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ABSTRACT. Let G be a finite group. If n < 5 then any n-dimensional homotopy sphere never admits
a smooth action of G with exactly one fixed point. Let A, and S, denote the alternating group and
the symmetric group on some n letters. If n > 6 then the n-dimensional sphere possesses a smooth
action of As with exactly one fixed point. Let V be an n-dimensional real G-representation with
exactly one fixed point. It is interesting to ask whether there exists a smooth G-action with exactly
one fixed point on the n-dimensional sphere such that the associated tangential G-representation
is isomorphic to V. In this paper, we study this problem for nonsolvable groups G and real G-
representations V' satisfying certain hypotheses. Applying a theory developed in this paper, we can
prove that the n-dimensional sphere has an effective smooth action of Ss with exactly one fixed
point if and only if n = 6, 10, 11, 12, or n > 14 and that the n-dimensional sphere has an effective
smooth action of As X Z with exactly one fixed point if n satisfies n > 6 and n # 9, where Z is a
group of order 2.

1. INTRODUCTION

Throughout this paper, manifolds and group actions on manifolds are considered in the smooth
category. We denote by S™ the (standard) sphere of dimension n. Let Z and N denote the ring of
integers and the set of natural numbers. For integers a and b, let [a..b] denote the set {n € Z | a <n <
b} and [a..00) the set (J,cy [a..b]. Let G be a finite group and let S(G) denote the set of subgroups
of G. For a natural number m, we call a G-action on a manifold M an m-fized-point action if the
G-fixed-point set M of M consists of exactly m points. Let V be a real G-representation (of finite
dimension) with the trivial G-fixed-point set, i.e. V¢ = {0}, and let R be the real G-representation
of dimension 1 with the trivial G-action. Let D(V') (resp. S(V)) be the unit disk (resp. sphere) of
V with respect to a G-invariant inner-product on V. The unit sphere S(R @ V) of R @ V has two
G-fixed points. In 1946, D. Montgomery and H. Samelson [16] gave a comment that if a G-action on
a sphere has a G-fixed point then it would have a second G-fixed point. Since then, we have been
interested in one-fixed-point actions on spheres.

We refer to a closed manifold which is homotopy equivalent to a sphere as a homotopy sphere.
This raises the question whether there is a one-fixed-point G-action on S™ for a group G possessing

a one-fixed-point G-action on an n-dimensional homotopy sphere. Owing to E. Laitinen—P. Traczyk

2020 Mathematics Subject Classification. Primary 57S17, Secondary 20C15, 57R&5.
Key words and phrases. smooth action, fixed point, tangential representation, equivariant surgery.
This research was partially supported by JSPS KAKENHI Grant Number 18K03278.



2 MASAHARU MORIMOTO

[14], M. Furuta [9], [18], S. Demichelis [7], N.P. Buchdahl-S. Kwasik—R. Schultz [6], and S. Kwasik—
R. Schultz [11], there are no one-fixed-point actions of finite groups on n-dimensional homotopy
spheres with n < 5. We call a G-action on a disk (resp. sphere) linear if it is G-diffeomorphic
to D(V) (resp. S(V)) for some G-representation V. There exists a one-fixed-point G-action on a
homotopy sphere of dimension n if and only if there exists a fixed-point-free G-action on D" of which
the restriction to the boundary 0D™ is linear. Therefore, the study of one-fixed-point G-actions on
spheres is closely related to the study of fixed-point-free G-actions on disks with G-linear boundary.

For a principal ideal domain R, we call a closed manifold M an R-homology sphere if the homology
groups of M with coefficients in R are isomorphic to those of the sphere of the same dimension. By
a homology sphere, we mean a Z-homology sphere. If a homology sphere has a one-fixed-point action
of G then by R. Oliver [25, 26], G is not a mod-P hyper-elementary group, i.e. G dose not admit a
normal series P < H < G such that P and G/H are of prime-power order and H/P is cyclic, cf. [22,
Proposition 2.1]. Hereafter we refer to a finite group which is not a mod-P hyper-elementary group as
an Oliver group. Clearly, any (finite) nonsolvable group is an Oliver group. For the first time, E. Stein
[28] found examples of one-fixed-point actions on spheres, namely he proved that the 7-dimensional
sphere admits one-fixed-point actions of the groups SL(2,5) x C,. with (r,30) =1, i.e. r is a natural
number prime to 30, where C, is a cyclic group of order r. T. Petrie [27] also constructed one-fixed-
point actions on high-dimensional spheres of finite abelian Oliver groups of odd order (these groups
have necessarily at least three noncyclic Sylow subgroups). We showed in E. Laitinen—M. Morimoto
[12] with help by [21] that for every Oliver group G, there are one-fixed-point G-actions on high-
dimensional spheres. (The case that G is a nonsolvable group such that |G/G*°!| is an odd integer
follows from E. Laitinen-M. Morimoto-K. Pawalowski [13, Theorem A], too. Here G*°' stands for
the smallest normal subgroup N of G such that G/N is solvable.) By [17, 19, 20] and A. Bak—
M. Morimoto [2], there exists a one-fixed-point action of As on S™ if and only if n > 6. On the
other hand, A. Borowiecka [4, Theorem 1.1] showed that any 8-dimensional homology sphere does
not admit effective one-fixed-point actions of SL(2,5). A. Borowiecka—P. Mizerka [5] studied some
examples of pairs (G, n) of finite groups G with |G| < 216 and natural numbers n < 10 such that
there are no one-fixed-point G-actions on n-dimensional homotopy spheres. S. Tamura and the
author [24] also showed that any n-dimensional homology sphere does not admit one-fixed-point
actions of S5 if n € {7,8,9,13}. S. Tamura showed the non-existence of effective one-fixed-point
G-actions on S™ for G = Ag, SL(2,9), S, PGL(2,9), M1y and Aut(4s), and n € T, where My is
the Mathieu group of degree 10 and T is a certain set of natural numbers depending on G, see [29,
Theorems 1.1 and 1.2]. In addition, P. Mizerka [15] and the author [22] showed the non-existence of
effective one-fixed-point G-actions on S™ for G = TL(2,5) and n € [0..13] U {15,16,17,21}, where
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TL(2,5) is the group SmallGroup(240, 89) in GAP [10]. Recently we showed the results that S° has
effective one-fixed-point actions of As, As x Cy and Ss, that S7 has effective one-fixed-point actions
of Ay and A x Cy, and that for all natural numbers k and r with (r, 30) = 1, the spheres S3T** and
S14+8k have effective one-fixed-point actions of SL(2,5) x C,. and TL(2,5) x C,., respectively, see [23,
Theorem 1.3].

For a G-manifold X and a G-fixed point xg of X, the tangent space T, (X) of X at zg is a real
G-representation and we call Ty, (X)) the tangential G-representation of X at xg. For an Oliver group
G and a real G-representation V' of dimension n, it is interesting to ask whether there exists a one-
fixed-point G-action on S™ such that the tangential G-representation of S™ and V are isomorphic
as real G-representations. In this paper we will give a construction theorem of one-fixed-point
actions on spheres for finite nonsolvable groups G and real G-representations V', i.e. Theorem 2.3.
Keys to proving the theorem are the reflection method, i.e. Lemma 6.1 with Theorem 5.12, and
the equivariant surgery theory under the modified weak gap condition, see Definition 2.4 and [23,

Lemma 8.1]. As applications of the theorem, we obtain the following two theorems.

Theorem 1.1. Let G be the symmetric group Ss. Then there exists an effective one-fived-point

G-action on S™ if and only if n =6, 10, 11, 12, or n > 14.

In Theorem 1.1, the necessity follows from the results quoted above, and the sufficiency will be
given in Section 3.

Henceforth, the trivial subgroup of G is denoted by E. We call a G-action on a manifold X
m-pseudofree if dim X < m for all H € S(G) ~ {E}. We call an m-pseudofree G-action on X
properly m-pseudofree if there is a subgroup H € S(G) ~ {E} such that dim X? = m. We remark
that the one-fixed-point actions on S™ for n = 6, 10 and 11, obtained in the proof of Theorem 1.1

are properly 3-pseudofree, properly 4-pseudofree and properly 5-pseudofree, respectively.

Theorem 1.2. Let Z be a group of order 2 and let G be the cartesian product As X Z. Then there

exists an effective one-fized-point G-action on S™ if n satisfies n > 6 and n # 9.

The proof of Theorem 1.2 will be given in Section 4.

We conjecture that there is a one-fixed-point action on S? of G = A5 x Z, where |Z| = 2, such
that (5?)Z is diffeomorphic to S. We remark that the one-fixed-point actions on S™ for n = 6, 7,
8 and 10, obtained in the proof of Theorem 1.2 are properly 3-pseudofree, properly 3-pseudofree,
properly 4-pseudofree and properly 5-pseudofree, respectively.

Acknowledgements. The author is grateful toward Shunsuke Tamura for his information on the

subgroup lattices of S5 and As x Z. The author would like to thank Krzysztof Pawalowski and
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Toshio Sumi for discussions with them on group actions on spheres. In addition, author’s gratitude

should go to the referees for their worthwhile comments.

2. CONSTRUCTION THEOREM OF ONE-FIXED-POINT ACTIONS ON SPHERES

For a finite group G, the set S(G) is an ordered set, i.e. for H, K € S(G), wesay H < K if H is a
proper subgroup of K. For a subset A of S(G), let max(.A) (resp. min(A)) denote the set of maximal
(resp. minimal) elements of A with respect to the order on A inherited from S(G). For a real G-
representation V (resp. a G-manifold X), let V(A) (resp. X(A)) denote the union |J, V& (resp.
Ux X&) where K ranges over A. We mean by dim V' (A) (resp. dim X (A)) the maximum of dim V&
(resp. dim X*), where K ranges over A. Let S(G)so1 denote the set of solvable subgroups of G and
set S(G)nonsol = S(G) N S(G)so1. For a subset F of S(G), let Fyo denote the set FNS(G)so1- In the
case where G is nonsolvable, by [8, (1.3.2), (1.3.3) and Proposition 1.3.5], there is a unique element
Be of the Burnside ring Q(G) of G such that x1(8g) = 0 for all L € S(G)nonsol and xr(Ba) =1
for all H € S(G)so1. Let V be a real G-representation. We say that V' is S(G)nonsol-free if VL =0
for all L € 8(G)nonsol- For the G-connected-sum operation associated with [G/G] — ¢ on G-framed
maps with the target manifold D(V) or S(R @ V'), we need the next definition.

Definition 2.1. Let V' be an S(G)nonsoi-free real G-representation. We say that V' is ample for Sg
if
Iso(G, Bg) N max(S(G)sol) C Iso(G, V N {0}).

Let M, H and K be subgroups of G. We say that H is M-conjugate (resp. M -subconjugate)
to K if there is ¢ € M such that H = gKg~' (resp. H C gKg~!). We denote by (H)g s the
M-conjugacy class of H in S(G), i.e.

(H)gm ={gHg™" | g€ M}.

In the case G = M, we set (H)g = (H)g,m- We write (K)g < (H)¢ if K is G-subconjugate to H.
For H and M € S(G), define Ug(H), Va(H), and Vi, (H) by
Ua(H) = {K € 8(G) | H < K},
Va(H) ={K € §(G) | K is not G-subconjugate to H}, and
Vuc(H)=SM)~ | SENM).
Ke(H)g

The next proposition will be used in Sections 3 and 4.

Proposition 2.1. Let V and W be S(G)nonsol-free real G-representations. If V' is ample for Bg and
V. C W then W is ample for Ba.
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Proof. Since V'~ {0} C W ~ {0}, we get
Iso(G, fa) ~ max(S(G)so1) C Iso(G,V \ {0}) C Iso(G, W ~ {0}).
(]

Let F and H be sets of subgroups of G such that F C ‘H. We say that F is upwardly closed in
‘H or that F is an upwardly closed subset of H, if K belongs to F whenever H € F, K € H and
H C K. In the case where a complete set F* of representatives of G-conjugacy classes of subgroups

in F and a subset IC of F are specified, let K* denote the set I N F*.

Definition 2.2. Let G be a nonsolvable group and let F and F’ be G-conjugation-invariant, up-

wardly closed subsets of S(G)so1 satistying

(1) max(S(G)so1) C F' C F and F N F' C min(F).
We say that (F,F’) is G-simply organized if there are a complete set F* of representatives of G-
conjugacy classes contained in F, i.e. F = [[5.z.(H)g, and a map puax : F* — max(S(G)sol)*
satisfying the next conditions (2) and (3).

(2) Ng(H) C pmax(H) for any H € F*.

(3) (H)a N S(pmax(H)) = (H)p,,,. (1) for any H € F'".

Let Dyax @ F — max(S(G)so1)* denote the G-conjugation-invariant extension of the map pmax
above, i.e. the equality 7, (K) = pmax(H) holds if K is G-conjugate to a subgroup H in F*. For
H € F*, we define the subset X (G, pmax, H) of Upr(H), where M = ppax(H), by

(2.1) X (G, pmax, H) = {K € Uni(H) | Dax(K) # M}.

We set

(2.2) X(G, pmax, F*) = U X (G, pmax, H).
HeF*

For use of G-surgery theory, we quote the notions of ‘weak gap condition’ and ‘modified weak gap
condition’ from [23, Section 7]. Let V be a real G-representation and H a subgroup of G.
Definition 2.3. We say that V satisfies the weak gap condition at H if
(2.3) 2dim VE < dim VH
holds for all K € Ug(H).

Definition 2.4. We say that V satisfies the modified weak gap condition at H if the following
conditions (1)—(3) are fulfilled.

(1) V satisfies the weak gap condition at H.
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(2) fdimVH >0, K € Ug(H), and 2dim VE = dim V¥ then
(i) K C Ne(H),
(ii) K/H contains at most one element of order 2, and
(iii) dim VL +1 < dim V¥ for all L € Ug (K )sol-
(3) If K1 € Ug(H)so1, K2 € Ug(H)so1 and 2dim VEL = 2dim VE2 = dim V¥ > 0, then the
smallest subgroup (K7, K3) of G containing K; U K3 is solvable.

