure 12). First we use move p2q from Proposition 2.7 to exchange the 8-th leaves of
pin8q and pαq´1; this move creates an extra comb-clasper, which is exactly pα1q. Now by Remark
2.8 we can freely move pα1q and finish exchanging the edges of pαn8q and pαq´1, thus obtaining the
product pαq ¨ pαq´1 ¨ pα1q ¨ pin8q ¨ pin8q

´1 „ pα1q. �

3Here by reduced homotopy class, we mean the image in the reduced quotient of the homotopy class of an element.
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❑∼❑

2 51 43 2 51 43

∞

∞

∞

∞

∞

Figure 12. The comb-clasper p12548q is link-homotopic to the commutator rp1258q,p48qs.

By iterating this proposition we obtain a correspondence between the commutators rαs P F (or α P
V) and the comb-claspers pα,8q. For example the equivalence p12548q „ rrrp18q,p28qs,p58qs,p48qs
corresponds to r1254s “ rrrx1,x2s,x5s,x4s in RFn.

In this way, we obtain an explicit procedure to compute our representation γ using clasper calculus,
as follows. As illustrated in the proof of Theorem 3.26 below, the computation of γpβqpαq with γ the

representation, β P B̃n and α P V, goes in 3 steps:

Step 1: Consider the conjugate of the comb-clasper pα,8q by the braid β.
Step 2: Use clasper calculus to re-express this conjugate as an ordered union of comb-claspers with

8 in their support (the order comes from the order on F).
Step 3: The number of parallel copies of a given comb-clasper in this product is the coefficient of

the associated commutator in γpβqpαq.

We apply in Theorem 3.26 this procedure4 for each generator σi P B̃n and each commutator in V. The
image of commutator pi1,i2, ¨ ¨ ¨ ,ilq :“ φpri1,i2, ¨ ¨ ¨ ,ilsq P V by the map γpσiq depends on the position
of the indices i and i` 1 in the sequence i1, i2, . . . , il.

Theorem 3.26. For suitable sequences I, J, K in t1, . . . , nuzti, i` 1u, I ‰ H, we have:

γpσiq :

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pIq ÞÑ pIq paq
pJ,i,Kq ÞÑ pJ,i` 1,Kq pbq
pi` 1,Kq ÞÑ pi,Kq ` pi,i` 1,Kq pcq
pI,i` 1,Kq ÞÑ pI,i,Kq ` pI,i,i` 1,Kq ´ pI,i` 1,i,Kq pdq
pI,i,J,i` 1,Kq ÞÑ pI,i` 1,J,i,Kq peq
pI,i` 1,J,i,Kq ÞÑ pI,i,J,i` 1,Kq pfq

pi,J,i` 1,Kq ÞÑ
ř

J 1ĎJp´1q|J
1|`1pi,J 1,i` 1,JzJ 1,Kq pgq

where in (g), the sum is over all (possibly empty) subsequences J 1 of J , and J 1 denotes the sequence
obtained from J 1 by reversing the order of its elements, see Example 3.27.

Example 3.27. If J “ pJ1, J2, J3q and K “ H in (g), then γpσiq maps pi,J,i` 1q to :

´pi,i` 1,J1,J2,J3q ` pi,J1,i` 1,J2,J3q ` pi,J2,i` 1,J1,J3q ` pi,J3,i` 1,J1,J2q

´pi,J2,J1,i` 1,J3q ´ pi,J3,J1,i` 1,J2q ´ pi,J3,J2,i` 1,J1q ` pi,J3,J2,J1,i` 1q.

The proof below explains how this follows from the IHX relations of Figure 17.

4A program that computes explicitly the representation γ is available on [7].
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Proof of Theorem 3.26. Following the procedure given above, we consider the conjugate σ´1
i pα,8qσi

and apply clasper calculus to turn it into a union of comb-claspers.
For (a) it is clear that pI,8q commutes with σi, passing over or next to it. The computation of (b)

is given by a simple isotopy of the braid shown in Figure 13.

∞ ∼(J,i,K,∞) (J,i+1,K,∞)
∞∞

i i+1 i i+1

Figure 13. Computation of (b).

The proofs of (c) and (d) are similar and are given in Figures 14 and 15 respectively. There, the
first equivalence is an isotopy, and the second one is given by move p2q from Proposition 2.7. For (d)
there is a further step given by an IHX relation.

(i,K,∞)∼
(i,i+1)

(i,i+1)-1

i i+1

∞ ∼

i i+1

∞

(i,K,∞)

∞

(i+1,K,∞)

i i+1

(i,i+1,K,∞)
∞

Figure 14. Computation of (c).

