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Abstract. One of the important research subjects in the study of mul-
tiple zeta functions is to clarify the linear relations and functional equations

among them. The Schur multiple zeta functions are a generalization of the

multiple zeta functions of Euler-Zagier type. Among many relations, the dual-
ity formula and its generalization are important families for both Euler-Zagier

type and Schur type multiple zeta values. In this paper, following the method
of previous works for multiple zeta values of Euler-Zagier type, we give an

interpolation of the sums in the generalized duality formula, called Ohno rela-

tion, for Schur multiple zeta values. Moreover, we prove that the Ohno relation
for Schur multiple zeta values is valid for complex numbers.

1. Introduction

For positive integers r, k1, k2, . . . , kr with kr ≥ 2, a multiple zeta value of Euler-Zagier

type is defined by

ζ(k1, . . . , kr) =
∑

1≤n1<···<nr

1

nk1
1 · · ·nkr

r

,

where the summation runs over all the size r sets of ordered positive integers. One can

confirm that the above series converges for r-tuples (k1, . . . , kr) of positive integers with

kr ≥ 2. These r-tuples (k1, . . . , kr) are called admissible. Many Q-linear relations among

multiple zeta values are known. Especially, the duality formula and its generalization are

important relations. To state the generalized duality formula, we denote a string 1, . . . , 1︸ ︷︷ ︸
r

of 1’s by {1}r. Then, for an admissible index

(1.1) k = ({1}a1−1, b1 + 1, {1}a2−1, b2 + 1, . . . , {1}am−1, bm + 1)

with a1, b1, a2, b2, · · · , am, bm ∈ Z≥1, the following index is called a dual index of k:

k† = ({1}bm−1, am + 1, {1}bm−1−1, am−1 + 1, . . . , {1}b1−1, a1 + 1).

The generalized duality formula, called Ohno relation in some literature, can then be

described as follows:

Theorem 1.2 (The generalized duality formula. [8]). For any ℓ ∈ Z≥0 and
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any admissible index k = (k1, . . . , kr), and its dual index k† = (k†1., . . . , k
†
s),

(1.3)
∑

ε1+···+εr=ℓ
εi≥0

ζ(k1 + ε1, . . . , kr + εr) =
∑

ε′1+···+ε′s=ℓ

ε′i≥0

ζ(k†1 + ε′1, . . . , k
†
s + ε′s).

In Theorem 1.2, when ℓ = 0, we obtain the duality formula for multiple zeta values of

Euler-Zagier type. We may write the left-hand side of (1.3) as O(k : ℓ) and call O-sum,

then (1.3) can be written as

(1.4) O(k : ℓ) = O(k† : ℓ).

In [5], the first and the second authors generalized Theorem 1.2 to the Schur multiple

zeta values under some conditions. In the following, we review their setup:

For any partition λ, i.e., a non-increasing sequence (λ1, . . . , λn) of positive integers,

we associate the Young diagram Dλ = {(i, j) ∈ Z2 | 1 ≤ i ≤ n, 1 ≤ j ≤ λi} depicted

as a collection of square boxes with the i-th row having λi boxes. For a partition λ, a

Young tableau T = (tij) of shape λ over a set X is obtained by filling the boxes of Dλ

with tij ∈ X. We denote by Tλ(X) the set of all Young tableaux of shape λ over X and

denote by SSY Tλ the set of semi-standard Young tableaux (tij) ∈ Tλ(N) which satisfies

the condition of weakly increasing from left to right in each row i, and strictly increasing

from top to bottom in each column j. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two

partitions such that λi ≥ µi for all i and r ≥ s, and let δ = λ/µ be a partition of skew

shape. Then we define Dδ = Dλ \Dµ and sets of their fillings Tδ(X), SSY Tδ in the same

way as above. Then, for a given tableau index kkk = (kij) ∈ Tδ(Z), Schur multiple zeta

value of shape δ is defined as

ζδ(kkk) =
∑

M∈SSY Tδ

1

Mkkk
,

where Mkkk =
∏

(i,j)∈Dδ

m
kij

ij for M = (mij) ∈ SSY Tδ. The function ζδ(kkk) absolutely

converges in

Wδ =

{
kkk = (kij) ∈ Tδ(Z)

∣∣∣∣∣ kij ≥ 1 for all (i, j) ∈ Dδ \ Cδ

kij ≥ 2 for all (i, j) ∈ Cδ

}
,

where Cδ is the set of all corners of δ. Here, we say that (i, j) ∈ Dδ is a corner of δ

if (i + 1, j) /∈ Dδ and (i, j + 1) /∈ Dδ; for example, if δ = (4, 3, 3, 2) \ (3, 2, 1), Cδ =

{(1, 4), (3, 3), (4, 2)}. In this article, we assume that all tableau indices of ζδ are elements

of Wδ.