For a non-negative integer k, we set
H(G,V, k) = {K € 8(G)sor | dim VT =k},
(2.4) H(G,V,< k) = {K € S(G)so1 | dimVE <k}, and
F(0) = max(S(G)so1) UH(G,V,0).
Let H and M be solvable subgroups of G such that H C M. Then define Y(G, M, H) by
(2.5) V(G M,H)={K €elUg(H)sos | KNM = H}.

Let Z(G,V, M, H) denote the set of pairs (K, L) consisting of K € Y(G,M,H) \ H(G,V,0) and

L € Uy (H) such that dim VE + dim VF 41 = dim V¥, and set

Z(G,V,M,H), = {K | (K,L) € 2(G,V,M,H)}, and
(26) Z(G,V,M,H), ={L | (K,L) € Z(G,V,M,H)}.

Definition 2.5. Let V be an S(G)nonsol-free real G-representation, and let H and M be solvable
subgroups of G such that H C M. We say that V satisfies the (G, M)-cobordism gap condition at
H if the following conditions (1)—(3) are fulfilled.

(1) The following (A1) or (A2) holds.
(A1) (i) 2dimVE +1 <dim V¥ for all K € Y(G, M, H) ~ H(G,V,0), and
(i) dimVE + dimVE +1 < dim V¥ for all K € Y(G,M,H) ~ H(G,V,0) and
Lely(H).
(A2) (i) dimVH =3,
(i) Y(G,M,H) C H(G,V,< 1),
(iii) Up(H) C H(G,V,0),
) Ne(K)NM = H for all K € Y(G,M,H)NH(G,V,1) NIso(G,V ~ {0}), and
(v) (K)g,m = (K')g,m for all K, K’ € Y(G, M, H) NH(G,V,1) NIso(G,V ~ {0}).
(2) The following (B1) and (B2) both hold for all K € X (G, pmax, H) ~ H(G,V,0).
(B1) dimVE =1, and
(B2) No(K)NM =K.
(3) In the case Z(G,V, M, H); # 0, the following (C1) or (C2) holds.
(C1) (i) dimVH > 5,

(iv
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(i) dim VL +2 < dim VH for all L € Uy (H),

(iii) dim VL > 2 for all L € Z(G,V, M, H)2, and

(iv) dim V{Elb2) 41 < dim VE for all Ly, Ly € Z(G,V, M, H)y with Ly # L.
(C2) (i) dimV# >4,

(i) 2(G,V,M,H); C H(G,V,1), and

(iil) Ng(K)NM = H for all K € Z(G,V,M, H); NIso(G,V ~ {0}).

Proposition 2.2. LetV, H and M be as in Definition 2.5. Suppose V satisfies the (G, M)-cobordism
gap condition at H. If dimVH* = 4 and Z(G,V,M,H); # 0 then Y(G,M,H) ~ H(G,V,0) C
Z(G,V,M,H);. Therefore if Z(G,V,M,H); # 0 and Y(G,M,H)~ (H(G,V,0)U Z(G,V,M,H);)
£ () then dimVH > 5.

Proof. To prove the first claim, we suppose dim V = 4. By Definition 2.5 (1) (A1) (i), we have
2dimVE < 3 for all K € Y(G, M, H), which means dim V¥ < 1 for all K € Y(G, M, H). Since
Z(G,V,M,H); # 0, we get dimV(Y(G,M,H)) = 1. By Definition 2.5 (1) (Al) (ii), we have
1+ dimVT 4+ 1 < 4 for all L € Uy (H), which means dim V¥ < 2 for all L € Uy (H). Since
Z(G,V,M,H), # 0, we get dimV Uy (H)) = 2. For K' € Y(G,M,H) \ Z(G,V, M, H)1, it must
hold that dim VX' + dim V(U (H)) +1 < dim V¥ = 4, which implies dim VX" = 0 and hence
K' e H(G,V,0).

The second claim immediately follows from the first claim. O

Now we are ready to state a construction result of one-fixed-point G-actions on spheres for a given

nonsolvable group G and a given real G-representation V.

Theorem 2.3 (cf. [23, Theorem 11.2]). Let G be a nonsolvable group and V' an S(G)nonsol-free real
G-representation of dimension n > 5 which is ample for Bg. Let (F,F') be a G-simply organized
pair with pmax : F* — max(S(G)so1)*, where F' C F are upwardly closed G-conjugation-invariant
subsets of S(Q)so1. Suppose V' satisfies the following conditions (D1)—(D4).

(D1) For H € F* <~ H(G,V,0), if an element H € Ug(H s NIso(G, V ~ {0}) satisfies VHE = VH

then F NUg(H) C S(pmaz(H)) and pya(H) = pmax(H).

(D2) The (G, pmax(H))-cobordism gap condition at H for all H € (F* NIso(G,V ~ {0})) ~ F(0).

(D3) dim V¥ =3 or dimVH# > 5 for all H € S(G)so1 ™ F.

(D4) The modified weak gap condition at H for all H € S(G)so1 \ F.
Then there exists a one-fived-point G-action on the standard sphere S of the same dimension as V,
say S¢ = {xo}, possessing the following properties (1)-(4).

(1) Ty, (S) 2V as real G-representations.
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(2) St ={x¢} for all L € S(G)nonsol-

(3) SH is Ng(H)-diffeomorphic to a standard sphere for each H € F.

(4) SH is a homotopy (resp. homology) sphere for each H € S(G)so1 ~F with dim VH > 5 (resp.
dim V¥ = 3).

By the same argument as the proof of [23, Theorem 11.2], Theorem 2.3 follows from Theorem 2.4
below. In this paper, let I denote the closed interval [0,1]. We call a homotopy Z : (X,0X) x I —
(Y,0Y) a homotopy rel. 0 if Z(x,t) = E(z,0) for all z € 9X and t € I.

Theorem 2.4 (cf. [23, Theorem 11.1]). Let G, V, (F,F') and pmax : F* — max(S(G)so1)* be those
in Theorem 2.3. Then there exist a G-action on the disk D of the same dimension as V with D¢ = ()
and a G-map n: (D,0D) — (D(V),0D(V)) possessing the following properties (1)-(4).

(1) nlop : 0D — OD(V') is the identity map.

(2) DY =0 for all L € S(G)nonsol-

(3) n" . DH — D(V)H is Ng(H)-homotopic rel. d to a diffeomorphism for each H € F.

(4) n® : DH — D(V)H is a homotopy equivalence (resp. homology equivalence) rel. O for each

H € S(G)go1 ~ F with dim V7 > 5 (resp. dimVH =3).

This theorem will be proved in Section 6. The next proposition will be used in Sections 3 and 4.

Proposition 2.5. Let G, F, F* and pmax be those in Theorem 2.3. Let V be a real G-representation
having the property:
(DY) K C pmax(H) and Do (K) = pmax(H) for all H € F* and K € Ug(H)so1 such that
VH =K,

Then an arbitrary real G-representation W containing V' inherits the property (D1') from V.

Proof. Let H € F* and K € Ug(H)so and suppose W = WK, Let W = V @ U be a direct-sum
decomposition of W into two real G-representations V and U. It is clear that WH = VH ¢ U
WK = vE UK, VHE 5 VK and UH > UK. Therefore we get VH = VX which concludes
K C pmax(H) and Dy (K) = pmax(H). O

3. PrRoOOF OoF THEOREM 1.1
Let Sy (resp. As) denote the symmetric group (resp. the alternating group) on the five letters 1,
2, ..., 5. Throughout the current section, we set G = S5. We fix subgroups of S5 as follows.

Sy (resp. Ay4) the symmetric group (resp. the alternating group) on the letters 2, 3, 4, 5.
S3  the symmetric group on the letters 1, 2, 3.
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¢y =((4,5)), €4 = ((2,4,3,5)), and €5 = {(1,2,3)(4,5)) (cyclic groups).

G3¢C = ((1,2), (1,2,3), (4,5)) (2 S5 x €3).

Cy ={((2,3)(4,5)), C3 = ((1,2,3)), and C5 = ((1,2,3,4,5)) (cyclic groups).
=((2,3)(4,5), (2,4)(3,5)), Ds = ((1,2,3), (2,3)(4,5)), and

={(1,2,3,4,5), (2,5)(3,4)) (dihedral groups).

D, =1{(2,3), (2,3)(4,5)), and Dg = ((2,4,3,5), (2,3)) (dihedral groups).

F20 = ((1,2,3,4,5), (2,3,5,4)) ((2,3,5,4)% = (2,5)(3,4) and ord(F20) = 20).

We tabulate the normalizers of subgroups of S5 in Table 3.1.

H As | Sy | §20 | 63C2 | Ay | Dip | Ds | S Dy <
Ng(H) Sy | T20 | 63€2 | Sa | Foo | Ds | 63€; | G3€, | 3¢,

G
H Cs | D4 | Dy | €4 Cs () Cy | E
NGg(H) || §20 | Ds | Sa | Ds | 63C | 63¢, | Dg | G

TABLE 3.1

The Hasse diagram of subgroups of S5 (up to conjugations) is as in Diagram 3.1.

Diagram 3.1

Here a real (resp. dotted) line from a lower subgroup H to an upper subgroup K indicates gHg 1<K
(resp. gHg™! < K) for some g € G. We assign puax(H) to H as in Table 3.2.

Let Fiax be S(G)sol ™ {E}, let FL .. be Fax ~ (€2)g, let Frnax™ be the set of subgroups listed
as H in Table 3.2, and let pmax @ Fmax™ — max(S(G)so1)* be the map given by Table 3.2. In the
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H Sa | F2o | 63€2 | Ay | Dig | Ds | Ss D s
Pmax(H) || Sa | 20 | ©3€2 | Sa | Fao | Sa | 638, | 63&, | 63

H C5 @4 D4 64 C?, Q:Q CQ
Pmax(H) || §20 | Sa | Sa | Sa | 638 | G35 | Sy

TABLE 3.2

remainder of this section, restrictions of ppax to subsets of Fax™ will be denoted by ppay, too. We

give Diagram 3.2 below to grasp inductive steps of Ss-surgeries on Ss-framed maps.

Diagram 3.2

In the diagram above, an arrow from a lower subgroup H to an upper subgroup K indicates
Pmax(H) = K and K < pmax(H), and a dotted arrow from a lower subgroup H to an upper subgroup
K indicates pmax(H) = K and K 4 pmax(H). We can check straightforwardly the next proposition.

Proposition 3.1. Let F = Fax, F* = Fmax 00d pmax : F* — max(S(G)so)* be those given
above. Let H € F* and M = ppax(H). Then (H) g NS(M) = (H)p (resp. (H) g NS(M) # (H) )
if H# €y (resp. H=Cy).

Therefore we have the next fact.

Proposition 3.2. The pair (Fumax, F

max

) is G-simply organized with respect t0 pmax : Fmax —

max(S(G)so)* given above.
We can check straightforwardly the next proposition.

Proposition 3.3. Let F = Fuax, F* = Fmax. and pmax : F* — max(S(G)so)* be those in
Proposition 3.1. Then the following holds.
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(1) In the case H = Ay and M = Sy, X(G, pmax, H) = Y(G, M, H) = (.
(2) In the case H = D1y and M = Fa9, X (G, pmax, H) = V(G, M, H) = {).
(3) In the case H = Dg and M = Sy, X (G, pmax, H) = V(G, M, H) = (.
(4) In the case H = Dg and M = G3Cq, X (G, pmax, H) = Y(G, M, H) = ().
(5) In the case H = € and M = &3, X (G, pmax, H) = V(G, M, H) = 0.
(6) In the case H = S5 and M = &3¢,
(i) X(G, pmax, H) =0,
(ii) Y(G, M, H) = {S4, 54"}, where Sy’ is M-conjugate to Sy, and
(iii) (S4,S4) = G.
(7) In the case H = C5 and M = a0, X (G, pmax, H) = V(G, M, H) = 0.
(8) In the case H = Dy and M = Sy, X(G, pmax, H) = YV(G, M, H) = 0.
(9) In the case H =24 and M = Sy,
(i) X(G, pmax, H) =0,
(ii) V(G, M, H) = {S3¢&,, 5385}, where &3¢, is M -conjugate to G3¢&2, and
(iii) (S3€q, &3 ) = G.
(10) In the case H = €4 and M = Sy,
(i) X(G, pmax, H) = 0, and
(ii) V(G, M, H) = {Fa0', 20"}, where Fao', Foo" are mutually M -conjugate subgroups
being G-conjugate to Fa0, and
(i) (Sa0',F20") = G.
(11) In the case H = C3 and M = G3C,,
(i) X(G, pmax, H) =0,
(ii) (G, M, H) = {Ay', Ay}, where Ay', Ay are mutually M -conjugate subgroups being
G-conjugate to Ag, and
(iii) (As', A4") = As.
(12) In the case H = Cy and M = Sy,
(i) X(G prae H) = 0,
(ii) Y(G,M,H) = {Dg¢', D¢, D1¢’, D10"}, where Dg', Dg" (resp. Dio', D1o") are mutu-
ally M -conjugate subgroups being G-conjugate to Dg (resp. D1g), and
(iii) (K1, K2) = As for K1, Ky € V(G, M, H) with K # Ko.
(13) In the case H = €5 and M = S3¢&,,
(i) X(G, pmax; H) = {D4,04',94"}, where D4 D4" are M-conjugate to D4 (D4)g N
S(M) = (D4)m),
(ii) Ne(K)NM = H for all K € X(G, pmax, H).
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(i) Y(G, M, H) = {S5',S5",55""}, where S3', S3", S3"" are mutually M -conjugate sub-
groups being G-conjugate to S3, and
(iv) (K1, Ks) € (S4)g for all Ky, Ky € Y(G, M, H) with K1 # K.

The proposition above indicates that for the ambient group G = S5, there may arise difficulties

in G-surgeries of isotropy types (H)g for H = D4, €4, C3, Cs, and €,.

Lemma 3.4 ([23, Proposition 3.2]). The idempotent Bg in the Burnside ring Q(G) is given by the

formula

Ba = [S5/5a] + [S5/F20] + [95/(63&2)]

— [55/53} - [55/334] - [55/64] + [55/@2].
Therefore Iso(G, Bg) is the union of (S4)a, (F20)c, (63€2)a, (S3)a, (D4)a, (€4)a, and (&3)q.

