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Abstract. One of the important research subjects in the study of mul-
tiple zeta functions is to clarify the linear relations and functional equations
among them. The Schur multiple zeta functions are a generalization of the
multiple zeta functions of Euler-Zagier type. Among many relations, the dual-
ity formula and its generalization are important families for both Euler-Zagier
type and Schur type multiple zeta values. In this paper, following the method
of previous works for multiple zeta values of Euler-Zagier type, we give an
interpolation of the sums in the generalized duality formula, called Ohno rela-
tion, for Schur multiple zeta values. Moreover, we prove that the Ohno relation
for Schur multiple zeta values is valid for complex numbers.

1. Introduction

For positive integers r, ki, ks, ..., k. with k. > 2, a multiple zeta value of Euler-Zagier
type is defined by

1
(k) = D0
1<ni<---<nyp ny - nNr

where the summation runs over all the size r sets of ordered positive integers. One can
confirm that the above series converges for r-tuples (k1,. .., k) of positive integers with
k. > 2. These r-tuples (k1,...,k,) are called admissible. Many Q-linear relations among
multiple zeta values are known. Especially, the duality formula and its generalization are
important relations. To state the generalized duality formula, we denote a string 1,...,1

——

r

of I’s by {1}". Then, for an admissible index

(1.1) k= ({1} b+ 1,{1}2 b+ 1, {13 by + 1)

with ay, b1, a2,b2,- -, am, by € Z>1, the following index is called a dual index of k:
ki = ({1} an, + L {1} a1, {1 e + 1),

The generalized duality formula, called Ohno relation in some literature, can then be
described as follows:

THEOREM 1.2 (THE GENERALIZED DUALITY FORMULA. [8]). For any £ € Z>( and

2020 Mathematics Subject Classification. Primary 11M32; Secondary 05A19.
Key Words and Phrases. Schur multiple zeta function, Ohno relation, Ohno sum, Ohno function.



2 M. NAkKASuJI, Y. OHNO and W. TAKEDA

any admissible index k = (ki,...,k,), and its dual index k' = (kI, o kD,

(1.3) S llkiten o kete) = Y k4 ke
€1+ ter=~L elttel=t
€120 />0

In Theorem 1.2, when ¢ = 0, we obtain the duality formula for multiple zeta values of
Euler-Zagier type. We may write the left-hand side of (1.3) as O(k : ¢) and call O-sum,
then (1.3) can be written as

(1.4) Ok:t) =0k :0).

In [5], the first and the second authors generalized Theorem 1.2 to the Schur multiple
zeta values under some conditions. In the following, we review their setup:

For any partition A, i.e., a non-increasing sequence (Ay,...,\,) of positive integers,
we associate the Young diagram Dy = {(i,j) € Z%> | 1 < i < n,1 < j < \;} depicted
as a collection of square boxes with the i-th row having \; boxes. For a partition A, a
Young tableau T' = (¢;;) of shape A over a set X is obtained by filling the boxes of D)
with ¢;; € X. We denote by T)(X) the set of all Young tableaux of shape A over X and
denote by SSY Ty the set of semi-standard Young tableaux (¢;;) € Tx(N) which satisfies
the condition of weakly increasing from left to right in each row ¢, and strictly increasing
from top to bottom in each column j. Let A = (A\q,..., A\.) and p = (u1,. .., 1s) be two
partitions such that \; > u; for all i and r > s, and let 6 = A/ be a partition of skew
shape. Then we define Ds = D)\ D,, and sets of their fillings T5(X), SSYT}; in the same
way as above. Then, for a given tableau index k = (k;;) € T5(Z), Schur multiple zeta
value of shape ¢ is defined as

Gk = > ﬁ7

MeSSYTs
where Mk = H mf;j for M = (m;;) € SSYTs. The function (5(k) absolutely

(4,J)€Ds
converges 1n

Ws = {k = (k‘”) S T(g(Z)

kij > 1 for all (i,j) € Ds \ Cs
kij > 2 for all (i,5) € Cs 7

where Cjs is the set of all corners of §. Here, we say that (i,7) € Dy is a corner of §
if (i +1,5) ¢ Ds and (i,57 + 1) ¢ Ds; for example, if § = (4,3,3,2) \ (3,2,1), Cs =
{(1,4),(3,3),(4,2)}. In this article, we assume that all tableau indices of (5 are elements
of Wg.