The first and the second authors [5] defined dual tableau for kkk ∈ Tδ(Z) under some

conditions as follows. First, we denote a finer piece of index {1}a−1, b + 1 as A(a, b)

and call it an admissible piece. If we write Ai = A(ai, bi), its dual can be written as

A†
i = A(bi, ai). Then, the above admissible index k and its dual k† can be written in

terms of admissible pieces:

k = (A(a1, b1), A(a2, b2), . . . , A(am, bm)) = (A1, A2, . . . , Am)
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and

k† = (A(bm, am), A(bm−1, am−1), . . . , A(b1, a1)) = (A†
m, A†

m−1, . . . , A
†
1).

We now write kkk ∈ Tδ(Z) as

(1.5) kkk = kkkcol1 · · ·kkkcolλ1
,

where kkkcolj is the j-th column tableau of kkk. For example, when λ = (3, 2, 1) and

kkk =

k11 k12 k13

k21 k22

k31

,

then kkkcol1 =

k11

k21

k31

, kkkcol2 =
k12

k22
and kkkcol3 = k13 . Let T diag

δ (Z) = {kkk ∈ Tδ(Z) | kij =

kpq if j − i = q − p}. Let IDδ be the set of elements in T diag
δ (Z) consisting of admissible

pieces such that the right side of the top element in each column is not 1. For kkk ∈ IDδ , in

terms of admissible pieces, the row that has the topmost component is identified as the

first row. In terms of admissible pieces, we can write as Aij the component in the i-th

row and j-th column. Note that the component in the upper-right corner is A1λ1 and

that Aij = Akℓ if j− i = ℓ− k when they are not empty. Further, we note that, in terms

of tableaux, the top element in Aij and the bottom element in Ai(j+1) are located side by

side. If the j-th column tableau kkkcolj starts Anj for some n and hasm+1 admissible pieces,

then kkkcolj = t(Anj , . . . A(n+m)j). Then the dual tableau is kkkcol,†j = t(A†
(n+m)j , . . . A

†
nj).

We define kkk† by arranging kkkcol,†λ1
, . . . , kkkcol,†1 in this order from left to right, where we put

the top element in A†
ij and the bottom element in A†

i(j−1) side by side for 2 ≤ j ≤ λ1 if

both A†
ij and A†

i(j−1) are not empty.

For kkk = (kij) ∈ Wδ, εεε = (εij) ∈ Tδ(Z≥0), and ℓ ∈ Z≥0, we denote by

O(kkk : ℓ) =
∑
|εεε|=ℓ

ζδ(kkk + εεε),

where kkk + εεε = (kij + εij) ∈ Tδ(Z) and |εεε| =
∑

(i,j)∈Dδ
εij . Combining the extended

Jacobi-Trudi formula for the Schur multiple zeta functions [7] with the Ohno relation for

the classical one, Nakasuji and Ohno proved the following Ohno relation for the Schur

multiple zeta values.

Theorem 1.6 ([5]). Let λ and µ be partitions and let δ = λ/µ. If kkk† is the dual

tableau of kkk ∈ IDδ and ℓ ∈ Z≥0, we have

(1.7) O(kkk : ℓ) = O(kkk† : ℓ).

We may regard (1.7) as a generalization of (1.4). Identities (1.4) and (1.7) are based

on the addition of positive integers. On the other hand, in [3], Hirose, Murahara and
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Onozuka gave an interpolation of (1.4) to complex functions. For an admissible index

k = (k1, . . . , kr) and s ∈ C with ℜ(s) > −1, they defined the function Ik(s), called Ohno

function in [2], by

Ik(s) =

r∑
i=1

∑
0<n1<···<nr

1

nk1
1 · · ·nkr

r

· 1

ns
i

∏
j ̸=i

nj

nj − ni
.(1.8)

In [3, Lemma 2.2], it is proved that if s is a non-negative integer m ∈ Z≥0, the function

Ik(s) is the same as O-sum, that is,

Ik(m) =
∑

ε1+···+εr=m
εi≥0 (1≤i≤r)

ζ(k1 + ε1, . . . , kr + εr)

= O(k : m).

