
NESTED PRODUCTS AND A STRONGLY CENTERED FILTER
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Abstract. Assume an almost huge cardinal with Mahlo target exists. We

construct a model of ZFC in which a small cardinal carries a strongly centered
filter by forcing with an iteration of two nested products of Levy collapses.

1. Introduction

One of the main themes in set theory is to construct models of ZFC (Zermelo–
Fraenkel set theory with the axiom of choice) in which small cardinals have strong
combinatorial properties, assuming the existence of large cardinals. In [8] Kunen
devised a powerful method to construct a model in which ω1 carries a saturated
filter. To sketch his method, let j : V → M witness that κ is a huge cardinal. Kunen
constructed the model by forcing with an iteration of the form P ∗ Ṡ(κ, j(κ)), where
Ṡ(κ, j(κ)) is a P -name for the Silver collapse. The “universal collapse” P , which

forms the core of the method, is defined by recursion so that P ∗ Ṡ(κ, j(κ)) can be
completely embedded into j(P ) among other conditions. We refer the reader to [3]
for a comprehensive survey of Kunen’s method.

Laver [9] and Foreman–Laver [4] used Kunen’s method to construct models in
which ω1 carries a strongly saturated filter and a centered filter respectively. In do-
ing so, they replaced Silver collapses in the original construction by Laver collapses
and nested products of Silver collapses respectively.

In [11] the Laver construction was simplified and extended to the case of Pκλ. As
it turned out, there is no need of the universal collapse: An iteration of two Easton
collapses works. In this paper we do the corresponding task for the Foreman–Laver
construction. More specifically, we prove

Theorem 1. Suppose κ is almost huge, j : V → M is a witness and j(κ) is Mahlo.

Let µ < λ be both strongly regular with µ < κ ≤ λ < j(κ). Then P (µ, κ)∗ Ṗ (λ, j(κ))
forces that κ = µ+, j(κ) = λ+ and Pκλ carries a strongly centered normal filter.

Here Mahloness is a large cardinal property much weaker than almost hugeness.
P (µ, κ) denotes the nested product of Levy collapses. Regular cardinals are strongly
regular under GCH (the generalized continuum hypothesis). A strongly centered
normal filter on a small cardinal can be viewed as an analogue of a normal ultrafilter
on a large cardinal. As in [11], the key to the proof is the existence of a projection

from j(P (µ, κ)) to P (µ, κ) ∗ Ṗ (λ, j(κ)) with a suitable quotient (see Lemma 6).
While there is no implication between strong saturation and strong centeredness,

they are both stronger than saturation and weaker than density. In [12] a poset for
a model with a dense filter is defined explicitly, but it has only the Baire property.
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In contrast, the poset of Theorem 1 is µ-directed closed, so that we can make µ
supercompact in the extension by incorporating the Laver preparation. This in
turn allows one to do Prikry forcing at µ, which we leave for future work.

2. Preliminaries

Our notation is standard. We refer the reader to [7] for the background material.
Unless otherwise stated, µ, κ, λ and ν denote regular cardinals.

A cardinal κ is almost huge if there is an elementary embedding j : V → M
such that κ is the critical point of j and M<j(κ) ⊂ M . We say that κ is strongly
regular if |κ<κ| = κ. Note that if a poset P is κ-cc and of size ≤ κ, then the class
of strongly regular cardinals ≥ κ remains the same after forcing with P . In what
follows, SR denotes the class of strongly regular cardinals (in V ).

We identify a poset P with its separative quotient. Thus for p, p′ ∈ P we have
p′ ≤ p ⇔ ∀p′′ ≤ p′(p′′ ∥ p) ⇔ p′ ⊩ p ∈ Ġ, where Ġ is the canonical P -name for a
generic filter. By our convention a complete embedding between posets is injective.

Suppose (Pi,≤i) is a poset for i ∈ I. The < κ-support product
∏<κ

i∈I Pi is the
set

∪
d∈[I]<κ

∏
i∈d Pi ordered by: p′ ≤ p iff dom p′ ⊃ dom p and p′(i) ≤i p(i) for

every i ∈ dom p. The full support product
∏

i∈I Pi is ordered similarly.

For a set A of ordinals, the Levy collapse C(κ,A) is defined as
∏<κ

γ∈SR∩A−κ γ
<κ.