The first and the second authors [5] defined dual tableau for k € T5(Z) under some
conditions as follows. First, we denote a finer piece of index {1}~ b + 1 as A(a,b)
and call it an admissible piece. If we write A; = A(a;,b;), its dual can be written as
Aj = A(b;,a;). Then, the above admissible index k and its dual ki can be written in
terms of admissible pieces:

k = (A(al,bl),A(ag,bg), .. .,A(am,bm)) = (Al,A27. .. ,Am)
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and

k' = (A(bp, am), Albm—1,am_1), ..., A(br,a1)) = (A AT ... AD).
We now write k € Ts(Z) as
(1.5) b=k kS

where k;OI is the j-th column tableau of k. For example, when A = (3,2,1) and

k11|k12|k13
k =kailkaa|

il

kot k5 = = and kS = [kis| Let T34(2) = {k € T5(2) | ki =

kpq if 7 —i = g — p}. Let IP be the set of elements in T§ *#(Z) consisting of admissible
pieces such that the right side of the top element in each column is not 1. For k € I (? ,in
terms of admissible pieces, the row that has the topmost component is identified as the
first row. In terms of admissible pieces, we can write as A;; the component in the i-th

then kS =

row and j-th column. Note that the component in the upper-right corner is A;,, and
that A;; = Ay if j —i = £ — k when they are not empty. Further, we note that, in terms
of tableaux, the top element in A;; and the bottom element in A;(; 1) are located side by
side. If the j-th column tableau k;c’l starts A,,; for some n and has m+1 admissible pieces,
then k;OI = "(Apnj, ... A(ngtm);). Then the dual tableau is k;o” = t(ALH_m)j, . AIU.).
We define k' by arranging kicil’t . ,kiOI’T in this order from left to right, where we put
the top element in A;rj and the bottom element in Az(jq) side by side for 2 < j < Ay if
both Ajj and Aj(j_l) are not empty.
For k = (k;j) € Ws, € = (€45) € T5(Z>0), and ¢ € Z>(, we denote by

Ok:0)=> Glk+e),

le|=¢

where k + & = (ki; + €i;) € T5(Z) and [e| = }_; j)ep, €ij- Combining the extended
Jacobi-Trudi formula for the Schur multiple zeta functions [7] with the Ohno relation for
the classical one, Nakasuji and Ohno proved the following Ohno relation for the Schur
multiple zeta values.

THEOREM 1.6 ([5]). Let A and u be partitions and let § = A/p. If k' is the dual
tableau of k € IP and ¢ € Z>q, we have

(1.7) Ok :0) =0k :0).

We may regard (1.7) as a generalization of (1.4). Identities (1.4) and (1.7) are based
on the addition of positive integers. On the other hand, in [3], Hirose, Murahara and
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Onozuka gave an interpolation of (1.4) to complex functions. For an admissible index
k= (k1,...,k-) and s € C with R(s) > —1, they defined the function Ix(s), called Ohno
function in [2], by

(1.8) Lis)=)_ > mlkann]n]n

i=10<ny<--<n, '¥1 v v

In [3, Lemma 2.2], it is proved that if s is a non-negative integer m € Zxq, the function
Ix(s) is the same as O-sum, that is,

L(m)= Y ((ki+er,... ke +ep)

e1+--+er=m
€20 (1<i<r)

=0O(k :m).

Thus, by Theorem 1.2, we have I (m) = I+ (m). More generally, they gave an interpo-
lation of the Ohno relation to complex numbers.