Thus, by Theorem 1.2, we have Ik(m) = Ik†(m). More generally, they gave an interpo-

lation of the Ohno relation to complex numbers.

Theorem 1.9 ([3]). For an admissible index k and s ∈ C, we have

Ik(s) = Ik†(s).

Subsequently, Kamano and Onozuka introduced two kinds of integral representations

of (1.8):

Theorem 1.10 ([2]). For any admissible index k represented as (1.1) and s ∈ C
with ℜ(s) > −1, we have

Ik(s) =
1

(a1 − 1)!(b1 − 1)! · · · (am − 1)!(bm − 1)!Γ(s+ 1)

×
∫
0<t1<···<t2m<1

dt1 · · · dt2m
(1− t1)t2 · · · (1− t2m−1)t2m

(
log

t2 · · · t2m
t1 · · · t2m−1

)s

×
(
log

1− t1
1− t2

)a1−1(
log

t3
t2

)b1−1

· · ·
(
log

1− t2m−1

1− t2m

)am−1(
log

1

t2m

)bm−1

.

Theorem 1.11 ([2]). For any admissible index k = (k1, . . . , kr) and s ∈ C with

max1≤j≤r{r − 2j + 2− (kj + · · ·+ kr)} < ℜ(s) < 0, we have

(1.12) Ik(s) = − sin(πs)

π

∑
0<n1<···<nr

1

nk1−1
1 · · ·nkr−1

r

∫ ∞

0

w−s−1

(w + n1) · · · (w + nr)
dw.

In this paper, we generalize the integral representation given in Theorem 1.11 to the

Schur multiple zeta values. In other words, we consider the function

Ikkk(s) = − sin(πs)

π

∑
(nij)∈SSY Tδ

∏
(i,j)∈Dδ

1

n
kij−1
ij

∫ ∞

0

w−s−1
∏

(i,j)∈Dδ

1

w + nij
dw

in Section 2 and show that this function actually interpolates O-sum for the Schur mul-

tiple zeta values in Section 3. Moreover, we prove
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Theorem 1.13 (Theorem 3.8). Let λ and µ be partitions. Put δ = λ/µ and

kkk ∈ IDδ and let kkk† be the dual tableau of kkk, for s ∈ C we have

Ikkk(s) = Ikkk†(s).

2. Integral representation and series expansion

In this section, we make preparations for constructing the function Ikkk(s) as a gen-

eralization of (1.12). As in introduction, taking Theorem 1.11 into account, proved by

Kamano and Onozuka [2, Theorem 1.6], we can expect that Ikkk(s) can be defined as

follows:

Ikkk(s) = − sin(πs)

π

∑
(nij)∈SSY Tδ

∏
(i,j)∈Dδ

1

n
kij−1
ij

∫ ∞

0

w−s−1
∏

(i,j)∈Dδ

1

w + nij
dw.

We first prove the following lemma for the calculation of this integral:

Lemma 2.1. For any positive integers r, n and s ∈ C with −r < ℜ(s) < 0,∫ ∞

0

w−s−1

(w + n)r
dw = − π

sin(πs)

1

ns+r

r−1∏
ℓ=1

s+ ℓ

ℓ
.

Proof. Changing the variable by w = nv leads to∫ ∞

0

w−s−1

(w + n)r
dw = n−s−r

∫ ∞

0

v−s−1

(v + 1)r
dv =

1

ns+r
B(−s, s+ r),

whereB is the beta function. By a recurrence relation for beta functions and the reflection

formula, we have

∫ ∞

0

w−s−1

(w + n)r
dw =

1

ns+r

r−1∏
ℓ=1

s+ r − ℓ

r − ℓ
B(−s, s+ 1)

= − π

sin(πs)

1

ns+r

r−1∏
ℓ=1

s+ r − ℓ

r − ℓ

= − π

sin(πs)

1

ns+r

r−1∏
ℓ=1

s+ ℓ

ℓ
.