(3.1)

There are 7 irreducible real Ss-representations R, Vi, Vy, Wy, Vs, Wi, and Vi, up to isomorphisms,

with characters in Table 3.3.

el (4,5)(1,2)(4,5) | (1,2,3) | (1,2,3,4) | (1,2,3,4,5) | (1,2,3)(4,5)
R |1 1 1 1 1 1 1
Villl| -1 1 1 -1 1 -1
Vi |4 =2 0 1 0 -1 1
Wy |l 4 2 0 1 0 -1 -1
Vs || 5| —1 1 -1 1 0 -1
Ws || 5 1 1 -1 -1 0 1
Vs || 6 —2 0 0 1 0
TABLE 3.3

Using this character table, we can compute the fixed-point-set dimensions dim V# of the irreducible

real G-representations V for subgroups H of G. The result is tabulated in Table 3.4.
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Ss | As | S4 | T20 | ©3Cy | Ay | Dig | Dg | S3
R 1 1 1 1 1 1 1 1 1
1% 0 1 0 0 0 1 1 0 0
Vy 0 0 0 0 0 1 0 0 0
W, 0 0 1 0 1 1 0 1 2
Vs 0 0 0 1 0 0 1 1 0
W 0 0 0 0 1 0 1 1 1
Ve 0 0 0 0 0 0 0 0 1

Deg | Cs | Cs | Dy | Dy |Cy|C3| €y | Co| E
R 1 1 1 1 1 1 1 1 1 1
Vi 1 0 1 0 1 0 1 0 1 1
Vy 1 1 0 0 1 1 2 1 2 |4
Wy 1 1 0 2 1 1 2 3 2 14
Vs 1 0 1 1 2 2 1 2 315
Wi 1 1 1 2 2 1 1 3 3 5
Vs 0 1 2 1 0 1 2 3 2 16

TABLE 3.4

We draw the diagram of the fixed-point-set dimensions of V = V.

Diagram 3.3

In the diagram above, H*) indicates dim V¥ = k.

Proposition 3.5. Let V be an S(G)nonsol -free real G-representation. If V' contains a G-subrepresentation

isomorphic to Vi then V is ample for Bg.
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Proof. We obtain the equality

(3.2)

from Diagram 3.3. This and Lemma 3.4 imply that V4 is ample for Sg. By Proposition 2.1, V is

ample for fg.

Proposition 3.6. Let F = Fuax, F* = Fmax and pmax be those given in Proposition 3.1. If an

S(G)nonsol-free real G-representation V' contains a subrepresentation isomorphic to Vi then V' has

the property (D1').

Proof. By Proposition 2.5, it suffices to prove that Vg has the property (D1’). Let H € F* and
K € Ug(H)so1 such that VH = VE. Observing Diagram 3.3, we can see that dim V{1 = dim V€ = 0,

K C pmax(H) and Py, (K) = pmax(H).

We can readily obtain Table 3.5 from Table 3.4.

For each n € {6,10,11,12}U[14..00), let V(n) be the real G-representations of dimension n defined

by

Iso(G, Vs ~ {0}) = (S3)c U (€6)c U (Cs)c U (Da)g U (€4)c U (Cs)c U (€2)g U (C2)g U{E}

H As | Sa| B20 | G3€s | As | Do [Ds | S3 | Ds| €6
Ve BF 0olo] o 0 o]l oo k 0 k
ALY 0olo] o0 0 110 ]o k 1 [ k+1
Vet @ Vs ojlof[ 1] o ol 1 |[1] & [1] &
Ve o W 0o[o] o 1 o 1 [ 1 [k+1]1 [k+1
VePF @ v, %2 olo] o 0 21 0o k 2 [ k+2
ViFovievs 00 1 0 1] 1 |1 E | 2 [k+1
Ve o vi®evs 0 0] 1 o |2 1 1] & [ 3 kr2
H Cs @4 D4 Q:4 Cg Q:Q CQ E
VeoF 2k k 0 k 2k 3k 2k 6k
ALENA 2k k 1 |k+1|2k+2[3k+1[2k+2] 6k+4
VeF @ Vs 2%k+1|k+1] 2 [k+2|2k+1[3k+2[2k+3]| 6k+5
Vs @ W5 2k+1|k+2] 2 [k+1[2k+1[3k+3|2k+3]| 6k+5
Vs @ v, P2 2k k 2 [k+22k+4[3k+2|2k+4] 6k+8
Vi*oVioVs [[2k+1]k+1] 3 |k+3[2k+3[3k+3|2k+5]| 6k+9
Vi oV, 2oV |2k +1 | k+1] 4 |k+4|2k+5|3k+4|2k+7]6k+13

TABLE 3.5

Vs® for n = 6k with k > 1

Vs®* @V, for n = 6k + 4 with k > 1
Ve & V5 for n =6k +5 with k > 1
Ve®* & V,%? for n = 6k + 8 with k > 1
Ve®* o Vi@ Vs for n=6k+9 with k> 1
Ve®* o V,®2 @ Vs for n = 6k + 13 with k

> 1.




CONSTRUCTION OF ONE-FIXED-POINT ACTIONS ON SPHERES II 15

In the rest of this section, we give F as follows.

S(G)sot ~ ({EYU(€2)g) (n = 6k with k > 1)
S(G)sol N {E} (TL = 10)
8(Glsar ~ ({EYU (€2)c) (n =6k +4 with k > 2)
(3.4) 7 _ }S(Gsa~ ({E}U(€2)g) (n =6k +5 with k > 1)
S(Gsor ~ ({£} U (C2)g U (C3)g) (n=14)
S(Msor ~ {EYU (€2)g U (C2)g U (Cs)g) (n = 6k +8 with k > 2)
S(Gso ~ ({EYU (€3)@) (n =6k +9 with k > 1)
S(G)sol ~ {E}U(€2)g) (n =6k + 13 with k > 1).

and set F/ = F \ (€3)¢g. Further let 7* be the set of subgroups H in Table 3.2 satisfying H € F,
and let pmax @ F* = max(S(G)so1)* be the map given by Table 3.2. Note that

(3.5) (S1)q U (63C3)¢ C H(G,V(n),0).
Proposition 3.3 implies

(3.6) X(G, pmax, F*) N H(G,V(n),0) C (D4)a
and

(3.7) U V(G pmax(H), H) ~ H(G,V(n),0) C (F20)c U (A4)e U (S3)e U (Dg)a U (D1g)a-
HeF*~F(0)

Tt is helpful in the following arguments to keep (3.6) and (3.7) in mind.

Case n = 6k (k> 1). The fixed-point-set dimensions of V' = V(n) are as in Diagram 3.4.

> 5, S350 Foo(®

Diagram 3.4
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Clearly, we have
(3.8) Iso(G,V ~ {0}) = Iso(G, Vs ~ {0}).

Recall that in this case, F = S(G)so1~ ({ F}U(€2)¢) and F' = F. There are no pairs (H, K) such that
H € F*\H(G,V,0), K € Ug(H)so1NIso(G, V < {0}) and dim V# = dim VE. The condition (D1) of
Theorem 2.3 is obviously fulfilled. We have X (G, pmax, F*) = 0, V(G, pmax(H), H) ~ H(G,V,0) = 0
and Z(G,V, pmax(H), H) = @ for all H € (F*NIso(G, V~{0}))~F(0). Therefore (D2) in Theorem 2.3
is fulfilled. Recall S(G)so1 ~ F = {E} U (€3)g. Observing Diagram 3.4, we can easily see that (D3)
and (D4) in Theorem 2.3 are fulfilled.

The fixed-point-set dimensions of V' = V(6k + 4) are as in Diagram 3.5.

A,
AN
(D D1o©
/
/
/
/
/
/
C2(Qk+2)
C5 (k)
\ E(6k+4) /
Diagram 3.5
Observing the diagram above, we get
(3.9) Iso(G,V \ {0}) =Iso(G, V5 ~ {0}) U (A4)g U (Dg)g-

We remark that Ug(Ds) N S(G)sor C Sy
Case n = 10. In this case, F = S(G)so1 ~ {F} and F' = F \ (€32)g. Diagram 3.5 shows that if
H e F*\H(G,V,0) and K € Ug(H)so1 NIso(G, V ~ {0}) satisfies dim V¥ = dim V| then H = D,
and K = Ay. Therefore (D1) of Theorem 2.3 is fulfilled. It holds that dim V®¢ = 1 and Ng(K) N
638y = K for all K € (D4)gNUs,¢,(C2). By Diagram 3.5, we get V(G pmax(H), H) C H(G,V,< 1)
for all H € F*~ F(0). It H € F*~ F(0) and K € Y(G, pmax(H), H) NH(G,V, 1) then (H,K) €
{C3} x (A4)a, {Ca} x (Dg) or {€2} x (S3)¢. Note that dim VH# =4 and dim V (U, ) (H)) = 2
for H = C3, Cy and €3. By Proposition 3.3, the conditions (A1) and (C2) in Definition 2.5 are
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fulfilled at H = C5, Cy and €5 with M = ppax(H). Recall X(G, pmax, F*) C (D4)g. The conditions
(B1), (B2) in Definition 2.5 (2) are fulfilled for H = €3 and K € X(G, pmax; €2) ~ H(G,V,0).
Now it is easy to see that V satisfies the (G, pmax(H))-cobordism gap condition at H for all H €
(F*NIso(G,V N {0})) ~ F(0), i.e. (D2) of Theorem 2.3 is fulfilled. Recall S(G)so1 N F = {E}. It is
also clear that (D3) and (D4) of Theorem 2.3 are fulfilled.

Casen = 6k+4 (k> 2). In this case, F = S(G)so1 ~ {E}U(€2)¢) and F' = F. Diagram 3.5 shows
that if H € F* \ H(G,V,0) and K € Ug(H)so1 N Iso(G,V ~ {0}) satisfies dim V# = dim VX then
H = D4 and K = Ay. Therefore (D1) of Theorem 2.3 is fulfilled. Since X (G, pmax, F*) = 0, there
is no need to check Definition 2.5 (1). Diagram 3.5 shows V(G, pmax(H), H) C H(G,V, < 1) for all
He F*\F(0). If H e F*\F(0)and K € Y(G, pmax(H), H)N"H(G,V, 1) then (H,K) € {C3} x(A4)c
or (H,K) € {C3} x (Dg)c. Note that dim V# =2k+2 and dimV (U, ) (H)) = k+1 for H = Cs,
(5. We have

2dimVE +1=3<6<dimV¥ and

dim VX + dim V(U

() (H)) +1 =1+ (k+1)+1=k+3 <2k+2=dimV"

for (H,K) € ({Cs} x (A4)¢) U ({Ca} x (Dg)g). Therefore the condition (A1) of Definition 2.5 (1) is
fulfilled and there is no need to check Definition 2.5 (3). Observing Diagram 3.5, we can see without
difficulties that (D2) of Theorem 2.3 is fulfilled. Recall S(G)so1 ~ F = {E} U (€2)¢. It is easy to see

that (D3) and (D4) of Theorem 2.3 are fulfilled.

The fixed-point-set dimensions of V' = V(6k + 5) (k > 1) are as in Diagram 3.6.

— =50 G350 Foo™

@, (3k+2) C5(2k+1) O (2h+1)

Diagram 3.6
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Observing the diagram above, we obtain

(3.10) Iso(G, V ~ {0}) = Iso(G, Vs ~ {0}) U (F20)c U (Ds)c U (Do)e U (Da).

Forn = 6k+5 (k> 1), F = S(G)sal ~ {E} U (€)¢) and F' = F. Diagram 3.6 shows that
if H € F* < H(G,V,0) and K € Ug(H)sol N Iso(G,V ~ {0}) satisfies dim V7 = dim VX then
H = Djg and K = Fa9. Therefore (D1) of Theorem 2.3 is fulfilled. The same diagram shows
V(G pua (H), H) € H(G,V,< 1) for all H € F* as well as X(G, puma, F*) = 0. If H € F* ~ F(0)
and K € Y(G, pmax(H), H) N H(G,V, 1) then (H,K) € {€4} X (F20)g or (H,K) € {Co} x ((Dg)c U
(D10)a)-

Case n = 11. Let H € F* ~ F(0) and K € Y(G, pmax(H), H) N H(G,V,1). Note that dim V¥ =3
(resp. 5) and dim V' (Us, (H)) = 0 (resp. 2) for H = €4 (resp. C2). Recall Proposition 3.3 (10). In
the case where H = ¢4 and K € Ug(H) N (F20)q, it holds that dim VE = 1 and Ng(K)N S, = &4,
and therefore (A2) in Definition 2.5 (1) is fulfilled. In the case where H = Cy and K € Ug(H) N
((C10)a U (Co)g), dimVE =1 and dim VE + dim V (Us, (H)) + 1 < dim V¥ and therefore (A1) in
Definition 2.5 (1) is fulfilled. Thus (D2) of Theorem 2.3 is fulfilled. Recall S(G)so1~\F = {E}U(€2)q.
It is easy to see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k +5 (k> 2). In this case, F = S(G)so1 ~ {E} U (€2)¢g) and F' = F. If H = &, and
K €Ug(H) N (F20)g then 2dimVE +1=3 <4<k +2=dimV¥ and

dimVE +dimV(Us,(H)+1=1+1+1=3 <4<k +2dimV*".

If H=Cyand K € Ug(H)N((De)cU(D1o)c) then we have 2dim VE +1 =3 < 7 < 2k+3 = dim VH#

and

dimVE +dimV(Us,(H) +1=1+(k+2)+1=k+4<2k+3=dimVF.

Therefore (D2) of Theorem 2.3 is fulfilled. Recall S(G)so1 N F = {E} U (€3)q. It is easy to see that
(D3) and (D4) of Theorem 2.3 are fulfilled.