THEOREM 1.9 ([3]). For an admissible index k and s € C, we have

Ik(s) = ka (8)

Subsequently, Kamano and Onozuka introduced two kinds of integral representations
of (1.8):

THEOREM 1.10 ([2]). For any admissible index k represented as (1.1) and s € C
with R(s) > —1, we have
1
(@~ DIy — D1~ (ay — Db — DIT(5 1)
dty - -~ dtam

/ ( to - tom )S
X log
0<t1 < <t2m<1 (1 - tl)tQ T (1 - t2m—1)t2m t1-tom_1

x | lo -t “ lo t—3 bl_l-u lo 71_1&27”71 - lo L o
glftg th & 1—tom thm '

THEOREM 1.11 ([2]). For any admissible index k = (k1,...,k,) and s € C with
maxi<j<,{r—2j+2—(kj+---+k)} <R(s) <0, we have

Ik(s) =

_ sin(ms)

1 oo wfsfl
1.12 I =" .
( ) k(s) T Z Y /0 (w+n1)...(w+nr)dw

0<ny < <nyp n

In this paper, we generalize the integral representation given in Theorem 1.11 to the
Schur multiple zeta values. In other words, we consider the function

sin(7s) 1 1 1
I = — - s d
A D | N = A | e

(ni;)ESSYTs (i,5)€Ds ""ij (4,5)€Ds

in Section 2 and show that this function actually interpolates O-sum for the Schur mul-
tiple zeta values in Section 3. Moreover, we prove
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THEOREM 1.13 (THEOREM 3.8). Let A and p be partitions. Put § = A/pu and
k € IP and let k' be the dual tableau of k, for s € C we have

Ik(s) = Ik’r (s)

2. Integral representation and series expansion

In this section, we make preparations for constructing the function Ix(s) as a gen-
eralization of (1.12). As in introduction, taking Theorem 1.11 into account, proved by
Kamano and Onozuka [2, Theorem 1.6], we can expect that Ii(s) can be defined as
follows:

L(s) = _Sin7(-:r5) Z H /00 w1t H ” -i-lnij dw.

(’I’L”)ESSYT(; (i,5)€Ds l (i,j)€Ds

We first prove the following lemma for the calculation of this integral:

LEMMA 2.1.  For any positive integers r,n and s € C with —r < R(s) <0,

/Oo wsL do— T 1 st
o '

w—+n)" sin(mws) nstr el

PrOOF. Changing the variable by w = nv leads to

e’} ,wfsfl [ee] Ufsfl 1
——dw=n"°" dv = B(-s, ,
/0 W) w=mn /0 CEG v e (=s,s+71)

where B is the beta function. By a recurrence relation for beta functions and the reflection
formula, we have

o0 sl 1 s +r =Y
/0 (w+ny ™" ns”g ;g Blsstl)

B ™ 1 ﬁs+rf€
~ sin(mws) nstr o =t

B ™ 1 ﬁ s+ 4
~ sin(mws) nstr el '

This proves the lemma. O

We next consider, as an example, the case of A = (2,1) and show that the function
produced by our calculation interpolates O-sum with respect to A = (2,1). In —1 <
R(s) < 0, by arranging the order of the running indices n11,n12 and no;, we compute

1 o w1
g dw
(ni;)ESSYTy ni ey g 1/0 (w + n11)(w + na2)(w + n21)
ij
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—s—1

> e | e
= w
n’ﬂlfln%rlngflfl o (w+mn11)?(w+na)

ni1=niz2<nzi
—s—1

P> e AT i
w
Rii—1, kia—1 ka1—1 2
nii<nia=ng 11 12" Mol o (wHnu)(w+na)

1 —s5—1
- dw

+ +
Z Z Ma=lpkia =1, ka1 =1 /0 (w +n11)(w + n12)(w + nar)

ni1<niz<n2i ni11<n2i<niz n11

—s5—1

> e d
= w
pkuTipk=tpka =1 foo (w4 ny1)?(w + no1)

ni1=n12<n21
—s5—1

p> S e
w
k1i1—1_kia—1 koi1—1 2
ni<nia=ngy M1 120 Mol o (wnu)(w+na)

Wl e X )Y e T
k11 k12, k21 s Nirjr — Nij

sin(ms .
( ) ni1<niz<nzi nii<n2i<niz/ (i,j)€Dj M1 Mg Mot Tij (3,5)#(@,5")

The second and fourth terms are obtained by the same procedure as in [2]. We consider

the integral

—s5—1

/00 v dw
0 (w—|—n11)2(w+n21) '

The partial fraction decomposition and Lemma 2.1 lead to

—s5—1

/OO v dw
0 (w+n11)2(w+n21)
—s—1 1 —s—1 1
e dw

o0 sl 1 w
B /o (w~+mn11)? (n21 — n11) S wtng (n21 —n11)? W+ noy (N1 — n21)?