This proves the lemma. □

We next consider, as an example, the case of λ = (2, 1) and show that the function

produced by our calculation interpolates O-sum with respect to λ = (2, 1). In −1 <

ℜ(s) < 0, by arranging the order of the running indices n11, n12 and n21, we compute

∑
(nij)∈SSY Tλ

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)(w + n12)(w + n21)
dw
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=
∑

n11=n12<n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw

+
∑

n11<n12=n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)(w + n21)2
dw

+

( ∑
n11<n12<n21

+
∑

n11<n21<n12

)
1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)(w + n12)(w + n21)
dw

=
∑

n11=n12<n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw

+
∑

n11<n12=n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)(w + n21)2
dw

− π

sin(πs)

( ∑
n11<n12<n21

+
∑

n11<n21<n12

) ∑
(i,j)∈Dλ

1

nk11
11 nk12

12 nk21
21

1

ns
ij

∏
(i,j)̸=(i′,j′)

ni′j′

ni′j′ − nij
.

The second and fourth terms are obtained by the same procedure as in [2]. We consider

the integral ∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw.

The partial fraction decomposition and Lemma 2.1 lead to∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw

=

∫ ∞

0

w−s−1

(w + n11)2
1

(n21 − n11)
− w−s−1

w + n11

1

(n21 − n11)2
+

w−s−1

w + n21

1

(n11 − n21)2
dw

= − π

sin(πs)

(
(1 + s)

ns+2
11

1

(n21 − n11)
− 1

ns+1
11

1

(n21 − n11)2
+

1

ns+1
21

1

(n11 − n21)2

)
.

Therefore, we have

− sin(πs)

π

∑
n11=n12<n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw

= (1 + s)
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n21

(n21 − n11)
−

∑
n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n11n21

(n21 − n11)2

+
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
21

n2
11

(n11 − n21)2
.

By changing the role of n11 and n21 in the above, we have a similar formula for the case

n11 < n12 = n21. Combining these calculations, we have

Ikkk(s) =(1 + s)
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n21

(n21 − n11)
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−
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n11n21

(n21 − n11)2
+

∑
n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
21

n2
11

(n11 − n21)2

+ (1 + s)
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

ns
21

n11

(n11 − n21)

(2.2)

−
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

ns
21

n11n21

(n11 − n21)2
+

∑
n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n2
21

(n21 − n11)2

+

( ∑
n11<n12<n21

+
∑

n11<n21<n12

) ∑
(i,j)∈Dλ

1

nk11
11 nk12

12 nk21
21

1

ns
ij

∏
(i,j) ̸=(i′,j′)

ni′j′

ni′j′ − nij
.

Since we expect this Ikkk(s) to interpolate O-sum for λ = (2, 1), we substitute non-negative

integers for s. At this stage, although non-negative integers are outside of the domain of

Ikkk(s) given by the integral, we can consider Ikkk(s) to be analytically continued to the half

plane ℜ(s) > −1 since the series on the right-hand side converges. Substituting s = 0,

the right-hand side becomes

Ikkk(0) =
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

n21

(n21 − n11)
−

∑
n11=n12<n21

1

nk11
11 nk12

12 nk21
21

n11n21

(n21 − n11)2

+
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

n2
11

(n11 − n21)2

+
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

n11

(n11 − n21)
−

∑
n11<n12=n21

1

nk11
11 nk12

12 nk21
21

n11n21

(n11 − n21)2

+
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

n2
21

(n21 − n11)2

+
∑

n11<n21<n12

1

nk11
11 nk12

12 nk21
21

+
∑

n11<n12<n21

1

nk11
11 nk12

12 nk21
21

= ζλ(kkk).