∼(I,i+1,K,∞) (I,i,K,∞)∼
(i,i+1)

(i,i+1)-1

∞∞

i i+1i i+1i i+1

∞
(I,i,K,∞)

∞

∼

i i+1

∞
(I,i,K,∞)

(I,i,i+1,K,∞)
∞

∞
(I,i+1,i,K,∞)

Figure 15. Computation of (d).

For (e) and (f) we apply the same isotopy as Figure 13 on components i and i`1, thus interchanging
pI,i,J,i ` 1,Kq and pI,i ` 1,J,i,Kq. Note that we also need a crossing change between the pi ` 1q-th
component and a clasper edge, which is possible according to Remark 2.8.

Proving (g) is the last and hardest part and goes in two steps. The first step is illustrated in Figure
16: we proceed as before with an isotopy and a crossing change, then we use move (8) of Remark 2.9.
This turns σipi,J,i` 1,K,8qσ´1

i into a new clasper which is not a comb-clasper.
In the second step, we use the IHX relations repeatedly to turn this new clasper into a product of

comb-claspers. This is illustrated in Figure 17 where J “ pJ1,J2,J3q. We conclude by simplifying the
twists with Remark 2.10. �
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(J,i,K,∞)
∞

J
∞J∼

i i+1i i+1

∞
J∼

i i+1

Figure 16. Turning σipi,J,i` 1,K,8qσ´1
i into a new clasper.

i+1 J1
J2

J3

i+1 J1
J2J3

i+1 J1
J2J3

i+1 J1
J3J2

i+1 J1J2 J3
i+1 J1J3 J2

i+1 J1
J3 J2

J1i+1 J3 J2J2i+1J3 J1 J2i+1J3 J1 J1i+1J3 J2J3i+1J1 J2
J3i+1 J1 J2 J3i+1J2 J1 J3i+1J2 J1

Figure 17. Iterated IHX relations.

Example 3.28. We illustrate Theorem 3.26 on the 3-component homotopy braid group B̃3. To do so,
we set p1q, p2q, p3q, p12q, p13q, p23q, p123q, p132q to be the generators of V, with the order of Example
3.12, and we compute γ on the Artin generators σ1, σ2:

γpσ1qp1q “ p2q, γpσ2qp1q “ p1q,
γpσ1qp2q “ p1q ` p12q, γpσ2qp2q “ p3q,
γpσ1qp3q “ p3q, γpσ2qp3q “ p2q ` p23q,
γpσ1qp12q “ ´p12q, γpσ2qp12q “ p13q,
γpσ1qp13q “ p23q, γpσ2qp13q “ p12q ` p123q ´ p132q,
γpσ1qp23q “ p13q ` p123q, γpσ2qp23q “ ´p23q,
γpσ1qp123q “ ´p123q, γpσ2qp123q “ p132q,
γpσ1qp132q “ ´p123q ` p132q, γpσ2qp132q “ p123q.
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That gives us the following matrices:

γpσ1q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 ´1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 ´1 ´1
0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, γpσ2q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 ´1 0 0
0 0 0 0 1 0 0 1
0 0 0 0 ´1 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The global shape of these matrices was predicted by Theorem 3.26. Indeed in general we have the
following.

Proposition 3.29. For β P B̃n a homotopy braid, the matrix associated to γpβq in the basis F ,
endowed with the order of Example 3.12, is given by a lower triangular block matrix of the following
form:

¨

˚

˚

˚

˝

B1,1 0 ¨ ¨ ¨ 0
B2,1 B2,2 ¨ ¨ ¨ 0

...
...

. . .
...

Bn,1 Bn,2 ¨ ¨ ¨ Bn,n

˛

‹

‹

‹

‚

where Bi,i is a finite order matrix of size rkpViq “
řn´1
i´1

k!
pk´i`1q! which is the identity when β is pure.

Moreover B1,1 corresponds to the left action by permutation k ÞÑ π´1pβqpkq, and B2,2 corresponds to
the left action on the set tpk, jqukăj given by:

pk, jq ÞÑ

" `

π´1pβqpkq, π´1pβqpjq
˘

if π´1pβqpkq ă π´1pβqpjq,
´
`

π´1pβqpjq, π´1pβqpkq
˘

if π´1pβqpjq ă π´1pβqpkq.

Proof. The triangular shape is a direct consequence of Theorem 3.26. Indeed, the chosen order
respects the weight, and Theorem 3.26 shows that γ maps a commutator of weight k to a sum of
commutators of weight at least k. Proposition 3.17 gives the size of the square diagonal blocks Bi,i.
The fact that these diagonal blocks are the identity when β is a pure braid may need some more
explanations. We only need to show this result on the generators β “ Ai,j “ 1pi,jq. By Proposition
2.7, conjugating pα,8q by pi,jq may only create a clasper pα1,8q of strictly higher degree. This shows
that γpβqpαq “ pαq ` (strictly higher weight commutators) so that Bi,i is the identity. The block
matrix B1,1 describes the action on degree one comb-claspers modulo claspers of higher degree: the
claim follows on an easy verification on the generators σi. Similarly the claim on the block matrix
B2,2 amounts to focusing on degree two comb-claspers. �

In order to prove the injectivity of γ we need the following preparatory lemma.