. ((1+s) ! ! L | )
sin(ms) \ niT? (no1 —n11)  nit (nor —na1)? it (nan —no1)?)

Therefore, we have
—s—1

_ sin(ms) Z 1 /°° w dw
Q ni1=niz<nai n’ﬂl_lnllgz_lngil_l 0 (w + nll)Q(w + n21)
=(1+s) Z 2 11 2 — o - Z [z 11 E . S
ni1=niz2<nai nlilnléznﬁl (8! (n21 N nll) ni11=n12<nz1 nlilnlgnﬁl ni (7121 o n11)2
2
+ Z k11 71—12 k21 % oL 2°
n3; (n11 — n21)

ni11=ni2<nzi M1 M2 Moy
By changing the role of n1; and no; in the above, we have a similar formula for the case

n11 < n12 = ng1. Combining these calculations, we have

1 1 Nna1
I(s) =(1+s —
() =( ) Z nfipkizpkaing, (ng —nay)

ni1=niz2<nzi
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Z 1 1 ni1na2 + Z 1 1 n%l
o k11 k12 k21 S (1o, — 1nqq)2 k11 k12 k21 ;s (g0 po1)2
ni11=ni2<n21 M1 Mo Mol " ( 2 11) ni1=niz2<n2i M1 Mg Moy 21 ( 1 21)

(2.2)

1 1 ni1
+ (1 + 8) Z ki1, k12, ko1

’I”AS n — Ny
n11<niz=nai TLH TL12 n21 2 ( 11 )
2

1 1 ni1na 1 1 nayq
o Z ki1, k12, k + Z ki1, ki, ko1

218, (N1 — not)? ngy (n21 —ni1)?
e M NG ny (= nen)? A= ngiinizngdt gy (na1 — nan)

1 1
+ DOREE DS ZW; I ——

7. Nt it Nis
nu<niz<na nn<nai<ni/ (gyeby ML 2 ML G gy gn 0T T

Since we expect this I (s) to interpolate O-sum for A = (2, 1), we substitute non-negative
integers for s. At this stage, although non-negative integers are outside of the domain of
I (s) given by the integral, we can consider Ix(s) to be analytically continued to the half
plane $(s) > —1 since the series on the right-hand side converges. Substituting s = 0,
the right-hand side becomes

1(0) = Z 1 n21 _ Z 1 n11M21
E\Y) = ki1, kia, ko1 i1, k1o, kot

2
Na1 — N Ng1 — N
mnra<ng, M1 P12 No] (n21 11) i<y, M1 12 N9l (n21 11)

n 1 n%l
Z ki1 k12 pk21 (10 — noq )2
ni11=ni2<n21 M1 Mg Moy ( 1 21)
+ Z 1 ni1 B Z 1 n11M21
ki1, k12, k21 _ ki1, k12, ko1 _ 2
n n n n
1<y, 11 N1 Mot (n11 21) 1<y M1 MY T (n11 21)
1 n%l
+ Z ki1, k12, ka1 2

Nop — N
n11<niz=n2i M1 Mg Moy ( 2 11)

1 1
+ Y e teme st SED O Frr i Fo

n11<n21<niz M1 M2 Moy n11<niz<nai M1 Mg Mol

= (k).