The fixed-point-set dimensions of V' = V(6k + 8) are as in Diagram 3.7.
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— = 5,0 &3¢, Foo(®

A@
// // N
D4 ) Dio©
/
/
/
/
/
/
_~7_/,w Oy (2k+4)
/
\ |
€2(3k+2) C3(2k+4) 05(2]6)
\ E(6k+8) /
Diagram 3.7

Observing the diagram above, we get

(3.11) Iso(G,V ~ {0}) =Iso(G, Vs ~ {0}) U (A4)c U (Dg)g-

Case n = 14. In this case, F = S(G)sol ~ ({E} U (C2)q U (C5)g) and F' = F \ (&€3)¢. Diagram 3.7
shows that if H € F* \ H(G,V,0) and K € Ug(H) NIso(G,V ~ {0}) satisfies dim V¥ = dim VK
then H = Dy and K = A4. Therefore (D1) of Theorem 2.3 is fulfilled. Recall X (G, pmax, F*) C
(D4)g. Observing Diagram 3.7, we can easily see that dim V*®* = 1 and Ng(K) N G3¢, = K
for all K € (D4)¢ NUs,e,(€2). Diagram 3.7 shows that V(G pmax(H), H) C H(G,V,0) for all
H € F* ~ (F(0) U (S3)g). Firstly note dimVE = 1 for all K € X (G, pmax,€2). Secondly note
dim V% =1, dim V% =5, and

dim V + dim V(Us, e, (€2)) +1=1+3+ 1 =5=dim V*

as well as 2dim V52 +1 = 3 < dim V®2. Therefore (D2) of Theorem 2.3 is fulfilled. Recall S(G)so1 ™
F={E}U(Csy)g U (Cs)g. It is easy to see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 8 (k > 2). In this case, F = S(G)sal ~ {E} U (€3)g U (C2)g U (Cs3)¢) and
F' = F. Diagram 3.7 shows that if H € F* \ H(G,V,0) and K € Ug(H) NIso(G,V \ {0}) satisfies
dim VH = dim VX then H = Dy and K = A,. Therefore (D1) of Theorem 2.3 is fulfilled. Note that
X(G, pmax, H) = 0 and Y(G, pmax(H), H) = 0 for all H € F*~ F(0). Therefore (D2) of Theorem 2.3
is fulfilled. Recall S(G)so1 N F = {E} U (€3)c U (C2)q U (Cs)g. It is easy to see that (D3) and (D4)
of Theorem 2.3 are fulfilled.
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Casen =6k+9 (k> 1). The fixed-point-set dimensions of V' = V(n) are as in Diagram 3.8.

, g A,
_ /
/ —~ \
/ // / N
D, (k+1) S5 (k) 'D,® Dy

@2(316—0—3) 03(2k+3) 05(2k+1)

Diagram 3.8

Observing the diagram above, we get

(3.12) ISO(G, V~ {O}) = ISO(G’7 178N {0}) U (320)(;' U (A4)G U (gg)g U (D6)G’ U (D4)G.

In the case, we have F = S(G)sol ~ {E} U (€2)g) and F' = F. Diagram 3.8 shows that if H €
F* N H(G,V,0) and K € Ug(H) NIso(G,V ~ {0}) satisfies dim V¥ = dim VX then H = Dy,
and K = §a9. Therefore (D1) of Theorem 2.3 is fulfilled. We clearly get X (G, pmax, F*) = 0. By
Diagram 3.5, we get Uy (G, prax(H), H) C© H(G,V, < 2), Uy V(G pras (), H) N H(G, V, 1) ©
(A4)g U (D1o)e and Uy V(G, pmax(H), H) N H(G,V,2) C (Dg)a, where H runs over F* ~ F(0).
Since dim V' > 5, V satisfies the (G, G3€5)-cobordism gap condition at C3. Note dim V2 > 7,
2dimVPs +1=5<7<dimV°, and

dim V (Us, (Cy)) +dim VP 41 =(k+3)+2+1=k+6 < 2k+5=dim V,C,

where the equality £ + 6 = 2k + 5 holds only in the case k = 1. If k£ = 1 then the codimension
condition dim V2 —dim V (Us, (C2)) > 3 is fulfilled. Observing Diagram 3.8, we can readily see that
V satisfies the (G, S4)-cobordism gap condition at Cy. Therefore (D2) of Theorem 2.3 is fulfilled.
Recall S(G)sol N F = {E} U (€3)¢. Tt is easy to see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n =6k + 13 (k > 1). The fixed-point-set dimensions of V' = V(n) are as in Diagram 3.9.
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¢ (3k+4) 4 (2k+5) C5(2k+1)

E(6k+13)
Diagram 3.9

Observing the diagram above, we obtain

(3.13) Iso(G, V ~ {0}) = Iso(G, Vs ~ {0}) U (S20)c U (As)e U (Ds)6 U (D) U (Da)c.

In the case, we have F = S(G)so1 ~ {E} U (€2)g) and F' = F. Diagram 3.9 shows that if H €
F* N H(G,V,0) and K € Ug(H) NIso(G,V ~ {0}) satisfies dim V¥ = dim VX then H = Dy,
and K = §y. Therefore (D1) of Theorem 2.3 is fulfilled. Note that X(G, pmax, F*) = @ and
V(G, pmax(H), H) C H(G,V,< 3). We have dimV® =2k +5>7 2dimVM +1=4+1=5<

dim V%, and
dimV (Us, e, (C3)) + dim VA = (K +2) + 2 < 2k + 5 = dim V.

Therefore V satisfies the (G, &3€;)-cobordism gap condition at C3. We have dim V2 = 2k 47 > 9,
2dimVPs +1=6+1=7 < dimV°?, and

dimV(Us, (Co)) +dimVPe 41 =(k+4)+3+1=k+8<2k+7=dimV,

where the equality k + 8 = 2k 4+ 7 holds only in the case Kk = 1. If K = 1 then the codimension
condition dim V2 — dim V' (Us, (Cz)) > 3 is fulfilled. Observing Diagram 3.9, we can see that V
satisfies the (G, S4)-cobordism gap condition at Cy. Therefore (D2) of Theorem 2.3 is fulfilled.
Recall S(G)sol ~ F = {E} U (€3)q. Tt is easy to see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Putting the arguments above together, we have shown that the data (G,V(n), F, F', F*, pmax)
specified in this section satisfy the conditions required in Theorem 2.3. This completes the proof of

Theorem 1.1.
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4. PROOF OF THEOREM 1.2

Throughout this section, let Z be a group of order 2 and G = A5 x Z. As it is in [23, Section 7],
we identify subgroups H € S(A5) with H x {e} € S(G), respectively, and Z with {e} x Z € S(G).
Let Cy be the subgroup of order 2 belonging to S(C2Z) \ {Cs, Z}. Let Da,, be the dihedral subgroup
of order 2n generated by C,, and Cs. Table 4.1 below shows the subgroups H giving a complete set

of representatives of conjugacy classes of subgroups of G and the normalizers of H.

H G A5 A4Z D10Z DGZ A4 DlO D10 O5Z DyZ OgZ
G| G | AsZ | DioZ | DeZ | AuZ | D1oZ | D1oZ | DioZ | AuZ | D¢ Z

H D6 D6 05 D4 CQZ D4 03 CQ 02 Z | E
Ng(H) || DgZ | D¢Z | D1oZ | AyZ | DyZ | AyZ | DgZ | DsZ | D4Z | G | G

TABLE 4.1

The Hasse diagram of subgroups (up to conjugations) of G is as follows.

AsZ

Diagram 4.1

Assign pmax(H) to H as in Table 4.2.
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H AyZ | DioZ | DeZ | As Dio Do CsZ | DsZ | C3Z
pmax(H) || AaZ | D1oZ | D¢Z | AaZ | D10oZ | D10Z | Di0Z | AaZ | DeZ

H Dg Dg Cs Dy CoZ Dy Csy Co Ca
pmax(H) || D¢Z | DeZ | D10Z | AaZ | AuZ | AuZ | DeZ | AuZ | AuZ

TABLE 4.2

We can grasp the correspondence H — ppax(H) from Diagram 4.2.

Diagram 4.2

By [23, Proposition 3.1 and Remark 3.1}, the idempotent S in Q(G) has the form
(4.1) Ba = |G/A1Z) + G/ DwZ] + [G/DsZ] — [G/Cs5Z] — 2|G/C2Z] + |G/ Z],
and therefore
(4.2) Iso(G, Bg) = (AsZ)c U (D10Z) ¢ U (DsZ)g U (C32)c U (CaZ)a U (Z)¢.

Let W3, W4 and W5 be irreducible real As-representations of dimension 3, 4 and 5, respectively. We
obtain irreducible real G-representations V3 1, V32, Va2 and V52 by V31 = W3 ®R, V39 = W3 @R,
Vip = Wi @Ry and V52 = Ws ® Ry, respectively, where R4 stands for the 1-dimensional real Z-
representation with nontrivial Z-action. The H-fixed-point-set dimensions of these G-representations

are as in Table 4.3.
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H ||E|Z|Cy|Cy|Cs|Dy|CoZ | Dy Cs
Vi3 ]3] 1 1 1 0 1 0 1
Vaa || 3]0 1 2 1 0 0 1 1
Vi || 4]10] 2 | 2] 2 1 0 1 0
Vso || 50| 3 | 2 1 2 0 1 1
H || C3Z | Dg | D | DsZ | CsZ | D1g | D1o | As | K
V31 1 0 0 0 1 0 0 010
Vi o 0 0 1 0 0 0 1 010
Vo 0 1 1 0 0 0 0 110
Vs 2 0 1 0 0 0 1 0 010
TABLE 4.3

where K ranges over {A4Z, D¢Z, D19Z}. We draw the diagram of H-fixed-point-set dimensions of
V3,1

Dz A7) D19z

7(3)

B
Diagram 4.3
Observing the diagram above, we obtain
(4.3) Iso(G, V31~ {0}) = (C52)c U (C32)c U (C2Z)c U{Z}.
Note that
(4.4) max(S(G)sol) = (A4Z) g U (D10Z)c U (DsZ) -
Comparing these with (4.2), we get
(4.5) Iso(G, Ba) C max(S(G)so1) UIso(G, V31 \ {0}).

Therefore V3 ; is ample for 8g.

Proposition 4.1. Let V be an S(G)nonsol -free real G-representation. If V' contains a G-subrepresentation

isomorphic to Va1 then V is ample for fg.
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Proof. This result follows from Proposition 2.1. O

Proposition 4.2. Let F = S(G)sa~({E, Z}U(C2)g). Let F* be the set of H appearing in Table 4.1
such that H € F and let pmax : F* — max(S(G)so1)* be the map given by Table 4.2. If an S(G)nonsol -

free real G-representation V' contains a subrepresentation isomorphic to Vs 1 then V has the property

(DI').

Proof. By Proposition 2.5, it suffices to prove the proposition for the case V' = V5. Let H € F*
and K € Ug(H)so such that Vg’lH = ‘/3’1K. Observing Diagram 4.3, we see that dim V3,1H =
dim V3’1K =0,o0r (H,K) = (Cs,C22), (Cs,C3Z), (C5,C5Z). Therefore we can readily see that V3 4
has the property (D1'). O

In this section, we set Vs = V31 @ Vo, Vo = V31 @ Vio, Ve =V31 @ Vs and Voo = Vio @ Vs o.
Further define V(n) for n € [6..00) as follows.

Vs®k (n = 6k with k € N)

Ve @ Ve®  (n=6k+7 with k € NU{0})

Ve ®Ve®  (n=6k+8 with k € NU{0})
(4.6) Vin) =S Vso®Ve  (n=09)

Voo ® Ve®  (n=6k+9 with k € N)

Vie ®Ve®  (n =6k +4 with k € N)

Vso @ Vs®  (n =6k +5 with k € N)

The H-fixed-point-set dimensions of the real G-representations above are as in Table 4.4.
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H E A Cs Cs Cs Dy | CoZ | Dy Cs
Vs 6 3 2 3 2 0 1 1 2
V(7) 7 3 3 3 3 1 1 1 1
V(8) 8 3 4 3 2 2 1 1 2
V(9) 9 3 3 5 3 0 1 2 3
Vo0 9 0 5 4 3 3 0 2 1
V(10) 10 3 4 5 4 1 1 2 2
V(11) 11 3 5 5 3 2 1 2 3
V(6k+6) || 6k+6 |3k+3|2k+2|3k+3[2k+2| 0 |k+1|k+1]|2k+2
VO6k+T7) || 6k+7 [3k+3[2k+3[3k+3|2k+3| 1 [k+1|k+1]|2k+1
V(6k+8) || 6k+8 |3k+3|2k+4|3k+3|2k+2| 2 |k+1|k+1]|2k+2
V(6E+9) || 6k+9 | 3k [2k+5[3k+4[2k+3] 3 E[k+2]2k+1
V(6k+10) || 6k+10 |3k +3 [2k+4 |3k +5|2k+4 | 1 |k+1|k+2|2k+2
V(6k+11)[[ 6k +11 [3k+3 [2k+5 |3k +5[2k+3| 2 [k+1[k+2|2k+3
H CsZ | Dg| D | DiZ | CsZ [ Do | Dip | As | K
Vs 1 0 1 0 1 0 1 010
V(7) 1 1 1 0 1 0 0 110
V(8) 1 1 0 0 1 1 0 010
V(9) 1 0 2 0 1 0 2 010
Vo.o 0 2 1 0 0 1 0 110
V(10) 1 1 2 0 1 0 1 110
V(11) 1 1 1 0 1 1 1 010
V(6k+6) |[k+1] 0 |k+1] 0 |[k+1] O |[k+1] 00
VOek+7) [[k+1] 1T [k+1] 0 [k+1] O k 110
V(6k+8) [|[k+1] 1 k 0 [k+1] 1 k 010
V(6k +9) k 2 [k+1] 0 k 1 k 110
V(6k+10) || k+1| 1 [k+2| O |k+1] 0 |k+1] 1|0
Vek+11) [[k+1] 1 [k+1] 0 |[k+1] 1 [k+1[ 0[O0
TABLE 4.4

where K ranges over {A4Z, DgZ, D19Z}. The table shows (447)cU(D10Z)cU(DsZ)c C H(G,V (n),0).
We remark that Cases n = 6 and n = 7 of Theorem 1.2 are already proved in [23, Section 12]. In

the rest of this section, we give F as follows

wn o {S<G>sol ~({E, 2}V (C)e U (C2)a U (C)e) (n=T1)

S(@)sot ~ (1B, 2} U (C2)e) (n € {6,8} U10,..00)).