Here γ<κ is ordered by reverse inclusion. Thus C(κ,A) forces |γ| ≤ κ for every
γ ∈ SR ∩ A. Note that X ⊂ C(κ,A) has a lower bound iff the coordinatewise
union of X is in C(κ,A), in which case the coordinatewise union of X is infX. In
particular, C(κ,A) is κ-linked closed, i.e. every linked (pairwise compatible) subset
of size < κ has a lower bound. If ν > κ is inaccessible and sup(SR ∩ ν) = ν, then
C(κ, ν) is ν-cc and forces ν = κ+.

The following definition is due to Shelah. Let S ⊂ ν be stationary. A poset P
is S-layered if P =

∪
ξ<ν Pξ for some increasing sequence ⟨Pξ : ξ < ν⟩ of complete

suborders of P of size < ν such that S ∩C ⊂ {ξ < ν : Pξ =
∪

ζ<ξ Pζ} for some club

C ⊂ ν. A poset is ν-cc if it is S-layered for some stationary S ⊂ ν (see [5]).

Lemma 2. Let ν > κ be inaccessible. Suppose S is a stationary subset of ν such
that S ∩ C ⊂ {ξ < ν : cf ξ ≥ κ} for some club C ⊂ ν. Assume Pγ is S-layered for

every γ < ν. Then
∏<κ

γ<ν Pγ is S-layered.

Proof. For each γ < ν let ⟨Pγ,ξ : ξ < ν⟩ and Cγ ⊂ ν club witness that Pγ is S-

layered. Then ⟨
∏<κ

γ<ξ Pγ,ξ : ξ < ν⟩ and C ∩△γ<νCγ witness the desired result. □

A poset P is (λ,< µ)-centered if there is f : P → λ such that every X ∈ [P ]<µ

on which f is constant has a lower bound. The (λ,< µ)-centeredness implies the
(λ+, λ+, < µ)-cc in the sense of [11], which in turn implies the λ+-cc. By our
convention a complete suborder of a (λ,< µ)-centered poset is (λ,< µ)-centered.
The following modification of [4, Lemma 4] simplifies the proof of centeredness:

Lemma 3. Let µ ≤ κ ≤ λ. Suppose Pi is a poset for i ∈ I, R is µ-Baire and forces
λ to be strongly regular. Assume one of the following:

(1) P =
∏<κ

i∈I Pi and R ⊩ |I| ≤ 2λ.
(2) P =

∏
i∈I Pi and |I| < λ.

Then R forces that P is (λ,< µ)-centered if Pi is (λ,< µ)-centered for every i ∈ I.
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Proof. Let H ⊂ R be V -generic. Work in V [H]. For i ∈ I let fi : Pi → λ witness
that Pi is (λ,< µ)-centered.

(1) Fix an injection t : I → {0, 1}λ. To give a witness for P , let p ∈ P . Note
that |dom p| ≤ |dom p|V < κ ≤ λ. So there is δ < λ such that ⟨t(i) | δ : i ∈ dom p⟩
is injective. Define f(p) : {t(i) | δ : i ∈ dom p} → λ by f(p)(t(i) | δ) = fi(p(i)).
Note that f : P →

∪
{λd : d ∈

∪
δ<λ[{0, 1}δ]<κ}. So we have |ran f | ≤ |λ<λ| = λ.

Suppose f is constant on X ∈ [P ]<µ. Note that X ∈ V because R is µ-Baire in V .
Let D =

∪
p∈X dom p ∈ V . Note that |D|V < κ. For every i ∈ D, fi is constant on

Xi = {p(i) : p ∈ X, i ∈ dom p} ∈ [Pi]
<µ, so that Xi has a lower bound in Pi. Since

⟨Xi : i ∈ D⟩ ∈ V , we get a lower bound of X (in V ), as desired.
(2) For p ∈ P define f(p) : I → λ by f(p)(i) = fi(p(i)). Then |ran f | ≤ |λI | ≤ λ.