Substituting s = m € Z>¢, the right-hand side becomes

1 1 no21
I(m) =(1+m) Z —
n11=n12<n21 nlfilnlféznéfl ’)’I,ﬁ (n21 - nll)

2

_ Z 1 1 niinay 4 Z 1 1 ni
ki1, k12, ka1 pm _ 2 ki1 k12 kot ™M (.0 — po)2
nii=nia<ng M1 M2 No1 M1 (n21 —na1) ni1=nia<nay 11 127721 TP21 (11 21)

1 1 ni1
+ (14+m) E —
ki1, k12, ka1 pm _
nis <mrang: M1 MY natt 181 (n11 = na21)

2

1 1 n11M21 1 1 nay
o Z k11, k12, ka1 + Z ki1, k12, k21

m 2 m 2
—-n nii (ng1 —n
nii<nis=ng M1 M2 Mo1 M21 (n11 21) ni1<niz=nay 11 7127721 TU11 (n21 1)

1
> >
ki1+e1, kia+ea, koi+es
Na1

e1teates=m ni1<ngi<niz V11 N12
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1
2 )
kii1ter kia+tes k21+€3

e1teates=m ni1<nig<ng 11 N2

_ 1 m+1 m 1
- Z ki1, k12, k21 ni’i + m—1 +oet m

ni1=nia<ng 11 M12"M21 Ny N2t Moy

ki1, k12, k21 nm m—1 T nm
ni1<mis=no; M1 12 Mo 21 Moy M1t 11

1
+< Z + Z ) Z ki1+e1 kia+tes k21+€3

nii<ngzi<niz ni1<niao<nsi/ eit+est+es=m n11 D)

= > Gk+e).

e]=m

The above two calculations ensure that our Ix(s) interpolates O-sum associated with
A = (2,1). Based on this, we would like to produce a series expression of I (s) for the
general case, as well. In preparation for that, we offer the following lemma, which gives
explicitly the coefficients of the partial fraction decomposition:

LEMMA 2.3. Let

RN 1
o

Q

with distinct integers nq,...,nr,. Then
D 9 RN 11
) =
== (w + ng)* dwr (ro —0)! w—l—nB
W=—Ng
PROOF. This lemma follows from the uniqueness of the Laurent series expansion. O
We apply Lemma 2.3 with Lemma 2.1, then it holds that
: o)
_ sin(zs) / P(N)w™*~" dw
m 0
RN 7o - —F
s+p de
(24) EZZ ;—i—/ pl_ll D dwre—% ’I" | H w +”B
W=—Ngq

For N = (n;;) € SSYT}5, we rewrite
1 Uy 1
(i,j)l_EID,s m - };[1 (W =+ ng )T
by summarizing the same n;;. Identity (2.4) then leads to

Ix(s)
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sin(ms) 1 R 1
e DI BTl | e

NeSSYTs (i j)eDs
U s+p drot 1 1
- Ne;yn Nk—-1 ;; S” ;)1_[1 p dwre=t | (ro —£)! Bl;[a (w+ng)s o
We can now summarize the above as follows.
LEMMA 2.5 (EXPLICIT SERIES FORM OF I(s)). For —1 < (s) <0,
7 B N Lo s+p det 1 1
k(s) = Ne;;YTa Nk-1 ;; s+é pl_[l p dwra—t (re — g)! };[a (w + nﬂ)'fg s
Substituting s = 0, we have
Ry 7o 1 dra—"*
RN
- > r II *
NeSSYTs a=1
= (5 (k).

This ensures that the series expansion converges in R(s) > 0, which gives the analytic
continuation of Ir(s) in R(s) > —1. Furthermore, the series expansion given in Lemma
2.5 is a sum of products of the polynomial and zeta functions associated with a root
system of type A. Therefore, Ix(s) can be meromorphically continued to the whole space
of C (see [4, Section 2]).

3. Interpolation of the generalized duality formula

In this section, we revisit and generalize [3, Lemma 2.1].