We set F/ = F. The set F* consists of the subgroups H in Table 4.2 such that H € F. The map
Pmax @ F* — max(S(G)sol)* is given by Table 4.2. Therefore, by [23, Proposition 7.6], the pair
(F,F') is G-simply organized and X (G, pmax, F*) = 0.

Case n = 6k (k > 1). The fixed-point-set dimensions of V' = V(n) are as in Diagram 4.4.
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Diagram 4.4

Observing the diagram above, we get

(4 ) ISO(G, Ve {0}) = (@10)@ U (C5Z)G U (QG)G U (CgZ)G U (Cg,)g U (©4)G
.8
U(C22)c U (C3)a U (€2)e U{Z} U (C2)g U{E}

and Iso(G,V ~\ {0}) = Iso(G, Vs \ {0}). Diagram 4.4 shows that there is no pair (H, K) such that
H € F* <~ H(G,V,0), K € Ug(H) NIso(G,V ~ {0}) and dim V¥ = dim VE. Therefore (D1) of
Theorem 2.3 is fulfilled. The same diagram shows V(G pmax(H), H) N H(G,V,0) = 0. It shows that
(D2) of Theorem 2.3 is fulfilled. Recall S(G)so1 ~F = {E, Z} U (C2)g. We can readily see that (D3)
and (D4) of Theorem 2.3 are fulfilled.

For n = 6k + 7 (k > 0), the fixed-point-set dimensions of V' = V(n) are as in Diagram 4.5.

Dz A7) D10z

Dg kD)

/

/
} Dy b+

A / N
Co (3H43) 7(3k+3) O, (2k+3) C5(2k+1)

Diagram 4.5
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Observing the diagram above, we obtain

(4.9) Iso(G,V ~ {0}) =Iso(G, V5 ~ {0}) U (A4)g U (Ds)g-

Diagram 4.5 shows that if H € F* N\ H(G, V,0) and K € Ug(H) NIso(G, V ~ {0}) satisfy dim VH =
dim VE then H = D, and K = A,. Therefore (D1) of Theorem 2.3 is fulfilled.

Case n = 7. Diagram 4.5 shows Y(G,M,H) C H(G,V,0) for all H € F. The condition (D2) of
Theorem 2.3 is clearly fulfilled. We can readily see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 7 (k > 1). Diagram 4.5 shows Y(G,M,H) C H(G,V,0) (resp. Y(G,M,H) C
H(G,V,< 1)) for all H € F~\ ((C2)g U (C3)g) (resp. H € F) and M = ppax(H). By the same
diagram, we have

2dimVA +1=2+1=3<5<dimV,
dim VA 4 dim V(Upyz(C3) +1 <1+ (k+ 1)+ 1=k +3 <2k +3 <dimV,
2dimVPs +1=2+4+1=3<5<dimV®, and

dim VP 4 dimV(Ua,z(C2)) +1 =14 (k+1)+1=k+3 < 2k +3 < dim V.
It is easy to see that (D2) of Theorem 2.3 is fulfilled. Recalling S(G)so1 ~ F = {F,Z} U (C2)g, we
can readily see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n =6k + 8 (k > 0). The fixed-point-set dimensions of V' = V(n) are as in Diagram 4.6.

Dz WAL D10z

De® A,(0)
/ \\
D, (k1) & Dyo®
I
7
I /
\ /
\ /
/ 7
N\ / AN
62(3k+3) 02(2k+4) C5(2k:+2)
\ F(6k+8) /
Diagram 4.6
Observing the diagram above, we get
(4.10) Iso(G,V ~ {0}) =Iso(G, Vs ~ {0}) U (D10)¢ U (Dg)g U (D4)g-

Diagram 4.6 shows that there is no pair (H, K) such that H € F* \ H(G,V,0), K € Ug(H) N
Iso(G,V ~ {0}) and dim V¥ = dim VE. Therefore (D1) of Theorem 2.3 is fulfilled. The diagram
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shows V(G, pmax(H), H) C H(G,V,0) (resp. V(G, pmax(H),H) C H(G,V,< 1)) for all H € F*
(C2)g (resp. H € F). In this case, we have

2dim VP +1=2+1=3<4<dimV" and

dim VP + dimV (Ua,z(Co)) +1 =14+ (k+1)+ 1=k +3 <2k +4 = dim V2,
where s = 6, 10. It is easy to see that (D2) of Theorem 2.3 is fulfilled. By virtue of S(G)so1 N~ F =
{E,Z} U (C2)¢g, we can readily see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n =6k +9 (k> 1). The fixed-point-set dimensions of V' = V(n) are as in Diagram 4.7.

/
AN
Cy(3k+4) 02(23:5)\ O (2k+1)

\

Observing the diagram above, we get

F(6k+9)

Diagram 4.7

(411) ISO(G7 VvV~ {O}) = ISO(G, Vs ~ {0}) U (A4)G @] (Dlo)c U (DG)G U (D4)G.

Diagram 4.7 shows that there is no pair (H, K) such that H € F* ~\ H(G,V,0), K € Ug(H) N
Iso(G,V ~ {0}) and dim V# = dim V. Therefore (D1) of Theorem 2.3 is fulfilled. The diagram
shows Y(G, pmax(H), H) C H(G,V,0) (resp. V(G pmax(H), H) C H(G,V, < 1), V(G pmax(H), H) C
H(G,V,<2)) forall He F N ((C2)a U (Cs)q) (resp. H € F~ (Ca)g, H € F). We have

2dimVA +1=241=3<5<dimV%,

dim VA + dim V(Upyz(C3) +1 =1+ (k+ 1)+ 1=k +3 <2k +3 =dimV,

2dimVP +1=4+1=5<7<dimV®, and

dim VP £ dim VU, z(Co)) +1 =1+ (k+2)+1=k+4< 2k +5=dim V2,
It is easy to see that (D2) of Theorem 2.3 is fulfilled. Recall S(G)so1 N~ F = {E, Z} U (C2)g. We can
check without difficulties that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n = 6k + 10 (k > 0). The fixed-point-set dimensions of V' = V(n) are as in Diagram 4.8.
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Dek+2) ey
AN
/ ‘\\
/ N
| Dytk W Dip(©
/
7/
| PN /
\ O (2k+4) ,
\ N /
N / / N
/ \
,(3+5) 02(2’:"'4)\ 5 (2h+2)
\ E<6k+10) /
Diagram 4.8

Observing the diagram above, we obtain

(4.12) Tso(G, V ~ {0}) = Iso(G, Vs ~ {0}) U (A4)c U (Dg)c.

Diagram 4.8 shows that if H € F* N\ H(G, V,0) and K € Ug(H) NIso(G, V ~ {0}) satisfy dim VH =
dim VE then H = Dy and K = A4. Therefore (D1) of Theorem 2.3 is fulfilled. The diagram shows
V(G, pmax(H), H) C H(G,V,0) (resp. V(G, pmax(H), H) C H(G,V,< 1)) for all H € F \ ((Ca)q U
(C3)¢) (resp. H € (C2)g U (C3)¢). We have

2dimVA +1=2+1=3<4<dimV,
dim VA 4 dim V(Upyz(C3) +1 =1+ (k+2) + 1=k +4 <2k +4=dimV,
2dimVPs +1=24+1=3<4<dimV®, and

dim VP 4 dimV(Ua,z(C2)) +1 =14 (k+2) +1=k+4 <2k +4 =dim V.

Here the equality & + 4 = 2k + 4 holds only in the case kK = 0. Note that for H = C5 and Cj, the
subgroup (K, K3) coincides with As whenever Ky, Ky € (Ug(H) \U,, . m)(H)) N H(G,V,1) with
K, # Ks. In the case k = 0, the condition (C2) of Definition 2.5 (4) is satisfied for H = Cy, C3
and M = ppax(H). It is easy to see that (D2) of Theorem 2.3 is fulfilled. Recalling S(G)so1 ™ F =
{E,Z} U (C2)¢g, we can readily see that (D3) and (D4) of Theorem 2.3 are fulfilled.

Case n =6k + 11 (k > 0). The fixed-point-set dimensions of V' = V(n) are as in Diagram 4.9.



CONSTRUCTION OF ONE-FIXED-POINT ACTIONS ON SPHERES II 31

\/\\

C2(2k:+5) 05\(2k+3)

— ==

F(6k+11)

Co (3k+5)

Diagram 4.9

Observing the diagram above, we get

(4.13) Tso(G, V ~ {0}) = Iso(G, Vs ~ {0}) U (D1o)e U (Ds)c U (Ds)c-

Diagram 4.9 shows that there is no pair (H, K) such that H € F* \ H(G,V,0), K € Ug(H) N
Iso(G,V ~ {0}) and dim V# = dim VE. Therefore (D1) of Theorem 2.3 is fulfilled. The diagram
shows V(G, pmax(H), H) C H(G,V,0) (resp. (G, pmax(H),H) C H(G,V,< 1)) for all H € F ~\
(C9)¢ (resp. H € F). We have

2dimVP  +1=241=3<5<dimV®, and

dim VP +dimV(Ua,z(C2)) +1 =1+ (k+2) +1=k+4 <2k +5=dimV,
where s = 6, 10. It is easy to see that (D2) of Theorem 2.3 is fulfilled. By virtue of S(G)so1 N~ F =
{E,Z} U (C2)¢g, we can check without difficulties that (D3) and (D4) of Theorem 2.3 are fulfilled.

Putting the arguments above together, we have shown that the data (G,V(n), F, F', F*, pmax)
specified in this section satisfy the conditions required in Theorem 2.3. This completes the proof of

Theorem 1.2.

5. EXTENSION OF A PRODUCT M-EMBEDDING W),

In the remainder of the current article, let G, (F,F’), pmax : F* — max(S(G)%,;), and V be those
stated in Theorem 2.3, let Y be the unit disk D(V) of V, and let f = (f,b) and F = (Fr, Br),
L € max(S(G)so1), be a G-framed map rel. 9 and L-framed cobordisms from res§ f to res¥idy rel. 0,
respectively, obtained in [23, Section 9]. Therefore F and F' contain max(S(G)so1), cf. Definition 2.2,

f:(X,0X) — (Y,9Y) is a G-map,

b:ex(R)DT(X)@ex(RY) = ex(ReV @R
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is a G-bundle isomorphism,
Fr, - (Wp,00W5,00Wr,0n1Wr) = (2,002,010 Z,001 Z)

are L-maps, oWy, = {0} x X, /W = {1} xY, 0010 W,, =1x0Y,Z=1IxY, 0Z ={0} xY,
(91Z = {1} X Y, and 6012 =1x 8Y,

Br : T(Wp) @ ew, (RY) = ew, (R®V @ RY)

are L-bundle isomorphisms. By the construction, X% = () for all K € S(G)nonsol and f& :
(XK 0XK) - (YE 0YK) is a map of degree 1 whenever dim VE > 0, see [23, Lemma 9.1]. When
we refer to a G-framed map f’ (resp. an L-framed cobordism F), f' is a pair (f’,b’) consisting of

a G-map [’ : (X',0X) — (Y,9Y) and G-bundle isomorphism
Viex/(R)T(X)®ex (RY) = ex/(RaV @R
(resp. F'; is a pair (F}, B}) consisting of an L-map
FL (W, 80W}, 0Wh, 00 W) — (2,002,012, 90, Z)
and an L-bundle isomorphism

By : T(Wg) ®ew; (RY) = ew; R®V ®RY)).

1 i . . .
We use f, F}, and etc. in a similar way.

Let H C §(G). For L € S(G) we set
H| =HNS(L) and
(5.1)
[LH]={gKg~" | g€ L, K€M}

Therefore [L,H] is the L-invariant closure of H with respect to the conjugation L-action on S(G).
Proposition 5.1. Let H € F'*, where F'* = F' N F*, and M = pyax(H). Then (H)g|y = (H) -
Proof. Since (F,F’) is G-simply organized, see Definition 2.2 (3), we have (H)g|m = (H)m- O

Let X (H) denote the simplicial subcomplex of X defined by

XH) = |J x*¥
KeH

For a G-simplicial subcomplex A of X with respect to some smooth G-triangulation of X such that
A is a union of smooth submanifolds A; of X, let Ng(A, X) denote a G-regular neighborhood of A
in X which is the union of some tubular neighborhoods of A4; in X. For a subgroup H of G, V has
the form of direct sum V = V¥ @ V as real Ng(H)-representations. By virtue of the bundle data

b and By, we have the next property which will be used without mentioning.
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Proposition 5.2. Let H be a solvable subgroup of G. Then the tubular neighborhood Ng(XH, X)
is Ng(H)-diffeomorphic to X" x D(Vy), where D(Vy) is the unit disk of Vi. Furthermore if
L € max(S(Q)so1)* and H < L, then N, (W5 W) is Ni(H)-diffeomorphic to Wi, x D(Vy).

For a submanifold X of X and a smooth embedding ¥ : T x Xg — Wp, where L € max(S(G)so1)*,
we call ¥ a product embedding if
(1) ¥(t,z) = (t,z) in OnWy, for all z € XoNOX and t € I,
(2) U(t,z) = (¢, ) in a collar neighborhood Cx = [0,6] x X of {0} x X in W, for all ¢ € [0, ]
and z € Xg, and
(3) ¥(1—t,x) = (1—t,¢(x)) in a collar neighborhood Cy =[1—-4,1] x Y of {1} xY in Wy, for
all t € [0, 4] and = € X, for some embedding 1) : Xo — Y.
Here § is a small positive real number, and the sets [0, d], [1 — 9, 1] are the closed intervals C R. For
a simplicial subcomplex A of X and a topological embedding Vg : I x A — Wy, we call ¥y a product
embedding if there are a manifold neighborhood X of A and a product embedding ¥ : I x Xq — W,
extending Uy.
Let K be a subset of F which is G-conjugation invariant and upwardly closed in §(G)so1. We

readily obtain the next proposition.
Proposition 5.3. Let H € F'* \ K and M = puax(H). Then (KU (H)g)|m = Klar U (H) -
For a G-space A, we set A”H = A(Ug(H)) and A=H = AH < A>H,

Definition 5.1. Let M € max(S(G)so1)* and let H be a subgroup of G satisfying Ng(H) C M. We
say that (X,Y, W) has the (G, M)-tame singular set at H (or X~ is (G, M)-tame in (X, Wyy)) if
there is a product M-embedding ® : I x Ny (M- X>H X) — W), such that Image(®)>H# = Wy~
where M - X>H = {gz | ge M, z € X>"}, Image(®)>" = Image(®) (U (H)) and Wy, 7 =
W (Uni (H)).