Suppose f is constant on X ∈ [P ]<µ. Then X ∈ V as in (1). For every i ∈ I, fi
is constant on Xi = {p(i) : p ∈ X} ∈ [Pi]

<µ, so that Xi has a lower bound in Pi.
Since ⟨Xi : i ∈ I⟩ ∈ V , we get a lower bound of X (in V ), as desired. □

Suppose F is a filter on Pκλ, where ω < κ ≤ λ. Then F+ denotes the set
of F -positive subsets ordered by inclusion. By our convention X,Y ∈ F+ are
equivalent iff X△Y ̸∈ F+. When κ = µ+, we say that F is strongly centered if F+

is (λ,< µ)-centered.
Let P and R be posets. Suppose π : R → P is a projection, i.e. an order-

preserving map such that π(1R) = 1P , and p ≤P π(r) implies π(r′) ≤P p for some
r′ ≤R r. If D ⊂ P is dense open, then π−1[D] ⊂ R is dense. So if H ⊂ R is
V -generic, then π[H] generates a V -generic filter over P in V [H]. If G ⊂ P is V -
generic, then in V [G] we can define the quotient of R by π as the suborder π−1[G]

of R. Let Q̇ be a P -name for the quotient. Then the map i : r 7→ (π(r), r̂) is a

dense embedding of R into P ∗ Q̇, where r̂ is a P -name such that π(r) ⊩ r̂ = r and
p ⊩ r̂ = 1R for every p ⊥ π(r).

Let Q̇ be a P -name for a poset. Then T (P, Q̇) denotes the term forcing: T (P, Q̇)

is the set of P -names for elements of Q̇ ordered by: q̇′ ≤ q̇ ⇔ P ⊩ q̇′ ≤Q̇ q̇. It is

easy to see that id : P × T (P, Q̇) → P ∗ Q̇ is a projection. Lemma 4 is essentially
proved in [1] (see also [11]).

Lemma 4. Suppose P is κ-cc and of size ≤ κ, and |γ<κ| = γ. Then T (P, γ<̇κ) is
equivalent to γ<κ.

Note that the isomorphisms of Lemma 5 are defined coordinatewise.

Lemma 5. Suppose Q̇i is a P -name for a poset for i ∈ I. Then the following hold.

(1) If P is κ-cc, then T (P,
∏<κ

i∈I Q̇i) ≃
∏<κ

i∈I T (P, Q̇i).

(2) T (P,
∏

i∈I Q̇i) ≃
∏

i∈I T (P, Q̇i).

Proof. (1) By the κ-cc of P , a subset of I of size < κ in the extension can be covered
by a set of size < κ in the ground model. Thus

D = {q̇ ∈ T (P,
∏<κ

i∈I Q̇i) : ∃d ∈ [I]<κ(P ⊩ dom q̇ = d)}

is dense in T (P,
∏<κ

i∈I Q̇i). Define e : ⟨q̇i : i ∈ d⟩ 7→ q̇, where P ⊩ q̇ = ⟨q̇i : i ∈ d⟩. It
is easy to see that e :

∏<κ
i∈I T (P, Q̇i) → D is an isomorphism.

(2) is proved in a similar (even simpler) way. □
Suppose P is κ-cc and of size ≤ κ, and ν > κ is Mahlo. Then by Lemmas 4 and

5 there is a projection π : P × C(κ, ν) → P ∗ Ċ(κ, ν) that is the identity on the
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first coordinate. Moreover, the following holds by the proof of Lemma 5: Suppose
X ⊂ C(κ, ν) is linked and of size < κ, and q∗ is the coordinatewise union of X.
Let π(1P , q) = (1P , q̇) for q ∈ X, and π(1P , q

∗) = (1P , q̇
∗). Then P forces that

{q̇ : q ∈ X} is linked with the coordinatewise union q̇∗.

3. The Nested Product of Levy Collapses

In this section we define our poset and prove the key lemma.
Let κ < ν be both strongly regular. The nested product P (κ, ν) of Levy collapses

is
∏

n<ω Pn(κ, ν), where Pn(γ, ν) is defined by recursion for each γ ∈ SR∩ν so that

P0(γ, ν) = C(γ, ν) and Pn+1(γ, ν) =
∏<γ

δ∈SR∩[γ,ν) Pn(δ, ν).