LEMMA 3.1 ([3, Lemma 2.1]). For m € Z>¢ and a4,...,a, € R with a; # a; for
i # 7, we have

§/‘ el.. eri§/‘am+r 1H *CLJ

e1+--t+e.=m VE)
e; >0 (1<i<r)

We note that if a; = ap, then for each i = 1,2 the product [[;,;(a; —a;)~ 1is not
defined. On the other hand, following the way to the proof of Lemma 3.1 in [3], we can
obtain the partial fraction decomposition form formally. For example, letting

r—1
| (RO

J#i
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we have

1 1 1 _ Ay + Ao n As
l—aixl—asxl—asx l—aix 1—asx 1—asx
_A(1 = agx) + Ax(1 — ay) n As
(1 —a12)(1 — agx) 1—aszx’

We note that

aiag + arazazz — az(ar + az)

(a1 —az)(az — as)

.A1(1 — CLQ.I) + .AQ(l — alx) =

Therefore,

1 1 1 aiag + a1a2a3T — a3(a1 —+ (12) .Ag

l—axl—aszl—azr (1—a2)(l—az)(a; —az)(az —az) 1—azz’

Substituting a; = as, we have

1 1 B a? + a?azr — 2aza; As
(1—a1z)21—azr (1 —a1x)2(a; —az)?  1—azx
a aias As

(1—a12)2(ay —a3) (1 —a1z)(a; — a3)? + 1—asz’

Using the above identity, we have

. ai aas
(3.2) E aitas?as® = (m+ 1)al + a}"ﬁ + a5 As.
ay —a ay —a
eiteztez=m 1 3 ! 3
€i>0 (1<i<3)

Substituting a; = ny;',as = ny; and az = ny;" into (3.2) and making a simple calcula-
tion, we obtain formula (2.2) interpolating O-sum for Schur multiple zeta values of shape
(2,1). Indeed, keeping a1 = as and nj; = n1s in mind, we have

Z 1 1 1
€1 €2 €3
Ny N5 N
e1bestes=m 11 T2 T2l
€i>0(1<i<3)

(+1)1(1 1>1+1 1(1 1>2+1<1 1)2
=(m - = - = B (e I
nfytt \nu na nftng \ni1 no nyt? \na1  nu
(3.3)

1 n 1 nin 1 n2
= (mA 1) e >
nfinor —nir - nfi (n21 —na) nyy (n11 — nat)

5"

This calculation corresponds to the terms of (2.2) with n1; = nys. Swapping the role of
ni11 and no1, we obtain the identity corresponding to nis = noy. Thus, it holds that

1 1 1 1

Ie(m) = S + Y D D

o nitning? CTRCTRCH
ni1<niz<mnzi ni11<nzi<niz 11 712 ™21 ej4extez=m
€;>0(1<i<3)
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1 11 1
+<Z+Z>mzmezes

N1 N5 N
ni1=ni2<ngr Ni1<ni2=nai N1 Ny Naj e1+eates=m 11 7712721
€;>0(1<i<3)
= E C)\(k-i-E)
le|=m

The first two terms are obtained by the same calculation as in [3]; the last two are
obtained via computation (3.3).
More generally, for fixed A = (a;), we can define

r Ra
P =
(4 lell—ax 1;[ l—bax
where b, is one of a;’s with distinct by, ...,bgr,, and 7, is the multiplicity of (1 — bax).

Then, as in the proof of Lemma 2.3, the uniqueness of the Laurent series expansion gives

Ra ra 7o —4
-3y o M1
(1-— b x)t dgre—t (fba)“ff 0)! (1- bg:c )re
a=1/¢=1 ﬂ;éa w=b31
By expanding into the geometric series, we have the following Lemma:
LEMMA 3.4.
Ra 7o
¢
> aay = T A
‘-1
e1+--+te,=m a=1 /(=1
e;>0 (1<i<r)
where
dra
A®) =
¢ dare=t | (=b, )’“a—’ 0)! H (1 —bgl‘
x:b;l
THEOREM 3.5. The function Ix(s), defined by
sin(7s) P 1
Ii(s) = — > I =) vt I —duw,
™ ij o w + Nij
(ni;)ESSYTs (i,j)€Ds "ij (i,4)€Ds
or
OIS 3) Dt | 11
Ii(s) = NE-1
5+€ To—2 l
NESSYTs Sona o podw (ra w"’”,@