Substituting s = m ∈ Z≥0, the right-hand side becomes

Ikkk(m) =(1 +m)
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

nm
11

n21

(n21 − n11)

−
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

nm
11

n11n21

(n21 − n11)2
+

∑
n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

nm
21

n2
11

(n11 − n21)2

+ (1 +m)
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

nm
21

n11

(n11 − n21)

−
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

nm
21

n11n21

(n11 − n21)2
+

∑
n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

nm
11

n2
21

(n21 − n11)2

+
∑

e1+e2+e3=m

∑
n11<n21<n12

1

nk11+e1
11 nk12+e2

12 nk21+e3
21
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+
∑

e1+e2+e3=m

∑
n11<n12<n21

1

nk11+e1
11 nk12+e2

12 nk21+e3
21

=
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

(
m+ 1

nm
11

+
m

nm−1
11 n21

+ · · ·+ 1

nm
21

)
+

∑
n11<n12=n21

1

nk11
11 nk12

12 nk21
21

(
m+ 1

nm
21

+
m

nm−1
21 n11

+ · · ·+ 1

nm
11

)

+

( ∑
n11<n21<n12

+
∑

n11<n12<n21

) ∑
e1+e2+e3=m

1

nk11+e1
11 nk12+e2

12 nk21+e3
21

=
∑

|εεε|=m

ζλ(kkk + εεε).

The above two calculations ensure that our Ikkk(s) interpolates O-sum associated with

λ = (2, 1). Based on this, we would like to produce a series expression of Ikkk(s) for the

general case, as well. In preparation for that, we offer the following lemma, which gives

explicitly the coefficients of the partial fraction decomposition:

Lemma 2.3. Let

P (N) =

RN∏
α=1

1

(w + nα)rα

with distinct integers n1, . . . , nRN
. Then

P (N) =

RN∑
α=1

rα∑
ℓ=1

1

(w + nα)ℓ
drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα

.

Proof. This lemma follows from the uniqueness of the Laurent series expansion. □

We apply Lemma 2.3 with Lemma 2.1, then it holds that

− sin(πs)

π

∫ ∞

0

P (N)w−s−1 dw

=

RN∑
α=1

rα∑
ℓ=1

1

ns+ℓ
α

ℓ−1∏
p=1

s+ p

p

drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα

.(2.4)

For N = (nij) ∈ SSY Tδ, we rewrite

∏
(i,j)∈Dδ

1

w + nij
=

RN∏
α=1

1

(w + nα)rα

by summarizing the same nij . Identity (2.4) then leads to

Ikkk(s)
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= − sin(πs)

π

∑
N∈SSY Tδ

1

Nkkk−111

∫ ∞

0

w−s−1
∏

(i,j)∈Dδ

1

w + nij
dw

=
∑

N∈SSY Tδ

1

Nkkk−111

RN∑
α=1

rα∑
ℓ=1

1

ns+ℓ
α

ℓ−1∏
p=1

s+ p

p

drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα

.

We can now summarize the above as follows.

Lemma 2.5 (Explicit series form of Ikkk(s)). For −1 < ℜ(s) < 0,

Ikkk(s) =
∑

N∈SSY Tδ

1

Nkkk−111

RN∑
α=1

rα∑
ℓ=1

1

ns+ℓ
α

ℓ−1∏
p=1

s+ p

p

drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα

.

Substituting s = 0, we have

Ikkk(0) =
∑

N∈SSY Tδ

1

Nkkk−111

RN∑
α=1

rα∑
ℓ=1

1

nℓ
α

drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα

=
∑

N∈SSY Tδ

1

Nkkk−111

RN∏
α=1

1

nrα
α

= ζδ(kkk).

This ensures that the series expansion converges in ℜ(s) ≥ 0, which gives the analytic

continuation of Ikkk(s) in ℜ(s) > −1. Furthermore, the series expansion given in Lemma

2.5 is a sum of products of the polynomial and zeta functions associated with a root

system of type A. Therefore, Ikkk(s) can be meromorphically continued to the whole space

of C (see [4, Section 2]).

3. Interpolation of the generalized duality formula

In this section, we revisit and generalize [3, Lemma 2.1].

Lemma 3.1 ([3, Lemma 2.1]). For m ∈ Z≥0 and a1, . . . , ar ∈ R with ai ̸= aj for

i ̸= j, we have

∑
e1+···+er=m
ei≥0 (1≤i≤r)

ae11 · · · aerr =

r∑
i=1

am+r−1
i

∏
j ̸=i

(ai − aj)
−1.