Assume in addition ν is Mahlo. Then the set S of inaccessible cardinals < ν is
stationary in ν. Using Lemma 2, we have by induction on n < ω that Pn(γ, ν) is

S-layered for every γ ∈ SR ∩ ν. By Lemma 2 again P (κ, ν) =
∏<ω1

n<ω Pn(κ, ν) is
S-layered, and thus is ν-cc. Having C(κ, ν) as a factor, P (κ, ν) forces ν = κ+.

By induction on n < ω we have Pn(γ, ν) ⊂ Vν for every γ ∈ SR ∩ ν, so that
P (κ, ν) ⊂ Vν . A similar induction shows that P (κ, ν) is κ-linked closed. Moreover,
if X ⊂ P (κ, ν) is linked and of size < κ, then infX is given by the “coordinatewise
union” of X.

If α < γ < ν are both strongly regular, then P (α, ν) is the product of P (γ, ν)
and an α-closed poset because P0(α, ν) is α-closed, and Pn+1(α, ν) is the product
of Pn(γ, ν) and an α-closed poset. Claim 1 below can be regarded as a refinement
of this observation.

Lemma 6. Suppose µ < κ ≤ λ < ν are all strongly regular with κ < ν both Mahlo.
Then there is a projection π : P (µ, ν) → P (µ, κ) ∗ Ṗ (λ, ν) such that the quotient
of P (µ, ν) by π is forced to be (λ,< µ)-centered. Moreover, the first coordinate of
π(p) is the canonical restriction of p ∈ P (µ, ν).

Proof. We define π as the composition of two projections

P (µ, ν)
σ−→ P (µ, κ)× P (λ, ν)

τ−→ P (µ, κ) ∗ Ṗ (λ, ν).

Here the projection σ is the canonical restriction of maps induced from Claim 1.
The projection τ is the identity on the first coordinate, so that the first coordinate
of π(p) is the canonical restriction of p ∈ P (µ, ν).

Claim 1. P (µ, ν) ≃ P (µ, κ)× P (λ, ν)×R for some µ-closed R.

Proof. By induction on n < ω we prove that for every γ ∈ SR∩κ there is a γ-closed
Rn(γ) such that

Pn+1(γ, ν) ≃ Pn+1(γ, κ)× Pn(λ, ν)×Rn(γ).

Note that this completes the proof: Clearly, R = C(µ, [κ, ν))×
∏

n<ω Rn(µ) works.
For n = 0, we have

P1(γ, ν) =
<γ∏

δ∈SR∩[γ,ν)

P0(δ, ν)

≃
<γ∏

δ∈SR∩[γ,κ)

P0(δ, ν)×
<γ∏

δ∈SR∩[κ,λ)

P0(δ, ν)× P0(λ, ν)×
<γ∏

δ∈SR∩(λ,ν)

P0(δ, ν)

≃ P1(γ, κ)× P0(λ, ν)×R0(γ),
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where

R0(γ) =
<γ∏

δ∈SR∩[γ,κ)

C(δ, [κ, ν))×
<γ∏

δ∈SR∩[κ,λ)

P0(δ, ν)×
<γ∏

δ∈SR∩(λ,ν)

P0(δ, ν).

Assuming the claim for n, we have

Pn+2(γ, ν) =
<γ∏

δ∈SR∩[γ,ν)

Pn+1(δ, ν)

≃
<γ∏

δ∈SR∩[γ,κ)

Pn+1(δ, ν)×
<γ∏

δ∈SR∩[κ,λ)

Pn+1(δ, ν)× Pn+1(λ, ν)×
<γ∏

δ∈SR∩(λ,ν)

Pn+1(δ, ν)

≃ Pn+2(γ, κ)× Pn+1(λ, ν)×Rn+1(γ),

where

Rn+1(γ) =
<γ∏

δ∈SR∩[γ,κ)

(Pn(λ, ν)×Rn(δ))×
<γ∏

δ∈SR∩[κ,λ)

Pn+1(δ, ν)×
<γ∏

δ∈SR∩(λ,ν)

Pn+1(δ, ν),

as desired. □

Claim 2. P (µ, κ) ∗ Ṗ (λ, ν) forces that P (µ, ν) is (λ,< µ)-centered.