Lemma 3.30. Let pi1, ¨ ¨ ¨ ,ilq be a comb-clasper. We have

γ
`

1pi1,¨¨¨ ,ilq
˘

pilq “ pilq ´ pi1, ¨ ¨ ¨ ,ilq,

where, on the right-hand side, pi1, ¨ ¨ ¨ ,ilq now denotes the corresponding commutator in V.

Proof. Consider the product pi1, ¨ ¨ ¨ ,ilqpid,8qpi1, ¨ ¨ ¨ ,ilq
´1 and re-express it with only comb-claspers

with 8 in their support. To do so, as illustrated in Figure 18, we apply move p2q from Proposition
2.7 on the leaves on the id-th component, which introduces the comb-clasper pi1, ¨ ¨ ¨ ,il,8q

´1, and we
simplify pi1, ¨ ¨ ¨ ,ilq and pi1, ¨ ¨ ¨ ,ilq

´1. �



ON BRAIDS AND LINKS UP TO LINK-HOMOTOPY 19

❑∼❑∞

∞

∞

i1
i

l n1 i1
i

l n1

Figure 18. Proof of Lemma 3.30.

We can now state the injectivity of the representation γ.

Theorem 3.31. The representation γ : B̃n ÞÑ GLpVq is injective.

Proof. Let β P B̃n be such that γpβq “ Id. First, Proposition 3.29 imposes that β is a pure braid;
indeed the block B1,1 must be the identity, which means that the permutation πpβq is trivial.

According to Theorem 3.6 we can consider a normal form for β:

β “
ź

pαqνα .

Let I Ă t1, . . . , nu be a sequence of indices with largest index m. Let also VI be the subspace of
V spanned by commutators with support included in I. We can then define the associated projection
pI : V Ñ VI , and its composition with the restriction of γ on VI , denoted by γI :“ pI ˝ γ|VI

. Note

that it corresponds to keeping only the components with index in I. It is clear using Proposition
2.7 that γpP̃nqpVzVIq Ă VzVI , thus for β1, β2 P P̃n we have that γIpβ1β2q “ γIpβ1qγIpβ2q. Moreover

γIp1
pαqq “ Id for any comb-clasper pαq with supppαq Ć I. Hence γIpβq “ γIpβ

1q for β1 defined by:

β1 “
ź

supppαqĂI

pαqνα .

Now we show by strong induction on the degree of pαq that να “ 0. For the base case we consider
I of the form I “ ti, mu. Using Lemma 3.30 we obtain:

γIpβ
1qpmq “ γI

`

1pimq
νim

˘

pmq,

“ pmq ´ νim ¨ pimq.

Because β P Kerpγq, we have that γIpβqpmq “ pmq, and this implies that να “ 0 for any pαq of degree
one. To prove that να “ 0 for any pαq of degree k we take I of length k ` 1 and using the induction
hypothesis, we get then:

β1 “
ź

supppαq“I

pαqνα .

Thus thanks to Lemma 3.30 we finally obtain:

γIpβ
1qpmq “ pmq ´

ÿ

supppαq“I

να ¨ pαq.

Because β P Kerpγq we have that γIpβqpmq “ pmq, and this implies να “ 0 for any pαq of support I.
Repeating the argument for any I Ă t1, . . . , nu of length k ` 1, we get that να “ 0 for any pαq of
degree k, which concludes the proof. �
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Corollary 3.32. The normal form is unique in B̃n, i.e. if β “
ś

pαqνα “
ś

pαqν
1
α are two normal

forms of β for a given order on the set of twisted comb-claspers, then να “ ν 1α for any pαq.

Proof. The proof follows closely the previous one. As before for a given I Ă t1, . . . , nu we have
γIpβq “ γIpβ

1q for β1 defined by :

β1 “
ź

supppαqĂI

pαqνα “
ź

supppαqĂI

pαqν
1
α .

We show again by strong induction on the degree that να “ ν 1α. The base case is strictly similar,
but for the inductive step one cannot in general write β1 with only comb-claspers with support I.
However by Proposition 2.7 a comb-clasper pαq with supppαq “ I commutes with any comb-clasper

pα1q up to comb-claspers with support not included in I. Hence γIp1
pαqq commutes with γIp1

pα1qq for
any two comb-claspers pα1q and pαq such that supppαq “ I. In particular we get:

γIpβ
1qpmq “γI

¨

˝

ź

supppαqĹI

pαqνα

˛

‚˝ γI

¨

˝

ź

supppαq“I

pαqνα

˛

‚pmq

“γI

¨

˝

ź

supppαqĹI

pαqν
1
α

˛

‚˝ γI

¨

˝

ź

supppαq“I

pαqν
1
α

˛

‚pmq.