We note that if a1 = a2, then for each i = 1, 2 the product
∏

j ̸=i(ai − aj)
−1 is not

defined. On the other hand, following the way to the proof of Lemma 3.1 in [3], we can

obtain the partial fraction decomposition form formally. For example, letting

Ai = ar−1
i

∏
j ̸=i

(ai − aj)
−1,
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we have

1

1− a1x

1

1− a2x

1

1− a3x
=

A1

1− a1x
+

A2

1− a2x
+

A3

1− a3x

=
A1(1− a2x) +A2(1− a1x)

(1− a1x)(1− a2x)
+

A3

1− a3x
.

We note that

A1(1− a2x) +A2(1− a1x) =
a1a2 + a1a2a3x− a3(a1 + a2)

(a1 − a3)(a2 − a3)
.

Therefore,

1

1− a1x

1

1− a2x

1

1− a3x
=

a1a2 + a1a2a3x− a3(a1 + a2)

(1− a1x)(1− a2x)(a1 − a3)(a2 − a3)
+

A3

1− a3x
.

Substituting a1 = a2, we have

1

(1− a1x)2
1

1− a3x
=

a21 + a21a3x− 2a3a1
(1− a1x)2(a1 − a3)2

+
A3

1− a3x

=
a1

(1− a1x)2(a1 − a3)
− a1a3

(1− a1x)(a1 − a3)2
+

A3

1− a3x
.

Using the above identity, we have

(3.2)
∑

e1+e2+e3=m
ei≥0 (1≤i≤3)

ae11 ae22 ae33 = (m+ 1)am1
a1

a1 − a3
+ am1

a1a3
(a1 − a3)2

+ am3 A3.

Substituting a1 = n−1
11 , a2 = n−1

12 and a3 = n−1
21 into (3.2) and making a simple calcula-

tion, we obtain formula (2.2) interpolating O-sum for Schur multiple zeta values of shape

(2, 1). Indeed, keeping a1 = a2 and n11 = n12 in mind, we have∑
e1+e2+e3=m
ei≥0 (1≤i≤3)

1

ne1
11

1

ne2
12

1

ne3
21

= (m+ 1)
1

nm+1
11

(
1

n11
− 1

n21

)−1

+
1

nm+1
11

1

n21

(
1

n11
− 1

n21

)−2

+
1

nm+2
21

(
1

n21
− 1

n11

)−2

= (m+ 1)
1

nm
11

n21

n21 − n11
+

1

nm
11

n11n21

(n21 − n11)2
+

1

nm
21

n2
11

(n11 − n21)2
.

(3.3)

This calculation corresponds to the terms of (2.2) with n11 = n12. Swapping the role of

n11 and n21, we obtain the identity corresponding to n12 = n21. Thus, it holds that

Ikkk(m) =

( ∑
n11<n12<n21

+
∑

n11<n21<n12

)
1

nk11
11 nk12

12 nk21
21

∑
e1+e2+e3=m
ei≥0 (1≤i≤3)

1

ne1
11

1

ne2
12

1

ne3
21
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+

( ∑
n11=n12<n21

+
∑

n11<n12=n21

)
1

nk11
11 nk12

12 nk21
21

∑
e1+e2+e3=m
ei≥0 (1≤i≤3)

1

ne1
11

1

ne2
12

1

ne3
21

=
∑

|εεε|=m

ζλ(kkk + εεε).

The first two terms are obtained by the same calculation as in [3]; the last two are

obtained via computation (3.3).

More generally, for fixed A = (ai), we can define

P (A) =

r∏
i=1

1

1− aix
=

RA∏
α=1

1

(1− bαx)rα

where bα is one of ai’s with distinct b1, . . . , bRA , and rα is the multiplicity of (1− bαx).

Then, as in the proof of Lemma 2.3, the uniqueness of the Laurent series expansion gives

P (A) =

RA∑
α=1

rα∑
ℓ=1

1

(1− bαx)ℓ
drα−ℓ

dxrα−ℓ

 1

(−bα)rα−ℓ(rα − ℓ)!

∏
β ̸=α

1

(1− bβx)rβ

∣∣∣∣∣∣
x=b−1

α

.

By expanding into the geometric series, we have the following Lemma:

Lemma 3.4.