Proof. By induction on n < ω we prove that P (µ, κ) ∗ Ṗ (α, ν) forces Pn(γ, ν) to
be (α,< µ)-centered for every α ∈ SR ∩ [λ, ν) and γ ∈ SR ∩ [µ, ν). Note that

this completes the proof: P (µ, κ) ∗ Ṗ (λ, ν) forces that P (µ, ν) =
∏

n<ω Pn(µ, ν) is
(λ,< µ)-centered by Lemma 3, as desired.

For n = 0, assume α ≥ γ first. Note that P (µ, κ) ∗ Ṗ (α, ν) forces |δ<γ | ≤ α for

every δ ∈ SR ∩ [γ, ν). Then P (µ, κ) ∗ Ṗ (α, ν) forces P0(γ, ν) =
∏<γ

δ∈SR∩[γ,ν) δ
<γ to

be (α,< µ)-centered by Lemma 3. Next assume α < γ. Then P (µ, κ) forces that

Ṗ (α, ν) is the product of Ṗ (γ, ν) and an α-closed poset. Note that P (µ, κ)∗ Ṗ (γ, ν)

forces P0(γ, ν) to be (γ,< µ)-centered. Thus P (µ, κ) ∗ Ṗ (α, ν) forces that P0(γ, ν)
is (|γ|, < µ)-centered and |γ| = α, as desired.

Assume the claim for n. Then by Lemma 3, P (µ, κ) ∗ Ṗ (α, ν) forces that

Pn+1(γ, ν) =
∏<γ

δ∈SR∩[γ,ν) Pn(δ, ν) is (α,< µ)-centered if α ≥ γ. The rest of the

proof is the same as before. □

From Claims 1 and 2 it follows that P (µ, κ) × P (λ, ν) and R are forced to be
(λ,< µ)-centered as well.

Claim 3. There is a projection τ : P (µ, κ) × P (λ, ν) → P (µ, κ) ∗ Ṗ (λ, ν) that is
the identity on the first coordinate. Moreover, τ(infX) = inf τ [X] holds for every
linked X ⊂ P (µ, κ)× P (λ, ν) of size < µ.

Proof. Using Lemmas 4 and 5, we have T (P (µ, κ), Ṗn(γ, ν)) ≃ Pn(γ, ν) for every

γ ∈ SR ∩ [λ, ν) by induction on n < ω. Thus T (P (µ, κ), Ṗ (λ, ν)) ≃ P (λ, ν) by

Lemma 5. Therefore we get a projection τ : P (µ, κ)× P (λ, ν) → P (µ, κ) ∗ Ṗ (λ, ν)
that is the identity on the first coordinate.

Suppose X = {(pξ, qξ) : ξ < γ} ⊂ P (µ, κ) × P (λ, ν) is linked and γ < µ. Then
infX = (p∗, q∗), where p∗ and q∗ are the “coordinatewise unions” of {pξ : ξ < γ}
and {qξ : ξ < γ} respectively. Let τ(pξ, qξ) = (pξ, q̇ξ) for ξ < γ. Since τ [X] is

linked in P (µ, κ)× T (P (µ, κ), Ṗ (λ, ν)), P (µ, κ) forces that {q̇ξ : ξ < γ} is linked in

Ṗ (λ, ν). Let τ(p∗, q∗) = (p∗, q̇∗). By the proof of Lemma 5, P (µ, κ) forces that q̇∗
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is the “coordinatewise union” of {q̇ξ : ξ < γ}. Thus (p∗, q̇∗) = inf{(pξ, q̇ξ) : ξ < γ}
holds in P (µ, κ) ∗ Ṗ (λ, ν), as desired. □

Now let G ∗H ⊂ P (µ, κ) ∗ Ṗ (λ, ν) be V -generic. Work in V [G ∗H]. Note that
the quotient of P (µ, ν) by π is τ−1[G ∗ H] × R, where R is (λ,< µ)-centered by
Claims 1 and 2. Thus it remains to prove that τ−1[G ∗H] is (λ,< µ)-centered. Let
f witness that P (µ, κ)×P (λ, ν) is (λ,< µ)-centered. We claim that f | τ−1[G ∗H]
is the desired witness. Suppose f is constant on X ⊂ τ−1[G ∗ H] of size < µ.