Since comb-claspers pαq with supppαq Ĺ I have degree ă k´1 where k is the length of I, by induction
hypothesis we can simplify the first factor in each expression. By Lemma 3.30 we compute the second
term thus obtaining:

pmq ´
ÿ

supppαq“I

να ¨ pαq “ pmq ´
ÿ

supppαq“I

ν 1α ¨ pαq,

and the proof is complete. �

Remark 3.33. Corollary 3.32 shows that the numbers να of parallel copies of each comb-clasper in a
normal form are a complete invariant of pure braids up to link-homotopy. We call those numbers the
clasp-numbers. Other well known complete homotopy braid invariants are the Milnor numbers [8].
As a matter of fact, Milnor numbers can be used, using the techniques of [26], to give another proof
of Corollary 3.32. In this paper we will not try to make explicit the relation between clasp-numbers
and Milnor numbers, since we work solely with clasp-numbers.

4. Links up to link-homotopy

In the following of the paper we will focus on the study of links up to link-homotopy. More
precisely we will describe in terms of clasp-numbers variation when two normal forms have link-
homotopic closures.

The main purpose of this section is to use clasp-numbers, defined in Remark 3.33 above, to provide
an explicit classification of links up to link-homotopy. In this way we recover results of Milnor [22]
and Levine [17] for 4 or less components, and extend them partially for 5 components. To do so we
first revisit in terms of claspers the work of Habegger and Lin [8].

Remark 4.1. Kotorii and Mizusawa also considered in [16] the question of using clasper theory to
classify 4-component links up to link-homotopy. They use a different kind of normal form, arranged
along a tetrahedron shape, adapted to the 4-component case. The main difference with the present
work, however, is that their result makes direct use of Levine’s classification. Here we instead reprove
the latter using Theorem 4.4 and clasper calculus. Our approach is likely to extend to the general



ON BRAIDS AND LINKS UP TO LINK-HOMOTOPY 21

case: as an illustration of this fact, we treat the algebraically split 5-component case at the end of this
section.

4.1. Habegger–Lin’s work revisited. There is a procedure on braids called closure, that turns a
braid into a link in S3. The question is to determine when two braids have link-homotopic closures. Let
us first recall from [8, Theorem 1.7 & Corollary 1.11] that for any integer n we have the decomposition:

P̃n “ P̃n´1 ˙RFn´1

where the first term corresponds to the braid obtained by omitting a given component, and the second
term is the class of this component as an element of the reduced fundamental group of the disk with
n´ 1 punctures.

To answer the question, Habegger and Lin in [8] study an action of P̃2n on P̃n´1˙RFn´1, which leads
them to considering certain elementary operations px̄i,x̄iqk, pxi,xiqk and px̄i,xiqk, whose definition we
recall here in terms of claspers.

Definition 4.2. Let β P P̃n be a pure homotopy braid, and let i, k be two distinct integers in
t1, . . . , nu.

‚ px̄i,x̄iqkpβq is the pure homotopy braid β∆ ¨1pikq
´1

, where ∆ and pikq´1 are degree one claspers
as shown in the left-hand side of Figure 19.

‚ pxi,xiqkpβq is the pure homotopy braid 1pikq ¨β∆1, where ∆1 and pikq´1 are degree one claspers
as shown in the central part of Figure 19.

‚ px̄i,xiqkpβq is the pure homotopy braid 1pikqβ ¨ 1pikq
´1

, where pikq and pikq´1 are degree one
claspers as shown in the right-hand side of Figure 19.

1 nki

β

Δ

(ik)-1

1 nki

β

(ik)-1

(ik)

1 nki

β

Δ’
(ik)

Figure 19. The elementary operations px̄i,x̄iqk, pxi,xiqk, and px̄i,xiqk.

Remark 4.3. In fact, in [8] those operations are only defined for k “ n, but the definitions extend
naturally for any k ‰ i. Moreover, Figure 2.8 in [8] does not correspond exactly to Figure 19,
due to convention choices. Firstly, in [8] braids are oriented from bottom to top whereas we orient
them from top to bottom. Secondly, here the basepoint of the second term in the decomposition
P̃n “ P̃n´1 ˙RFn´1 is taken above the n´ 1 punctures, and not under the n´ 1 punctures as in [8].

We state now the main classification theorem of links up to link-homotopy.