∑
e1+···+er=m
ei≥0 (1≤i≤r)

ae11 · · · aerr =

RA∑
α=1

rα∑
ℓ=1

(
m+ ℓ− 1

ℓ− 1

)
bmα A(ℓ)

α ,

where

A(ℓ)
α =

drα−ℓ

dxrα−ℓ

 1

(−bα)rα−ℓ(rα − ℓ)!

∏
β ̸=α

1

(1− bβx)rβ

∣∣∣∣∣∣
x=b−1

α

.

Theorem 3.5. The function Ikkk(s), defined by

Ikkk(s) = − sin(πs)

π

∑
(nij)∈SSY Tδ

∏
(i,j)∈Dδ

1

n
kij−1
ij

∫ ∞

0

w−s−1
∏

(i,j)∈Dδ

1

w + nij
dw,

or

Ikkk(s) =
∑

N∈SSY Tδ

1

Nkkk−111

RN∑
α=1

rα∑
ℓ=1

1

ns+ℓ
α

ℓ−1∏
p=1

s+ p

p

drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα

,

interpolates O-sum for the Schur multiple zeta values of shape δ.
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Proof. As above, substituting bα = n−1
α into Lemma 3.4, we can compute

∑
∑

eij=m
eij≥0

∏
(i,j)∈Dδ

(
1

nij

)eij

=

RN∑
α=1

rα∑
ℓ=1

(
m+ ℓ− 1

ℓ− 1

)
1

nm
α

drα−ℓ

dxrα−ℓ

(−nα)
rα−ℓ 1

(rα − ℓ)!

∏
β ̸=α

1

(1− n−1
β x)rβ

∣∣∣∣∣∣
x=nα

= N111
RN∑
α=1

rα∑
ℓ=1

(
m+ ℓ− 1

ℓ− 1

)
1

nm+ℓ
α

drα−ℓ

dxrα−ℓ

(−1)rα−ℓ 1

(rα − ℓ)!

∏
β ̸=α

1

(nβ − x)rβ

∣∣∣∣∣∣
x=nα

,

where N111 =
∏

nij =
∏

nrα
α . Changing the variable by w = −x, we obtain

N111
RN∑
α=1

rα∑
ℓ=1

(
m+ ℓ− 1

ℓ− 1

)
1

nm+ℓ
α

drα−ℓ

dxrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(nβ + w)rβ

∣∣∣∣∣∣
w=−nα

.

Therefore, we have

Ikkk(m) =
∑

N∈SSY Tδ

1

Nkkk−111

RN∑
α=1

rα∑
ℓ=1

1

nm+ℓ
α

ℓ−1∏
p=1

m+ p

p

drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα

=
∑

N∈SSY Tδ

1

Nkkk−111

RN∑
α=1

rα∑
ℓ=1

1

nm+ℓ
α

(
m+ ℓ− 1

ℓ− 1

)
drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα

=
∑

N∈SSY Tδ

1

Nkkk

∑
∑

eij=m
eij≥0

∏
(i,j)∈Dδ

(
1

nij

)eij

.

This ensures that Ikkk(s) interpolates O-sum for the Schur multiple zeta values of shape

δ. □

Remark 3.6. We may prove Theorem 3.5 more directly, without Lemma 3.4, by

using the Hankel contour C with radius r depicted as following Figure 1.

Figure 1. Hankel contour C
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In fact, let

f(w) =
∏

(i,j)∈Dδ

nij

w + nij
.

Then, by the Cauchy residue theorem, we have(
− sinπs

π

∫ ∞

0

w−s−1f(w)dw

)∣∣∣∣
s=m

= (−1)mRes
w=0

w−m−1f(w).

Since

f(w) =
∏

(i,j)∈Dδ

nij

w + nij
=

∏
(i,j)∈Dδ

∞∑
eij=0

(
−w

nij

)eij

,

we have

Res
w=0

w−m−1f(w) = (−1)m
∑

∑
eij=m

eij≥0

∏
(i,j)∈Dδ

1

n
eij
ij

.

Thus, it holds that

Ikkk(m) = − sin(πm)

π

∑
(nij)∈SSY Tδ

∏
(i,j)∈Dδ

1

n
kij−1
ij

∫ ∞

0

w−m−1
∏

(i,j)∈Dδ

1

w + nij
dw

=
∑

N∈SSY Tδ

1

Nkkk

∑
∑

eij=m
eij≥0

∏
(i,j)∈Dδ

(
1

nij

)eij

.