W=—"Ng

interpolates O-sum for the Schur multiple zeta values of shape 4.
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PROOF. As above, substituting b, = n; ! into Lemma 3.4, we can compute

> I (+)

Z €ij=m (LJ)ED

€;; >0
By 7o o —4
—ch’”f—l)ld“ oyt
- _ m ro—4 @ N —1_N\r
=r=A N (ra = O 2, (L=ng z)" —
RN Ta m—|—€— 1 1 dra—é 1 1
= Nl - -1 To—4
S () e (e s Dt )|
et pra T=Ng
where N1 =[] n;; = [[n’e. Changing the variable by w = —z, we obtain
I fmA L =1\ 1 e
Nl
;;( {—1 )ng+éd$Ta_e (ra IH n5+w
Therefore, we have
Rm = > RZZ i
klm) = ﬁ m+€ "t — | o
vessvrn N S e a0 P (ra = Ot g (wtme)™ J|
SRS (e
= k— +[ _ o —0 N -
NeSSYTs N a=1/¢=1 t—1 dw (Ta H) B (w + nﬁ) 7 w=—n
1 1\ %
- > WX I ()
NeSSYTs > eij=m (i,j)€Ds I

This ensures that I (s) interpolates O-sum for the Schur multiple zeta values of shape
d. O

REMARK 3.6. We may prove Theorem 3.5 more directly, without Lemma 3.4, by
using the Hankel contour C' with radius r depicted as following Figure 1.

4R
N

Figure 1. Hankel contour C
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In fact, let
nij
(i.j)€Ds 7

Then, by the Cauchy residue theorem, we have

(_sir;ws/o w51f(u))dw>

= (—=1)™Res w ™! f(w).

s=m w=0
Since
RN = | D o
. 1] ()
(i,5)€Ds (4,§)€Ds €i; =0
we have

1328 w—m—lf( Z H e” )

Ze”—m (1J GDO Z]
e;; >0

Thus, it holds that

Ix(m) = —Ln(:m) > II /OO w ] +1mj dw

w
(nu )ESSY T (i,j)€Ds i (1,5)€Ds
H <n”>
NESSYT5 Ze,j—m( 4,7)€Ds
e;j >0

This shows that Ix(s) interpolates O-sum for the Schur multiple zeta values of shape §.

Finally, we obtain the duality formula for I (s) as complex functions. To show this,
we generalize the uniqueness theorem for the Dirichlet series (see [1, Theorem 11.3]).

THEOREM 3.7. Let p(n,s) and ¢(n, s) be polynomials of s with arithmetic function
a;(n), that is,

d
p(n,s) =Y ai(n)s’
i=0
We assume that the two series
= Z P and F
n=1

both absolutely converge for R(s) > M for some constant M. If F,(s) = F,(s) for
each s = s in an infinite sequence (sy) such that R(sx) = o — 00 as k — oo, then
p(n,s) = q(n, s) for every n and s.

PROOF. Let h(n,s) = p(n,s) — q(n,s) and let H(s) = F,(s) — Fy(s). Then H(s;) =0
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for each k. To prove that h(n,s) = 0 for all n and s, we assume that h(n, s) # 0 for some
(n,s) and obtain a contradiction. Let N be the smallest integer for which h(n, s) is not
identically 0. Then, we have

NS S
n=N+1
Since H(sy) = 0, it holds that
() < e Y2 )
n=N+1 "

We take an integer k so that o; > ¢ where ¢ > M, then

oo

[h(n, sp)|
h(N < Nk —_—
‘ ( 7Sk)| = n;;'_l nok—Ccnc
o 1 c EOO |h(n, Sk)|
n=N+1

Since ¢ > M, the series converges. Therefore, this implies that

Ih(N, s)] < <NN+1> J(s0).