Theorem 4.4. [8, 12] Let β, β1 P P̃n be two pure homotopy braids. The closures of β and β1 are

link-homotopic, if and only if there exists a sequence β “ β0, β1, . . . , βn “ β1 of elements of P̃n such
that βj`1 “ px̄i,x̄iqkpβjq for some i ‰ k in t1, . . . , nu.

Proof. Firstly, [8, Lemma 2.11] and the proof of [8, Theorem 2.13] imply that two pure homotopy
braids whose closures are link-homotopic are related by a sequence of operations px̄i,x̄iqk, pxi,xiqk and
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px̄i,xiqk. Moreover, computations in [8, pp. 413] show that operations px̄i,x̄iqk generate operations
pxi,xiqk. Finally, Hughes in [12] showed that operations px̄i,xiqk are also realized by operations
px̄i,x̄iqk. �

4.2. Link-homotopy classification of links with a small number of components. This section
is dedicated to the explicit classification of links up to link-homotopy. The starting point of the
strategy is Theorem 4.4 which allows us to see links up to link-homotopy as pure homotopy braids up
to operations px̄i,x̄iqk with i ‰ k in t1, . . . , nu. Moreover with Corollary 3.32 we show that a braid
is uniquely determined by its normal form, encoded by a sequence of integers: the clasp-numbers.
The goal is then to determine how the normal form, or equivalently the clasp-numbers, vary under
operations px̄i,x̄iqk. By using clasper calculus, we recover in this way the link-homotopy classification
results from Milnor [22] and Levine [17] in the case of links with at most 4 components. We then
apply these techniques to the 5-component algebraically split case.

In order to use Corollary 3.32, we need to fix an order on the set of twisted comb-claspers. In the
rest of the paper we fix the following order, which is inspired from Example 3.12. For two twisted
comb-claspers pαq “ pi1 ¨ ¨ ¨ ilq and pα1q “ pi11 ¨ ¨ ¨ i

1
l1q we set pαq ď pα1q if:

‚ degpαq ă degpα1q, or
‚ degpαq “ degpα1q and i1 . . . il ălex i

1
1 . . . i

1
l.

This order is used implicitly throughout the rest of the paper.

4.2.1. The 3-component case. Let L be a 3-component link, then L can be seen as the closure of a
3-component string link β. As mentioned in Remark 3.2, up to link-homotopy, string links correspond
to pure braids. Thus β can be seen as the closure of the normal form:

p12qν12p13qν13p23qν23p123qν123 ,

for some integers ν12, ν13, ν23 and ν123. See the left-hand side of Figure 20.

1 32

ν123

ν23

ν12

ν13

1 32

ν123

ν23

ν12

ν13

(12)-1

Δ

ν13

Figure 20. Operation px̄2,x̄2q1 on the 3-component normal form.

We now investigate how these numbers vary under operations px̄i,x̄iqk for i ‰ k P t1, 2, 3u; we
apply for example px̄2,x̄2q1. By Definition 4.2 this corresponds to introducing the claspers ∆ and
p12q´1 as shown in the right-hand side of Figure 20, which we then put in normal form. This is done
by sliding the 1-leaf of ∆ along the first component to obtain p12q and simplify it with p12q´1. By
move p2q from Proposition 2.7, this sliding creates new claspers, but by Lemma 2.6, the only claspers
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that do not vanish up to link-homotopy, are those created when ∆ crosses the leaves of p13qν13 : more
precisely, in this process, ν13 copies of t1, 2, 3u-supported claspers appear. Finally, according to
Remark 2.8 we can rearrange these new claspers and the normal form becomes

p12qν12p13qν13p23qν23p123qν123`ν13 .

The other operations px̄i,x̄iqk act in a similar way, by changing ν123 by a multiple of ν12, ν13 or ν23.
Summarizing we have shown that

ν12, ν13, ν23 and ν123 mod gcdpν12, ν13, ν23q,

form a set of complete invariants for 3-component links up to link-homotopy.
Note that we recover here Milnor invariants µ12, µ13, µ23 and µ123, that we already knew to be

complete link-homotopy invariants for 3-component links (see [22]).

4.2.2. The 4-component case. Before proceeding with the link-homotopy classification of 4-component
links, we need the following technical result.

Lemma 4.5. Let C be a union of simple claspers for the trivial n-component braid 1, and let l P
t1, . . . , nu. Let T be a clasper in C with l in its support and let CT “

Ť

T 1 be the union of all
claspers in C such that supppT 1q X supppT q “ tlu. Suppose that an l-leaf f of T is disjoint from a

3-ball B containing all l-leaves of CT . Then the closure of 1C is link-homotopic to the closure of 1C
1

where C 1 is obtained from C by passing f across the ball B as shown in Figure 21.