This shows that Ikkk(s) interpolates O-sum for the Schur multiple zeta values of shape δ.

Finally, we obtain the duality formula for Ikkk(s) as complex functions. To show this,

we generalize the uniqueness theorem for the Dirichlet series (see [1, Theorem 11.3]).

Theorem 3.7. Let p(n, s) and q(n, s) be polynomials of s with arithmetic function

ai(n), that is,

p(n, s) =

d∑
i=0

ai(n)s
i.

We assume that the two series

Fp(s) =

∞∑
n=1

p(n, s)

ns
and Fq(s) =

∞∑
n=1

q(n, s)

ns

both absolutely converge for ℜ(s) > M for some constant M . If Fp(s) = Fq(s) for

each s = sk in an infinite sequence (sk) such that ℜ(sk) = σk → ∞ as k → ∞, then

p(n, s) = q(n, s) for every n and s.

Proof. Let h(n, s) = p(n, s) − q(n, s) and let H(s) = Fp(s) − Fq(s). Then H(sk) = 0
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for each k. To prove that h(n, s) = 0 for all n and s, we assume that h(n, s) ̸= 0 for some

(n, s) and obtain a contradiction. Let N be the smallest integer for which h(n, s) is not

identically 0. Then, we have

H(s) =
h(N, s)

Ns
+

∞∑
n=N+1

h(n, s)

ns
.

Since H(sk) = 0, it holds that

|h(N, sk)| ≤ Nσk

∞∑
n=N+1

|h(n, sk)|
nσk

.

We take an integer k so that σk > c where c > M , then

|h(N, sk)| ≤ Nσk

∞∑
n=N+1

|h(n, sk)|
nσk−cnc

≤ Nσk
1

(N + 1)σk
(N + 1)c

∞∑
n=N+1

|h(n, sk)|
nc

.

Since c > M , the series converges. Therefore, this implies that

|h(N, sk)| ≤
(

N

N + 1

)σk

J(sk).

We note that J(sk) is at most of polylnomial order of growth in sk, hence the right-hand

side converges to 0 as k → ∞, so h(N, s) = 0. This leads to a contradiction and complete

the proof. □

Theorem 3.8. Let λ and µ be two partitions such that λi ≥ µi for all i, and let

δ = λ/µ. Let kkk† be the dual tableau of kkk ∈ IDδ . Then, for s ∈ C we have

Ikkk(s) = Ikkk†(s).

Proof. By Theorem 1.6 and Theorem 3.5, we have Ikkk(s) = Ikkk†(s) for s ∈ Z≥0. As we

can express the function Ikkk(s) as

∑
N∈SSY Tδ

1

Nkkk−111

RN∑
α=1

rα∑
ℓ=1

1

ns+ℓ
α

(
s+ ℓ− 1

ℓ− 1

)
drα−ℓ

dwrα−ℓ

 1

(rα − ℓ)!

∏
β ̸=α

1

(w + nβ)rβ

∣∣∣∣∣∣
w=−nα


=

∑
N∈SSY Tδ

1

Nkkk

(
RN∑
α=1

p(nα, s)

ns
α

)

=
∑

N∈SSY Tδ

1

Nkkk

 ∑
(i,j)∈Dδ

1

#{(k, ℓ) ∈ Dδ | nkℓ = nij}
p(nα, s)

ns
α





Interpolation of the generalized duality formula for SMZV 15

=
∑

(i,j)∈Dδ

∞∑
nij=1

p(nij , s)

ns
ij

∑
(nab)=N∈SSY Tδ

nab=nij

1

Nkkk

1

#{(k, ℓ) ∈ Dδ | nkℓ = nab}
,

by applying Theorem 3.7, we have Ikkk(s) = Ikkk†(s) for ℜ(s) > −1 and kkk ∈ IDδ . Moreover,

Ikkk(s) is meromorphically continued to the whole space of C. Thus, the assertion is proved.

□

Remark 3.9. When we put λ = ({1}r) and µ = ∅ for a positive integer r, then

Theorem 3.8 implies Theorem 1.9. Furthermore, substituting non-negative integers for

s, we obtain Theorem 1.2.
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