For L € max(S(G)so1)*, we set
(5.2) Kr = [L,K N (pax(L) UUL(praax (D)))];
where pmax : F* — max(S(G)so1)* and

Up(pma L) = | UL(Ho).
Ho€pmax(L)

Note that KN p, L (L) C KNF*NS(L) and K NUL(ppi (L)) C KNF' ' NS(L). In the case where
H e F* and M = pax(H), we have Ky = K|y



34 MASAHARU MORIMOTO

Proposition 5.4. Let H € max(F~\K)*, M = pmax(H) and L € max(S(G)so1)*. Then the following
holds.

(1) ICM mz’IG(I—I)SOI = Z/{M(H)

(2) (KU(H)a)L

Ky U (H)um (HeF and L=M)
)KL UL, (H)e NUL(pnli(L)] (H € F and L # M)
) KnU(H)u (HEgF and L =M)
KL (HEF and L # M).

Therefore (KU (H)g)r C K U ((H)e NS(L)).

Proof. The definition of Ky, implies Ky NUG(H)sot C Uns(H). Tt suffices to prove Uy (H) C K.
Let K € Up(H). By the definition, It holds that H < K < M. The condition H € max(F \ K)*
and the hypothesis that K is upwardly closed in S(G)so1 imply K € K. Therefore, we see

K e KNUy(H) CKNUM(pi (M) C K.

We have completed the proof of the claim (1).

We have the equalities
(KU (H)a)r = [L, (KU (H)&) N (pax (L) VUL (praax(L)))]

=Kr UL, (H)G N (prmax(L) UL (prmax(L)))]

(5.3) _ JRm UM AHY UM, (H)e VUM (pax (M))] (L= M)
Kr U[L, (H)e NUL(prax(L))] (L # M)
_ JRm U (H)a UM, (H)g N Uy (prax(M))] (L = M)
Kp UL, (H)e NUL(pmax(L))] (L # M)
The claim (2) follows from (5.3). O

Definition 5.2. Let H be a subset of S(G)so1 which is upwardly closed in S(G)so1 and G-conjugation
invariant. We say that (f,{Fr}r) (or (X,{W})), where L runs over max(S(G)so1)*, is adjusted
on (H,K) if there are

e L-regular neighborhoods Np(X(HUKL),X) of X(HUKL) in X,

e product L-embeddings ¥y : I x Np(X(HUKL),X) — W, and

o L-homotopies Hy, : (Wr,00Wr) xI — (I xY,{0} xY) from Ff, to Fr 1 rel. 0y Wr, U001 Wi,
for all L € max(S(G)so1)*, satisfying the condition that for each K € K* (= KNF*) and L =
Pmax (K), the restriction

Fr 1 |tmage(w,) : Image(¥r) — Fr1(Image(Vy)) (C1IxY)

is an L-diffeomorphism. (Hence

Fralw,qoyxny : Y({0} x N) = Fr 1 (VL ({0} x N)) (C {0} xY),
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where N = N (X(HUKL), X), is also an L-diffeomorphism.)

If (f,{Fr}r) is adjusted on (0, K) then we say that (f,{Fr}.) is adjusted on K.

By the construction of f and {Fp}r (see [23, Lemmas 9.1 and 9.2]), we can suppose with-
out any loss of generality that (f,{Fr}.) is adjusted on (H(G,V,0),F(0)), where L ranges over
max(S(G)so1)*. In the rest of this section, we suppose that

(K1) £ > F(0) and

(K2) (f,{F_r}r) is adjusted on (H(G,V,0),K) with respect to product L-embeddings ¥y, : I x

Np(X(H(G,V,0) UKL),X) — Wy, as above.
In the remainder of this section, let H € max(F ~ K)* NIso(G,V \ {0}) and M = ppax(H).

Proposition 5.5. The following equalities hold.

(1) X(H) = X(H N1Iso(G,V N\ {0})) for any subset H of K such that H is upwardly closed in
S(G)sol-

(2) K|y NUG(H)sot = Ui (H) and W (K| a) = Wi (Une (H)).

(3) Ky NUG(H)sor = Ung (H) and W (Kar)™ = W (Ung (H)

(4) X(V(G, M, H))\X(X(G, pmax, H)) = X(Y(G, M, H)Nlso

).
(G VSO X(X (G, pmax, H)).-
Proof. Tt is easy to show the claims (1) and (2). The claim (3) follows from Proposition 5.4. Here
we prove the claim (4). It is obvious that X (Y(G, M, H) NIso(G,V ~ {0})) € X(V(G, M, H)). Let
K be an element of Y(G, M, H) \ Iso(G,V ~ {0}) and let K be the element of Iso(G,V ~ {0})
such that VK = VK, By the hypothesis, we have H < K < K, K € K and K € K as well as
Ponax (K) = Pruax () # M, and by the hypothesis (K2) we have XX = XK.

If KN M = H then we have K € Y(G, M, H), moreover K € Y(G, M, H) N1so(G,V ~ {0}), and

XK = XK c X(V(G,M,H)NIso(G, V ~ {0})).
Suppose K N M > H. Then K' = K N M lies in X (G, pmax, H). This shows
XK = XK c XK' ¢ X(X(G, pmax, H))-
Therefore we have proved the claim (4). O

Set,
Nxx = Na(X(K),X), Nwyx=NuWnr(Kla), War), and

Nx.mx = Nx,x 0 Nwy, k,
where we choose Nx x and Ny, © so that Nx px = Na(X(K|a), X). For a submanifold N of
Whs (resp. X) such that Closure(N) = N and dim N = dim W), (resp. dim N = dim X)), define N
by
N = Wi ~ Closure(Wp . N)
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(resp. N=X~ Closure(X ~ N)).

We set
X = X7 N where N = Ny (X(H(G, V,0) UK|u), X),
(54)  WH =Wy N and Y =YH N
where Y is identified with {1} x Y (= 0;Wys) and N = Image(¥ /).
In the present situation, it holds that Ng(H) coincides with Ny, (H) and the group Ny (H)/H acts
freely on X{T and Wﬁ,o-
By the hypothesis (K2), there are M-homotopies
(1) Ty : X x I — Y from res§, f to res§; fi rel. 9 and
(2) Hpr : (War, 06War, 1 War, 001 War) X I — (I XY, {0} xY, {1} x Y, I x 9Y") from Fi; to Fasq
rel. O Wyr U 8o1i W
such that Haslroyxx = Ty and Fasilimage(w,,) © Image(¥a) — Fiai(Image(¥ay)) is an M-
diffeomorphism. Note I x N =, ITmage(¥ ) =y I x Image(£), where N = Nj (X (H(G,V,0) U
Ka),X), for some M-embedding € : N — Y rel. 9. We remark that X~ coincides with
XUp(H)UX(Y(G, M, H)).
For each K € Y(G,M,H)NH(G,V,1), let Ak ;, where i ranges over [l..tx], be the connected
components of (X)X where Ak #0forall i € [1..tx] and Ag; # Ak j for all i, j € [1..tx] with
i # j. By the hypothesis (K2), we have Ax ;N X5 =0 for all i € [1..tx] if K ¢ Iso(G,V ~ {0}).

Proposition 5.6. Suppose H € Iso(G,V~{0}) and dim V¥ > 2. Let K € Y(G, M, H)NH(G,V,1)N
Iso(G,V ~ {0}). Then the following holds.

(1) AginAg,; =0ifi, j€[ltx] andi#j.

(2) Ak is diffeomorphic to D' (=[—1,1]) for all i € [1..tk].

(3) Iso(G, Ak ;) = {K} for all i € [1..tx].

(4) AxiNAg ;=0 if K' €e Y(G,M,H)NH(G,V,1), K' # K, i € [1.tg] and j € [1..tx/].

(5) Let K' e Y(G,M,H)NH(G,V,1) with K' # K, i € [1..txk], j € [l..tx’] and g € Ng(H). If

Ak,iNgAgj #0 then gK'g7' = K and Ak ; = Ak’ ;.
(6) If No(K)N M = H then the group

Lki={9€ Nc(H) | gAr; = Ar,:}
coincides with H.
Proof. We prove the proposition by step-by-step basis.

Claim (1). It is clear from the definition of ‘connected component’.

Claim (2). It follows from the hypothesis f& : XX — Y& = D! is homotopic to a diffeomorphism.
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Claim (3). Assume there is a point © € Ak ; such that G, # K. Then G, > K. f G, N M # H
then = € X (Upr(H)), which is a contradiction. Therefore G, € Y(G, M, H). If dim Ag ;= = 0 then
x € X(H(G,V,0)), which is a contradiction. It says that G, € H(G,V, 1), and therefore K < G,
and dim VK = dim V% = 1. This contradicts the hypothesis K € Iso(G,V ~ {0}).

Claim (4). Assume there is a point z € Ax; N Ak ;. It follows from Claim (3) that K = G, = K’,
which contradicts the hypothesis K # K'.

Claim (5). Let * € Ak, NgAr/ ;. Then G, = K as well as G, = gK’g~!. Therefore we get
K = gK'g™!'. Note that gAg: ; = Ayxr,-1 5 = Ak, j» for some j' € [1..tx]. Since Ag; N Ag j # 0,
we get j' =i and gAk ; = Ak j» = Ak

Claim (6). Let g € L ;. Then, since gKg~' = K, we get g € Ng(K)NNg(H) C Ng(K)NM = H.
Therefore Claim (6) is valid. O

Let us consider the case that (A2) in Definition 2.5 (1) is fulfilled.

Proposition 5.7 (Case (A2)). Suppose that the condition (A2) in Definition 2.5 (1) is fulfilled.
Then, up to modification of F p; by 1-dimensional M -surgeries rel. OWyy UImage(Wys) (see (K2)) of
isotropy type (H) a1, there is a product Ng(H)-embedding ¢, iy mu : I x (XE N X (Uc(H)sor)) —
Wa compatible with Wy, i.e. SN (i), Hu YU Vs is a well-defined embedding. Therefore there is
a product M-embedding ¢arau = I x X([M,Uc(H)sol]) = War compatible with Wy, and there is a
product M -embedding ®ps : I x X(H(G,V,0) UKy U [M,Uc(H)so1]) = War compatible with ¥ py.

In the case of the proposition above, X (G, pmax, H) NH(G,V,1) =0 and Z(G,V,M,H) = {.

Proof. f Y(G,M,H) N H(G,V,1) = 0 then we have nothing to prove. Therefore we suppose
V(G,M,H)NH(G,V,1) # 0. Similarly to Proposition 5.5 (4), we have

XY(GEM,HNH(G,V,1))NN=XY(G,M,H)NH(G,V,1)NIso(G,V ~ {0})) ~ N.
Recall Proposition 5.6. We can suppose without loss of generality that F MylH is transversal on
Waro®™ to (I x V)X in (I x V) for all K € Y(G, M, H) NH(G,V,1) NIso(G,V ~ {0}).

Let K € Y(G,M,H)NH(G,V,1) NIso(G,V ~\ {0}). Let Bk, i € [l..tx], be the connected
components of (Fiz,1|w 0)’1((1 x Y)&) such that By ;N Xo = Af,;. Bk, is a compact orientable
2-dimensional surface. Since Fi1]o,w,, = idy, we see

(Faralyg) " ({1} x V)F) = (v cY® = DL

This shows that (Y{1)% can not contains circles, which implies dBg ; N (Y{1)X = D! and 0B ; &
(I x D'). Tt also follows from the transversality construction above that if B K, N Bk # 0, for

some i, j € [1..tx] then Bk ; = Bk j, i.e. i = j. Let g € Ny (H) such that Bg; N gBg,; # (. Then
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9Bk, = Bykg4-1,; = Bgj for some j € [1..tg]. Since Bg; N Bg ; # 0, we get i = j, and therefore
Bk = gBKﬂ- and AK)Z» = gAk ;. By Proposition 5.6 (6), g is an element of H. We get

{a S NM(H) | BK’iﬁaBK,i # @} =H

Since By ,; is cobordant rel. d to I x D!, we can perform 1-dimensional Ny, (H)/H-surgeries rel.
on [Ticpy. 1, Br,i (C Wil ) so that the resulting [ [,¢}, ;. Bl is diffeomorphic to [T;cy 4, 1 D"
This says that we can perform 1-dimensional M-surgeries rel. OW ), UImage(W ) on Wiy of isotropy
type (H)as so that the resulting surfaces gB}w- in the resulting M-manifold W}, are diffeomorphic
to I x D! for all g € Np(H) and i € [1..tx]. After this modification of Fj;, there is a product
N¢(H)-embedding
Oy ey - L X (X5 N X () an ) = Wi

compatible with ¥j;. By the hypotheses, we have Y(G, M, H) N H(G,V,1) N Iso(G,V \ {0}) =
(K)a,m. Since X (Ua(H)so1) C X(Un(H)U(K)e,m UH(G,V,0)), we can obtain the desired product
Nt (H)-embedding ¢n,, (), mp : I x (XE N X (Ua(H)sor)) — Wt compatible with ;. O

Next we consider the case that H € Iso(G,V ~ {0}) and (A1) in Definition 2.5 (1) is fulfilled.
Under the hypothesis Y(G, M, H) # (), we set

k=dimV(Y(G, M, H)) (=max{dim V" | K € Y(G, M, H)}).

Here k satisfies the inequality 2k + 1 < dim V.

In the case Z(G,V, M, H); # 0, by Theorem 2.3 (D2) and Definition 2.5 (3), we see that either
(C1) or (C2) is satisfied. Recall that dim V¥ > 5 in the case (C1) and dim V¥ > 4 in the case
(C2). If Z(G,V,M,H) # () and k > 1 then we can modify f (resp. Fpr) so that f¥ (resp. Fas™) is
(k + 1)-connected by G-surgeries of isotropy type (H)g (resp. M-surgeries of isotropy type (H)as).
(In order to make simultaneously f# and Fy;* both (k+ 1)-connected, we need M-surgeries on F
of isotropy types in (H ) g.) Particularly, in the case where (C1) is satisfied, we can modify F s so

that Fy 2 is max(3, k + 1)-connected.