Proof. First the result is clear if T has several l-leaves, since by Lemma 2.6, T vanishes up to link-
homotopy. By Remark 2.8 the edges of any clasper in CT can freely cross those of T but f and the
l-leaves of claspers in CT cannot be freely exchanged. However according to Remark 2.8 again, the
leaf f can be freely exchanged with any l-leaf of claspers in CzCT , since their supports contain at
least some k ‰ l which is in supppT q. By using the closure we can thus slide f in the other direction,
using the closure of 1, and bypass the l-leaves of claspers in CT all gathered in B. �

❑∼❑

l

B

C
T

f T

l

B

C
T

f

T

Figure 21. Illustration of Lemma 4.5

Although the assumption of Lemma 4.5 may seem restrictive, it turns out to be naturally satisfied
for normal forms. For instance, we have the following consequence.

Proposition 4.6. Let C “ pα1q
ν1 ¨ ¨ ¨ pαmq

νm be the normal form of a pure homotopy n-component
braid and let pαq be a degree n´2 comb-clasper. Then C and C 1 “ pα1q

ν1 ¨ ¨ ¨ pαqpαiq
νipαq´1 ¨ ¨ ¨ pαmq

νm

have link-homotopic closures, for any i P t1, . . . , mu.
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Proof. We first consider the product pα1q
ν1 ¨ ¨ ¨ pαiq

νipαqpαq´1 ¨ ¨ ¨ pαmq
νm where we just insert the

trivial term pαqpαq´1 in C. We next want to exchange pαq and pαiq
νi . This is allowed if |supppαq X

supppαiq| ě 2 by Remark 2.8, but if supppαq X supppαiq “ tlu we can only realize crossing changes
between the edges of pαq and pαiq

νi (see Remark 2.8). However in that case pαiq is a comb-clasper of
support tk, lu with k the only component not in the support of pαq, thus we can apply Lemma 4.5 to
the l-leaf of pαq, and bypass the block pαiq

νi (corresponding to CT in Lemma 4.5). �

1 32 4

ν123

ν124

ν234

ν34

ν23

ν12

ν14

ν13

ν24

ν1324

ν1234

ν134

Figure 22. Normal form for 4 components.

Let us now return to the classification of links up to link-homotopy and let L be a 4-component
link seen as the closure of the normal form:

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 ,

for some integers ν12, ν13, ν14, ν23, ν24, ν34, ν123, ν124, ν134, ν234, ν1234, and ν1324. See Figure 22.
We can apply Proposition 4.6 to the degree 2 comb-claspers p123q, p124q, p134q and p234q. For

example, applying Proposition 4.6 to pαq “ p234q and pαiq “ p12q, we get that L is link-homotopic
to the closure of:

p234qp12qν12p234q´1p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123

p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 .

By clasper calculus (Proposition 2.7 and Remark 2.8), we have p234qp12qν12p234q´1 „ p12qν12p1234qν12 .
The product of claspers p1234qν12 can be freely homotoped by Remark 2.8, thus producing the normal
form

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124p134qν134p234qν234p1234qν1234`ν12p1324qν1324 ,
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whose closure is link-homotopic to L. This is recorded in the first row of Table 1, which records
all possible transformations on clasp-numbers obtained with Proposition 4.6. Each row represents a
possible transformation where the entry in the column να represents the variation of the clasp-number
να. Note that an empty cell means that the corresponding clasp-number remains unchanged. Note
also that, we only need two columns because for the comb-claspers of degree 1 or 2 the associated
clasp-numbers remain unchanged.

ν1234 ν1324

ν12

ν34

ν13

ν24

ν14 -ν14

ν23 -ν23

Table 1. Some clasp-numbers variation with same closures.

Let us now describe how operations px̄i,x̄iqk for i ‰ k in t1, . . . , 4u affect clasp-numbers. As for
the 3-component case, px̄i,x̄iqk corresponds to sliding the i-leaf of a simple clasper of support ti, ju
(denoted ∆ in Definition 4.2) along the i-th component. Along the way ∆ encounters leaves and edges
of other claspers, that can be crossed as described by moves p2q and p4q of Proposition 2.7. In doing
so, claspers of degree 2 and 3 may appear, that we must reposition in the normal form. Those of
degree 3 commute with any clasper by Remark 2.8, but since they may not be comb-claspers we have
to use IHX relations (Proposition 2.11) to turn them into comb-claspers. Claspers of degree 2 can be
repositioned using Remark 2.8 and Lemma 4.5 (the fact that Lemma 4.5 applies is clear according to
the shape of the normal form, where factors are stacked).