We note that J(si) is at most of polylnomial order of growth in s, hence the right-hand
side converges to 0 as k — 0o, so h(N,s) = 0. This leads to a contradiction and complete
the proof. O

THEOREM 3.8. Let A and p be two partitions such that A\; > u; for all ¢, and let
§ = A/p. Let k' be the dual tableau of k € I”. Then, for s € C we have

Ik(s) = ka (S)

PrROOF. By Theorem 1.6 and Theorem 3.5, we have Ix(s) = Ixi(s) for s € Z>o. As we
can express the function I (s) as

& FO—1\ dret
Z ZZ SJFZ(S -1 )dwrue (ra 'H w—l—ng )8

NGSSYT,; a=1¢=1 we
R
YL (3 e
Nk
NeSSYTs a=1

B i 1 p(naas)
= D Nk > #{(k,0) € Ds | nge = nij}  ni

NeSSYTs (i,7)€Ds
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_ o~ P(nij;5) S !
- Z Z ns Z Nk #{(k,l) € Ds | nge = nap}’

(i,j)€Ds nij=1 i (nas)=NESSYTs
Nab=Njj

by applying Theorem 3.7, we have Ix(s) = I (s) for R(s) > —1 and k € IP. Moreover,
Ix(s) is meromorphically continued to the whole space of C. Thus, the assertion is proved.
O

REMARK 3.9. When we put A = ({1}") and p = & for a positive integer r, then
Theorem 3.8 implies Theorem 1.9. Furthermore, substituting non-negative integers for
s, we obtain Theorem 1.2.

Acknowledgement

The authors would like to express their sincere gratitude to the referees for pointing
out Remark 3.6, valuable comments on the proof of Theorem 3.7, and several helpful
suggestions which led to the improvement of this paper. This work was supported by
Grant-in-Aid for Scientific Research (A) (Grant Number: JP21H04430), Grant-in-Aid
for Scientific Research (B) (Grant Number: JP18H01110), Grant-in-Aid for Scientific
Research (C) (Grant Number: JP18K03223, JP19K03437 and JP22K03274) and Grant-
in-Aid for Early-Career Scientists (Grant Number: JP22K13900). We would like to thank
the Research Institute for Mathematical Sciences, an International Joint Usage/Research
Center located in Kyoto University.

References

[1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, New York. 1976.

[2] K. Kamano and T. Onozuka, Analytic properties of Ohno function, Mathematica Scandinavica
127(3) (2021). https://doi.org/10.7146 /math.scand.a-128520

[3] M. Hirose, H. Murahara, and T. Onozuka, An interpolation of Ohno’s relation to complex functions,
Mathematica Scandinavica 126 (2020), 293-297.

[4] K. Matsumoto and H. Tsumura, On Witten multiple zeta functions associated with semisimple Lie
algebras I, Ann. Inst. Fourier Grenoble 56 (2006), 1457-1504.

[5] M. Nakasuji and Y. Ohno, Duality formula and its generalization for Schur multiple zeta functions,
arXiv : 2109.14362.

[6] M. Nakasuji, O. Phuksuwan and Y. Yamasaki, On Schur multiple zeta functions: A combinatoric
generalization of multiple zeta functions, Advances in Mathematics, 333 (2018), 570-619.

[7] M. Nakasuji and W. Takeda,The Pieri formulas for hook type Schur multiple zeta functions, J.
Combin. Theory Ser. A 191 (2022), Paper No. 105642.

[8] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number
Theory 74 (1999), 39-43.

[9] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics
(1994), 497-512.

Maki NAKASUJI

Department of Information and Communication Science, Faculty of
Science, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-
8554, Japan

Mathematical Institute, Tohoku University, 6-3 Aramaki Aza-Aoba,
Aoba-ku, Sendai, 980-8578, Japan

E-mail: nakasuji@sophia.ac.jp



16 M. NakAsuJI, Y. OHNO and W. TAKEDA

Yasuo OHNO

Mathematical Institute, Tohoku University, 6-3 Aramaki Aza-Aoba,
Aoba-ku, Sendai, 980-8578, Japan
E-mail: ohno.y@m.tohoku.ac.jp

Wataru TAKEDA

Department of Applied Mathematics, Tokyo University of Science, 1-3
Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
E-mail: w.takeda@rs.tus.ac.jp