Proposition 5.8 (Case (A1, C2, Z, 1)). Suppose H € Iso(G,V ~ {0}). Suppose that the condition
(A1) in Definition 2.5 (1) and the condition (C2) in Definition 2.5 (3) both are fulfilled. Further
suppose Z(G,V,M,H); # 0. Then, up to modification of Fy; by 1-dimensional M -surgeries rel.
OWnr U Image(War) of isotropy type (H)nr, there is a product Nas(H)-embedding én,, (m),m,2 -
Ix(XHNX(Z(G,V,M,H))) — Wﬁo compatible with Wy, i.e. ¢y, (m), i,z UV is a well-defined
embedding. Therefore there is a product M-embedding ¢ py @ I x X([M,Y(G,M,H)]) - Wy
compatible with Vs, where the equality Y(G,M,H) = Z(G,V,M,H); U (Y(G,M,H) NH(G,V,0))
holds.
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In the case of the proposition above, we have k = 1, dim V# — dim V (U, (H)) = 2,
Z(G7MM7H)1HH(GaV:1) :Z(G?MMvH)l :y(GaMaH)ﬂH(Ga‘/al% and

X(2(G,V, M, H)1)~ N = X(Z(G,V, M, H); N1s0(G, V ~ {0})) ~ N.

Proof. Let K € Z(G,V, M, H);NIso(G,V ~{0}). Ny (H)/H acts freely on Ny (H) - (X)X, By the
hypothesis, fi|xx : X% — Y¥ is a diffeomorphism. We can suppose without any loss of generality
that FMylH is transversal on Wﬁ,o to IxYE inIxYH (here YE o~ Dl). Let Bk ; be the connected
component of (FMJ\Wﬁ’O)*l(I x Y& such that Bk ;N X = Ak ;. Then Bg ;N B j =0 if i # j.

For K' € Z(G,V,M, H); N1Iso(G,V ~ {0}) with (K)g.m # (K')a,m, the inequality dim B ; +
dimBg/; = 4 < 5 < dim WJIV}(’O holds, and therefore, by the general position argument (up to

M-homotopic deformation of Fis,1), we may suppose
(5.5) BKJ'QBK/J' = 0.

Let g € Ny (H) such that Bi,; N gBgk,; # 0. Then gBg,; = Bygy—1,; = Bk, for some j €
[1..tx]. Since Bk ; N Bg,; # 0, we get @ = j, and therefore Bx; = gBk,; and Ax; = gAk,;. By

Proposition 5.6 (6), g is an element of H. It means
(5.6) {gENM(H) |BK7iﬁgBK,i7é®}=H.

Since By ; is a compact connected orientable 2-dimensional surface such that 0Bk ,; = 9(I x D).
B i is cobordant rel. 8 to I x D'. Therefore by 1-dimensional Ny, (H)-surgeries on W) of isotropy
type {H} rel. 0Wj;UImage(V ), we can modify the connected components By ; so that Bypg-1,; =
I x D! for all g € Ny (H). By virtue of (5.6), 1-dimensional M-surgeries on Wy, of isotropy type
(H)nr rel. OWp U Image(W ), we can modify gBk,; (= Byig-1,5) so that gBg; = I x D! for all
g € M. Tt shows that up to the modification above, we can obtain a product Ny (H)-embedding
O (), ik I X XN (K) — Wi o compatible with . Because of (5.5), there is a product Ny (H)-
embedding ¢n,, )i,z : I x (X N X(Z(G,V,M,H))) — Wﬁo compatible with W,;. Using
Ny (i),H,2z and Wy, we can obtain a product M-embedding ¢nrmy @ I x X([M,Y(G, M, H)]) —
Wis compatible with W ,. O

Proposition 5.9 (Case (Al, C1, Z, 1)). Suppose H € Iso(G,V ~ {0}). Suppose that the con-
dition (A1) of Definition 2.5 (1) and the condition (C1) of Definition 2.5 (3) both are fulfilled.
Suppose Z(G,V,M,H); N H(G,V,1) # 0. Further suppose that f : XH — YH and Fy™ -
Wt — I x Y™ are (k+ 1)-connected. Then, there is a product Ny;(H)-embedding PNy (H),H,Z
I x (X§' 0 X(2(G,V,M,H))) — Wii, compatible with Wy;. Therefore there is a product M-
embedding ¢y I x X([M,V(G, M, H)]) = W compatible with W ;.
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In the case of the proposition above, we have k = 1, dim V# — dim V (U, (H)) = 2,
Z(G7‘/7M7H)1 :Z(Ga‘/aMaH)lmH(G7‘/71) :y(G5M7H)mH(GaV:1)7 and

X(Z(G,V,M, H)\) ~ N = X(Z(G,V, M, H): NIso(G,V ~ {0})) ~ N.

Proof. By the hypotheses, X and Wy, are 1-connected. Since dim V¥ — dim V(U (H)) > 3,
X Y and Wﬁo are 1-connected, too.

Let K be an element of Z(G,V,M,H); N H(G,V,1) NIso(G,V ~ {0}). For each i € [l..tx],
by virtue of the connectedness of Y, there exists an embedding dix ; : (I x DY) — Wﬁ’o such
that Oug ({0} x DY) = A, Ouki(t,x) = ®p(t, 0k ,:(0,2)) for all ¢ € I and z € dD', and
Ok i({1} x DY) € ({1} x YE)n Wil ,. Since Wi} is 1-connected and dim Waro™ > 6, Ougy is

bounded by an embedding tx ; : (I x D) — WJ@,()' Set Bk ; = Image(tx ;). Let
(5.7) 7711\{4,0 : WJ\I/il,O — Wzlvlfr,o/NM(H)

be the canonical projection. Recall dim Wﬁ,O/NM(H) > 6 and dim Bjps; = 2. Applying the general

position argument to
{miootk | K € Z(G,V,M,H); NH(G,V,1) NIso(G,V ~ {0})},

we can suppose without loss of generality that Bx, N Bgs; = 0 for all K, K’ € Z(G,V,M,H); N
H(G,V,1)NIso(G,V ~{0}), i € [1..tk], and j € [1..tx/] unless Bx ; = Bk ; (i.e. K =K' and i = j).
Therefore there is a product Ny (H)-embedding ¢, (m),mz : I x (X N X(Z(G,V,M,H);)) —
Wit o compatible with Wy, It yields a product M-embedding ¢ar m,y : I x X([M,V(G, M, H)]) =
Wis compatible with U,. O

Proposition 5.10 (Case (Al, Cl1, Y \ 2Z)). Suppose H € Iso(G,V ~ {0}). Suppose that the
condition (A1) of Definition 2.5 (1) and the condition (C1) of Definition 2.5 (3) both are fulfilled.
Suppose Y(G, M, H)~ (Z(G,V, M, H); UH(G,V,0)) # 0. Further suppose that f% : X — YH and
Fu oWy = I x Y are (k+1)-connected. Set T = Y(G, M, H)~ Z(G,V, M, H),. Then, there
is a product Npr(H)-embedding ¢, (my,m,y~z : 1 x (X§ N X(T)) — Wit compatible with Wyy.
Therefore there is a product M-embedding dnr,uy~z : I x X([M,T]) — W compatible with Uyy.

In the proposition above, it holds that k& > 1, dim V# > 4 and
dim V# — dim V(U (H)) > dim V(T) + 1 > 2.

Proof. We identify X (resp. Y) as {0} x X (resp. {1} xY) C Wyo. Set s = dim V(7). Then
s>1,s e {k—1k} and dim X' (T) = 5. By the hypotheses, X and Wy, are k-connected.
Since dim V# — dim V(U (H)) > s+ 1, X4, Y and W], are s-connected. Recall that 0X§" C
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Image(W¥yr) UOX. Therefore there is a product Njs(H)-embedding
Op I x (0X)(T) = Wit o N (Image(¥yy) UOX).

Since Y and Wﬁ,o are s-connected, there is a product embedding p : I x XH(T) — Wﬁo extending
Ou. Consider the canonical covering projection ”ﬁ,o : WA’}O — Wﬁ’O/NM(H). Recall dim I x

XH(T)=s+1and
dim Wij /Ny (H) = dimVF +1> (2k+ 1) +1 > 2(s+ 1).

Applying the general position argument, we can obtain a product Ny (H )-embedding ¢, (m), 7y~ 2

I x (X§'nX(T)) = Wi, compatible with Wy, O
If Z(G,V,M,H); ~ H(G,V,1) # 0, then k > 2 and
Z(G, V,M,H); = Z(G,V,M,H))1 "NH(G,V,k) = Y(G,M,H) N H(G,V, k)

(see Theorem 2.3 (D2) and Definition 2.5 (A1) (ii)).

Proposition 5.11 (Case (Al, Z, k > 2)). Suppose H € Iso(G,V ~{0}). Suppose that the condition
(A1) of Definition 2.5 (1) is fulfilled, Suppose Z(G,V,M,H); ~ H(G,V,1) # 0. Further suppose
that 7 X" - YH and Fy - Wyt — I x Y are (k + 1)-connected. Then, there is a
product Ny(H)-embedding dn,,my.m,z + 1 x (Xg' N X(Z(G,V, M, H)y)) — Wii, compatible with
Y and ¢ar H,y~z in the previous proposition. Therefore there is a product M -embedding ¢ p.y :

I x X([M,Y(G,M,H)]) = Wy compatible with ¥ ;.

In the situation of the proposition, we have
Z(G,V,M,H), = Z(G,V,M,H); N H(G,V,k) = Y(G,M, H)NH(G,V, k),

dimV# > 2k +1 (> 5), dimVH — dim V(U (H)) > k+ 1 (> 3), and (C1) of Definition 2.5 is
fulfilled. Recall (iii) dim V* > 2 for L € Z(G,V, M, H)3 and (iv) dim VIt — dim V{E0L2) > 2 for
Ly, Ly € Z(G,V,M7H)2 with Ly 75 Lo.

Proof. The spaces X and Wy,™ are k-connected. Since dim V# — dim V(Uy,)(H))) = k+ 1, X7
and W, are (k — 1)-connected.

Note A = X N X(Z(G,V,M,H);) is a k-dimensional manifold. There is a product embedding
oL: I x0A — Wﬁ,o compatible with ®,;. Since Wy is k-connected and dim Wy > 2(k + 1),
there is a product embedding ¢ : I x A — Wt extending d¢. By the general position argument, we
can suppose without loss of generality that

(1) Image(r) N War(Un(G) N Z(G,V, M, H)s)) = 0,
(2) tmage(:) 1 War(2(G, V, M, H)3)| < oo,
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(3) T.(War) = T (Image(r)) ® T, (War") for every z € Tmage(r) N War(Z(G,V, M, H)s).
Recall dim Wy, > 6 and dim Wy, — dim Wy (2(G,V, M, H)3) > 3. For L € Z(G,V, M, H), and
z € Image(t) N Wy (Z(G,V, M, H)s), there is a 2-dimensional disk Ay, , in Wit with 0AL, =
Ipy U192 U s such that Iy, I12 and Izg are diffeomorphic to I = [0, 1], and moreover Ip; NIy = {z},
AL, NYH =I5, I C Image(t), and

Ap.~0AL. C (Int(Wa™)  (Image(r) UWas (Uns(H))).

Here we may assume Az, N Ay . =0 for all 2’ € Image(:)” with 2’ # z, and Ay, N Aps . = () for

all I € Z(G,V,M, H)y with L' # L, z € Image(:)* and 2’ € Image(:)~". Observe Figure 5.1.

Image(t)

FIGURE 5.1

Via the Whitney trick along the disk Ay ., we can remove the intersection point z by an isotopic
deformation of ¢. Therefore, we can assume without loss of generality that Image(¢) "W (Un (H)) =
0, and furthermore that Image(:) C Wi .

Applying the general position argument to 7 o ¢, where m : Wy, =" — Wi =% /Ny (H) is the
canonical projection, we can obtain a product Nj;(H)-embedding ¢y, (m),m,z : I X A — Wﬁo

compatible with Wy, and ¢ar, g,y z in the previous proposition. O

Putting Propositions 5.7-5.11 together, we obtain the next theorem.

Theorem 5.12. Let G, V and (F,F') be those in Theorem 2.3. Let f be a G-framed map and let F',
be L-framed cobordisms stated in the first paragraph of this section, where L runs over max(S(G)so1)*.
Let K be a G-conjugation-invariant and upwardly closed subset of S(G)so1 fulfilling the hypotheses
(K1) and (K2). Let H € max(F~K)*NIso(G,V ~{0}) and M = pmax(H). Then, up to G-surgeries
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rel. O on f of isotropy type (H)g and M-surgeries rel. 01Wps U Opr Wiy U Image(Vyps) on Fay of
isotropy types in (H)pm.q, there is a product M-embedding ¢pr p,y = I x X([M,V(G, M, H)]) = Wi
compatible with ¥ ;. Therefore there is a product M-embedding ®nrmy : I x X(H(G,V,0) UKy U
[M,Y(G,M,H)]) - Wy compatible with ¥ ;.

6. PROOF OF THEOREM 2.4

We prove Theorem 2.4 by induction on the G-conjugacy classes (H)g contained in S(G)so1. Let
f and {F 1} be those in the previous section, where L ranges over max(S(G)so1)*.

We quote the reflection method in the equivariant surgery theory.

Lemma 6.1 ([23, Lemma 6.1]). Let H and K be G-conjugation-invariant and upwardly closed subsets
of §(G)so1 such that K C F, let M be an element of max(S(G)so1)*, and let H be an element of
S(M)~ (HUK) such that No(H) C M. Invoke the following two hypotheses.
(S1) There is a product M-embedding ®p; : I x Nyf(X(HUKy) UM - X>H X) — Wiy and
(X,Y, W) has the (G, M)-tame singular set at H with respect to the restriction of ®yr to
I x Ny(M - X>H X).
(S2) There is an M-homotopy

Har : (Wag, OoWag, O1Wag, 001 Way) X I — (2,002,001 Z,001Z) (where Z =1 xY)
rel. O1Wiyr U O0p1 W such that HM|WMX{0} coincides with Fyy and

Hs [ tmage(®a)x {1} + Image(Pas) x {1} — Hs(Image(Par) x {1})
s a diffeomorphism.