We detail as an example operation px̄4,x̄4q2. In that case ∆ has support t2, 4u and we slide its
2-leaf along the 2nd component. According to Remark 2.8, ∆ can freely cross the edges of claspers
with 4 in their support and the 2-leaves of claspers containing 2 and 4 in their support. Thus we
only consider the claspers that appear when ∆ meets the edges of p13qν13 and the 2-leaves of p12qν12 ,
p23qν23 and p123qν123 . Once repositioned we obtain in order the factors p1324qν13 , p124qν12 , p234q´ν23

and p1324q´ν123 . However according to Table 1, p1324qν13 can be removed up to link-homotopy and
thus we get the following normal form:

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124`ν12

p134qν134p234qν234´ν23p1234qν1234p1324qν1324´ν123 .

In the same way, we compute all operations px̄i,x̄iqk and record them in Table 2. The entry in row
px̄i,x̄iqk represents the corresponding operation. As in Table 1, an empty cell means that px̄i,x̄iqk does
not change the clasp-number. Moreover the νik columns are omitted because they remain unchanged
by any operations.

There are however algebraic redundancies in Table 2, i.e. some lines are combinations of other
lines, which means that some operation px̄i,x̄iqk generate the others. So we can keep only these ones
(or their opposite), which we call “generating” operations, and which we record in Table 3.

Finally, with Table 3 we reinterpret the homotopy classification of 4-component links as follows.
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ν123 ν124 ν134 ν234 ν1234 ν1324

px̄2,x̄2q1 ν13 ν14 ν134

px̄3,x̄3q1 ´ν12 ν14 ν124

px̄4,x̄4q1 ´ν12 ´ν13 ´ν123 ν123

px̄1,x̄1q2 ´ν23 ´ν24 ´ν234

px̄3,x̄3q2 ν12 ν24 ν124 ´ν124

px̄4,x̄4q2 ν12 ´ν23 ´ν123

px̄1,x̄1q3 ν23 ´ν34 ν234

px̄2,x̄2q3 ´ν13 ´ν34 ´ν134 ν134

px̄4,x̄4q3 ν13 ν23 ν123

px̄1,x̄1q4 ν24 ν34 ν234 ´ν234

px̄2,x̄2q4 ´ν14 ν34 ´ν134

px̄3,x̄3q4 ´ν14 ´ν24 ´ν124

Table 2. Clasp-numbers variations under operations px̄i,x̄iqk.

ν123 ν124 ν134 ν234 ν1234 ν1324

ν13 ν14 ν134

´ν12 ν14 ν124

ν23 ν24 ν234

´ν12 ν23 ν123

ν23 ´ν34 ν234

ν13 ν23 ν123

ν14 ´ν34 ν134

ν14 ν24 ν124

Table 3. Clasp-numbers variations under generating operations.

Theorem 4.7. Two 4-component links, seen as closures of braids in normal forms (see Figure 22),
are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations
from Table 3.

Remark 4.8. Table 1 was only used here as a tool to simplify the computations summarized in Table
2. We stress that Table 3 alone suffices to generate Table 1 and Table 2. In particular, Table 1 is
obtained by “commuting” the rows of Table 3. More precisely let us denote by rRisk the variation
associated to the i-th row of Table k. Let us also denote by rRi,Rjsk the “commutator of rows i and
j” from Table k, i.e. the variation obtained by applying the i-th row of Table k, then the j-th, then
the opposite of the i-th and finally the opposite of the j-th. Thus, Table 3 generates the rows of Table
1 as follows:

rR1s1 “ rR6,R2s3, rR2s1 “ rR1,R5s3, rR3s1 “ rR6,R7s3,
rR4s1 “ rR3,R2s3, rR5s1 “ rR2,R1s3, rR6s1 “ rR5,R6s3.

Note that Levine in [17] already proved a similar result. The purpose of this paragraph is to
explain the correspondence between the two approaches. The strategy adopted in [17] consists in
fixing the first three components and let the fourth one carry the information of the link-homotopy
indeterminacy. Levine used four integers k, l, r, d to describe a normal form for the first three
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components, and integers ei with i P t1, . . . , 8u to describe the information of the last component.
Finally in [17, Table3] he gives a list of all possible transformations on ei-numbers that do not change
the link-homotopy class. Fixing the last component corresponds in our setting to fixing the clasp-
number ν123: this is why [17, Table 3] has one less column than Tables 2 and 3. Moreover the five
rows of [17, Table 3] correspond to px̄3,x̄3q

´1
1 ,px̄4,x̄4q

´1
2 ,px̄1,x̄1q4, px̄3,x̄3q4 and px̄1,x̄1q

´c
2 ˝ px̄3,x̄3q

´a
1 ˝

px̄2,x̄2q
´b
1 , respectively, and Levine’s integers correspond to clasp-numbers as follows.

k r l d e1 e2 e3 e4 e5 e6 e7 e8

ν12 ν13 ν23 ν123 ν14 ν24 ν34 ν124 ν134 ν234 ´ν1324 ´ν1234

4.2.3. The 5-component algebraically split case. This section is dedicated to the study of 5-components
algebraically split links. These are links such that the linking number is zero for any pair of compo-
nents. Equivalently, algebraically split links are given by the closure of a normal form with trivial
clasp-numbers for any degree one comb-clasper.

The following proposition is the algebraically split version of Proposition 4.6. The proof is essen-
tially same and is left to the reader.

Proposition 4.9. Let C “ pα1q
ν1 ¨ ¨ ¨ pαmq

νm be a normal form of a pure homotopy n-component
braid with νi “ 0 for any pαiq of degree one, and let pαq be a degree n´ 3 comb-clasper. Then C and
C 1 “ pα1q

ν1 ¨ ¨ ¨ pαqpαiq
νipαq´1 ¨ ¨ ¨ pαmq

νm have link-homotopic closures, for any i P t1, . . . , mu.

Now, let L be a 5-component algebraically split link seen as the closure of the normal form:

C “p123qν123p124qν124p125qν125p134qν134p135qν135p145qν145p234qν234p235qν235p245qν245p345qν345p1234qν1234

p1235qν1235p1245qν1245p1324qν1324p1325qν1325p1345qν1345p1425qν1425p1435qν1435p2345qν2345p2435qν2435

p12345qν12345p12435qν12435p13245qν13245p13425qν13425p14235qν14235p14325qν14325 .

The strategy is similar to the 4-component case. We see links as braid closures, and with Theorem
3.32 we know that any braid is uniquely determined by a set of clasp-numbers tναu. In this case, the
algebraically split condition results in the vanishing of clasp-numbers νij (i.e. να “ 0 for all pαq of
degree 1). Now, as mentioned by Theorem 4.4, the classification of links up to link-homotopy reduces
to determining how operations px̄i,x̄iqk for i ‰ k in t1, . . . , 5u affect the clasp-numbers.

We first use Proposition 4.9 to simplify the upcoming computations. In that case Proposition 4.9
concerns degree 2 comb-claspers p123q, p124q, p125q, p134q, p135q, p145q, p234q, p235q, p245q and p345q.
We record in Table 4 all possible transformations on clasp-numbers obtained with Proposition 4.9.
As before, each row represents a possible transformation, where the entry in the column να represents
the variation of the clasp-number να, and an empty cell means that the corresponding clasp-number
remains unchanged. Note also that we only need columns corresponding to degree 4 comb-claspers
because the other clasp-numbers remain unchanged.

Finally, we compute the effect of all operations px̄i,x̄iqk using Definition 4.2 and Table 4, and
simplify the results keeping only the “generating” operations, as in the 4-component case. We record
the corresponding clasp-number variations in Table 5. As for the 4-component case, Table 5 contains
all the data for the classification of 5-component algebraically split links. In other words we obtain
the following classification result.

Theorem 4.10. Two 5-component algebraically split links, seen as closures of braids in normal forms,
are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations from
Table 5.
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ν12345 ν12435 ν13245 ν13425 ν14235 ν14325

ν123

ν123

ν124

ν124

ν125 ´ν125

ν125 ´ν125

ν134

ν134

ν135 ´ν135

ν135 ´ν135

ν145 ´ν145

ν145 ´ν145

ν234 ´ν234 ´ν234 ν234

ν234 ´ν234 ν234 ´ν234

ν235

ν235

ν245

ν245

ν345

ν345

Table 4. Some clasp-numbers variations with same closure.

Remark 4.11. Just as in Remark 4.8, only Table 5 is needed here as it generates Table 4. With the
same notations as in Remark 4.8 and with the additional notation “˝” for composition, we get:

rR1s4 “ rR12,R3s5 ˝ rR5,R6s5, rR2s4 “ rR6,R5s5, rR3s4 “ rR11,R12s5, rR4s4 “ rR6,R14s5,
rR5s4 “ rR5,R11s5 ˝ rR3,R11s5, rR6s4 “ rR3,R11s5, rR7s4 “ rR12,R13s5, rR8s4 “ rR8,R9s5,

rR9s4 “ rR1,R5s5, rR10s4 “ rR13,R5s5, rR11s4 “ rR2,R1s5, rR12s4 “ rR13,R14s5,
rR13s4 “ rR6,R4s5, rR14s4 “ rR7,R9s5, rR15s4 “ rR5,R10s5, rR16s4 “ rR7,R3s5,
rR17s4 “ rR4,R2s5, rR18s4 “ rR10,R11s5, rR19s4 “ rR1,R7s5, rR20s4 “ rR10,R1s5.
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