Then there are

o a G-framed map f' rel. 9, where (as is described before) f' is a pair (f',V') of f': (X',0X') —
(Y,0Y) and b/ : ex/(R) @ T(X") @ ex/(RY) = ex (RO V & RY),
a G-framed cobordism Fg from f to f rel. @ and Vg(H),

an M-framed cobordism Fyr from res§ Fa

F'\, = (F};, B},) with

res

%fFM to F'yy rel. 0 and Varc(H), where

F]/\J : (W;\/[,aowjl\/[,alel\/[,a()lelw) — (Z, 80Z, 812, 801Z)

is an M-framed cobordism from res§, f to res§ idy rel. O and Vyr.q(H),

a natural identification M-map : Ny (X (HUKy)UM - X>H X)) — Ny (X' (HUKy) UM -
X/>H X/)

a product M-embedding ), : I x Ny (X'(HUKy)UM - X' X' = W},
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e a natural identification M-map : Image(® ;) — @, (I x Ny (X' (HUKy)UM - X7 X))
such that the diagram

I x Ny (X(HUKy)UM - X2 X) Du Image(® )

=l lz

Ix Ny (X' (HUKy)UM - X7 X7 = (X' (HUKy)UM - X7 X7
M

commutes, and

e an M-homotopy
H/ZM : (WM,@QWZIM,81W1/VI,801WJIM) x I — (Z, 802, 612, 6012)

rel. WWi, U0 Wy,
possessing the following compatible properties.
(1) Hyslwy, x{oy coincides with Fy;,
(2) Hrl vy arwr, # w1y @8 a diffeomorphism, and
(3) Hiysltmage(@a)x1 coincides with Has |tmage(a ) x1-
In particular, X'" is N¢(H)-diffeomorphic rel. © to Y and [ED, Gl P N¢(H)-homotopic

rel. 0 to a diffeomorphism.

Proof. Recall
Kt = [M, K0 (prax (M) Ulns (prax(M)))]-

Since (HUK) N Vg(H) = 0, the lemma follows from the proof of [23, Lemma 6.1]. O

Remark 6.2. If (H)¢g|ym = (H)m, where (H)g|y = (H)g NS(M), then we get the conclusions in
Lemma 6.1 for H replaced by arbitrary H' € (H)g|n-

We can suppose without loss of generality that (f, {Fr}5) is adjusted on (H(G,V,0),F(0)). For
L € max(S(G)so1)*, we set T(L) = H(G,V,0) UK.

Proposition 6.3. Let K be a G-conjugation-invariant and upwardly closed subset of F fulfilling the
hypotheses (K1) and (K2). Let H € max(F ~\ K)* \Iso(G,V ~ {0}) and M = pmax(H). Then there

exist

e a G-framed cobordism Fg = (Fg, Bg) from f to f' rel. Ny (X(T(M)), X)UOX and Vg (H),
where Fg : Wg — I xY and f' = (f',0') with f': (X',0X") — (Y,9Y), and

o afamily {Fr, | L € max(S(G)so1)*} consisting of L-framed cobordisms Fr, from res§ F g Uresff F
to F', rel. (IxNg(X'(T(L)), X"))# U WU W1, and Vr, c(H), where (Ix N (X'(T (L)), X"))#
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stands for
(I x NL(X(T(L)), X)) U W (I x Ni(X(T(L)), X)),
{0} X N (X(T (L)), X)

F', is obtained by L-surgeries of isotropy types contained in (H)r g on res$Fg Uresff Fp,

and Fy, is the trace of the L-surgeries,

such that (f',{F.}1) is adjusted on (H(G,V,0),K U (H)g), where L ranges over max(S(G)so1)*

In the proposition above, f/7 : X' — YH is N¢(H)-homotopic rel. 9 to a diffeomorphism, and
therefore X' is N (H)-diffeomorphic to the disk D(V), for the subgroup H.

Proof. By the hypothesis, we have Ug(H)so C K and X¥ is diffeomorphic to a disk D? for all
K € Ug(H)s, where d = dim VX, By Proposition 5.4 we have Uy (H) C Kys, and Wy K s
diffeomorphic to ZX =TI x D9 for all K € Uy (H) (C F').

Recall the hypothesis dim V# > 0. The hypothesis H ¢ Iso(G,V ~ {0}) implies that there is a
subgroup H € Iso(G, V~{0})NUg (H )sor such that VZ = V. By the condition (D1) of Theorem 2.3,
we have H C M and p,,, (H) = pmax(H) = M. Particularly we have H N M = H > H. It holds
that X# = X=HTI X" and X¥ is diffeomorphic to the disk D?, and that Wi, = Wy, = 1T W, 7,
and WMF is diffeomorphic to I x D? where d = dim V. Let W’ be a copy of W and observe
the Nys(H)-cobordism W = W' Jyu War™. W is Ny (H)-cobordant to I x Y rel. 9W”. By
the reflection method, i.e. Lemma 6.1, we can obtain a G-framed cobordism F¢ from f to f’ rel. 0
and Vg (H), an M-framed cobordism Fys from res§, Fg Uresﬁf Fy to F'yy rel. 0 and Vi (H), and
an M-homotopy Hj, rel. 01Wj, U do1 Wy, and Uns(H) from F}, to Fy, satisfying the condition
that

Fr o aow M oowh 00wt — (I x YH {0} x YH {1} x YH T x oY)

is a diffeomorphism. (Therefore f’ H.ox" 5 yH g Ny, (H)-homotopic to a diffeomorphism. Recall
Ng(H) = Ny (H).) Tt implies that F]’WJH/ is an Ny (H')-diffeomorphism for all H' € (H)a and
that f’H/ Xy g Ny (H')-homotopic to a diffeomorphism for all H € (H)ys, where the
equality Ny;(H') = Ng(H') holds.

Next let L € max(S(G)so1)* ~ {M} and observe the L-framed cobordism F] = res¢Fg Umsff Fy,
from res? £ to resfidy rel. 9. Let K € K* such that ppax(K) = L. Since K is G-conjugation
invariant as well as upwardly closed in S(G)so1 and H € max(F ~\ K)*, K is not G-subconjugate to

H. Therefore we have Wg = I x XX and X' = XX If K € S(L) then

(Wa Ux WK = (I x XEYUyrx WK 2w, K21 xyXK,
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If S(L)N (H)g = 0, then we can adopt F} as F desired in the proposition. Therefore we now
suppose S(L) N (H)g # . We must modify F to achieve the property W = I x YH for all
H' € [L,(H)e NUL(ppic(L))]. Decompose [L, (H)g NUL(pyL(L))] to the disjoint sum

(L, (H)e NUL(prax (L)) = [T (Hi)z
i€[l..m]
such that H; € (H)g NUL(pmix (L)) equipped with H; o € Uy (prl (L)) satisfying H; o < H; < L.
By the definition, the group M; = p,.(H;) = M does not coincide with L, and therefore H; €
X (G, pmax, Hi0). By the condition (D2) in Theorem 2.3 and the condition (B1) in Definition 2.5 (2),
we get
dim V7 < 1.

The hypothesis H ¢ Iso(G,V ~ {0}) implies H; ¢ Iso(G,V ~ {0}). Since K D> H(G,V,0), we get
dim Vi = 1. There is a subgroup K; € Ug(H;) NIso(G,V ~ {0}) such that Vi = VHi,

First consider the case of ¢ such that K; N L > H;. If K € Uy (H;) then we see K € K, because
Ur(H;0) CUL(pmic(L)) and K € K. By the hypothesis (K2), we get

W£>H7‘, _ U WgK _ gKiﬂL (g T x XKimL)
KeUy (H;)
(recall XHi = XKL — xKi) We remark W)™ = wy=" 1 w}>™. Each connected component

of WY =Hi i5 a closed oriented 2-dimensional surface and hence null-cobordant. By the condition
(B2) in Definition 2.5 (2), we have Ng(H;)N L = H;. We can perform L-surgeries on F] of isotropy
type (H;)r rel. 9 to remove W]’;FH This argument allows us to suppose W}’ =Hi — () whenever
K;NL>H,.

Next we consider the case of 4 such that K; N L = H,. In this case, we have dim VT = 0 for
all T € Up(H;). Thus we get Y (Ur(H;)) = Y& = {0}, which implies that X (U (H;)) = X* and
XTI consists of only one point z7,. In addition, we have W} (U (H;)) = i’L = | x {0}, because
K o H(G,V,0). Recall that X7 =~ yH: — DI, We have the decomposition Wy = S'II L1, S;
consisting of connected components, where S is the component containing X' Hy uowy HiyyHi Note
that S D W/ L, that S is a compact orientable 2-dimensional surface with boundary diffeomorphic
to I x Y i and that each S; is a closed orientable 2-dimensional surface. Therefore we can perform
surgeries on W™ rel. 8 so as to achieve W)™ o I x YH: (= [ x X’"*). By the condition (B2)
in Definition 2.5 (2), we have Ng(H;) N L = H;. We can perform L-surgeries on F] of isotropy
type (H;)r rel. O to obtain F’, such that WiH =~ [ x YHi. Since W} is an L-cobordism, we see
Wi K =1 xYX forall K € (H;), = [L, {H;}].

Putting all this together, we obtain the proposition. O
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Proposition 6.4. Let K be a G-conjugation-invariant and upwardly closed subset of F fulfilling the
hypotheses (K1) and (K2). Let H € max(F ~ K)* NIso(G,V ~ {0}) and M = pmax(H). Then the

same conclusion as Proposition 6.3 holds.

Proof. Since H € F* \ K, we have dim V# > (. Recall the following.
e The map ¥y, is a product L-embedding I x Np(X(H(G,V,0) UKL),X) — Wy for L €
max(8(Gsol)”
o The map ®ps g,y in Theorem 5.12 is a product M-embedding I x X(H(G,V,0) U Ky U
[M,Y(G, M, H)]) - W compatible with ;.
o X°H = X(V(G,M,H)UUpy (H)) and Ups (H) = Kp NUG(H )so1 (see Proposition 5.4).
Therefore X (H (G, V,0) UKy )UM X>H coincides with X (H(G,V,0) UKy U[M,Y(G, M, H)]). There
is a product M-embedding

B I x Ny (X(H(G,V,0) UKpy)UMX>H X)) = Wy

extending W, and ®pr g,y. Let f', Fg, F’,; and ', be the resulting maps by Lemma 6.1.

To obtain the desired L-framed cobordism F; for L € max(S(G)s1)* ~ {M}, we set F} =
res$Fg UresngD We have to arrange F} so that W)™ =~ I x X' for K € (KU (H)g)L. By
the hypothesis (K2), W)™ = I x X'* for K € Kz and X'* = YK = D! for K € (H)g. By
Proposition 5.4, we see

K UL, (H)g NUL(pmbx (L HeF
(KU(H)G)L _ L [ ( )G’ L(p ( ))] ( /)
KL (H ¢ F')
If H ¢ F' then we have nothing to modify on F7. Therefore we now consider the case H € F'.
Decompose [L, (H)g NUL(pgL(L))] to the disjoint union
L (H)e UL (pmax (L)) = [T (Hi)z

i€[1..m]

with H; € (H)g and H,; o € ppL.(L) such that H; o < H; < L. Since H; ¢ H(G,V,0) C K and
H; € X(G, pmax, Hi o), we get dim Vi = 1. We remark the following.

e H; €Iso(G,V ~ {0}).

o YE = {0}, X' = {2k} and W/K = I for K € Ug(H;)so1.

e Each connected component of (W7 ~ N )i, where N = Image(¥y), is a 2-dimensional

compact orientable surface of which the boundary is empty or diffeomorphic to 9(I x D?1).

Therefore we can perform surgeries on W} Hi vel. 9 and wy "'\ N so that the resulting manifold
Wi’H is diffeomorphic to I x X' Since Ng (H;) N L = H;, we can perform L-surgeries on W}’ rel.
0 of isotropy types (H;)r, ¢ € [1..m], so that the resulting manifold W7 satisfies WiH >~ [ x x'H

Putting all this together, we obtain the lemma above. [l
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By inductive argument on X using Propositions 6.3 and 6.4, we can obtain the next proposition.

Proposition 6.5. There ezist
o o G-framed cobordism F¢ from f to f' rel. 8 and S(G)nonsol, and
e L-framed cobordisms Fy, from rengG Uresff Fp to F/L rel. LW, UO0g1 Wy, where L ranges

over max(S(G)so1)* and F'y, is an L-framed cobordism from res$ f' to res¥idy rel. 0,

such that (f',{F';}1) is adjusted on (H(G,V,0),F).

Lastly we consider the case H € §(G)so1 ~ F. For H I N € §(G), let G1(N, H) denote the set of
all K € Uyn(H) such that K/H is hyperelementary, i.e. there is a cyclic group C < K/H such that
|(K/H)/C| is a prime power.

Proposition 6.6. Let H be an element of S(G)sol ™ F and set N = Ng(H). Suppose that f¥ :
XK YK is a homology equivalence for all K € Gi(N, H). Then a G-framed map f = (f',b) rel.
0 such that
(1) res§ f' is H-framed cobordant rel.  to res$idy and
(2) o x L YH s g homotopy (resp. homology) equivalence if dimVH > 5 (resp.
dimVH =3)
is obtainable by G-connected-sum operations associated with [G/G] — Ba and G-surgeries of isotropy

type (H)g on f.

Proof. First we remark that G (N, H) C S(G)so1. Let L € max(S(G)so1)*. Set Z(f) = fUaf idy,
Y(idy) = idy Upiq, tdy, and X(Fr) = F, UIXresfaf(I x res¥idy). Then X(Fp) is an L-framed
cobordism from res?X(f) to res¢S(idy). Here we remark that X(idy) = idgrev). Recall that
Proposition 9.3 of [23] was obtained by equivariant connected-sum operations associated with [G/G]—
Be and G-surgeries of isotropy type (H)g on f. (The keys of the proof were the equivariant surgery
theory [1, 3] and the induction theory [21, Theorem 13.5].) Therefore the proposition above follows
from [23, Proposition 9.3]. O

Theorem 2.4 follows from Propositions 6.5 and 6.6.
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