Then X ∈ V because P (µ, κ) ∗ Ṗ (λ, ν) is µ-closed in V . Thus by Claim 3 we have
τ(infX) = inf τ [X] ∈ G ∗H, i.e. infX ∈ τ−1[G ∗H], as desired. □

4. Proof of Theorem 1

The rest of the proof proceeds as in [11]:

Proof of Theorem 1. Let π : P (µ, j(κ)) → P (µ, κ)∗ Ṗ (λ, j(κ)) be a projection as in
Lemma 6 with ν = j(κ). Note that P (µ, j(κ)) = P (µ, j(κ))M = j(P (µ, κ)) because
M<j(κ) ⊂ M holds.

Let G ∗H ⊂ P (µ, κ) ∗ Ṗ (λ, j(κ)) be V -generic. Work in V [G ∗H]. Let Q be the
quotient of P (µ, j(κ))V by π, which is (λ,< µ)-centered. We claim that Q forces
the existence of a V [G ∗H]-normal ultrafilter over P(Pκλ)

V [G∗H]. Note that this

completes the proof: Let U̇ be a Q-name for a witness. The standard arguments
show that F = {X ⊂ Pκλ : Q ⊩ X ∈ U̇} is a normal filter on Pκλ, and the

map e : X 7→ ∥X ∈ U̇∥ is a complete embedding of F+ into B(Q). Thus F+ is
(λ,< µ)-centered, as desired.

Let K ⊂ Q be V [G ∗H]-generic. Then there is a V -generic Ḡ ≃ G ∗H ∗K over
P (µ, j(κ))V such that π[Ḡ] generates G∗H. Work in V [Ḡ]. Note that j[G] = G ⊂ Ḡ
by the choice of π. So we can extend j : V → M to j : V [G] → M [Ḡ]. Note that
P (µ, j(κ)) is j(κ)-cc in V . Since M<j(κ) ⊂ M in V , we have M [Ḡ]<j(κ) ⊂ M [Ḡ].

Work in V [G]. Then j(κ) remains Mahlo, so that P (λ, j(κ)) is j(κ)-cc. Thus
we can list with cofinal repetition the set of P (λ, j(κ))-names for subsets of Pκλ as

{Ẋζ : ζ ∈ SR ∩ (λ, j(κ))}. Note that each Ẋζ can be viewed as a P (λ, ξ)-name for
some ξ ∈ SR ∩ (λ, j(κ)).

Now work in V [Ḡ]. Let ξ ∈ SR ∩ (λ, j(κ)). Note that j[H ∩ P (λ, ξ)V [G]] is a

directed subset of P (j(λ), j(ξ))M [Ḡ]. Since M [Ḡ]<j(κ) ⊂ M [Ḡ],

rξ = the “coordinatewise union” of j[H ∩ P (λ, ξ)V [G]]

is in P (j(λ), j(ξ))M [Ḡ]. Note that if ζ < ξ, then rζ is the canonical restriction of
rξ. Thus we can define by recursion a descending sequence ⟨r∗ξ : ξ ∈ SR∩ (λ, j(κ))⟩
in P (j(λ), j2(κ))M [Ḡ] so that

• r∗ξ ≤ rξ in P (j(λ), j(ξ))M [Ḡ] and

• if Ẋξ is a P (λ, ξ)V [G]-name, then r∗ξ decides j[λ] ∈ j(Ẋξ) in M [Ḡ].

The standard argument shows that

U = {(Ẋξ)
H : ξ ∈ SR ∩ (λ, j(κ)), M [Ḡ] ⊨ r∗ξ ⊩ j[λ] ∈ j(Ẋξ)}

is a V [G ∗H]-normal ultrafilter over P((Pκλ)
V [G])V [G∗H] = P(Pκλ)

V [G∗H], as de-
sired. □
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Remark. Suppose κ is huge, j : V → M is a witness, µ < κ < λ < j(κ) are all
regular and GCH holds. Then the standard argument shows that (λ+, κ) ↠ (κ, µ)
holds in the model of Theorem 1. Moreover, [λ+]κ carries a κ-complete filter F
such that F+ is (λ,< µ)-centered by an argument of Magidor [10]. See [6] for a
related result.

5. Application of Theorem 1

As an application of Theorem 1, we give a quick proof of

Theorem 7. Suppose κn is almost huge, jn : V → Mn is a witness and jn(κn) =
κn+1 for every n < ω. Then there is a generic extension in which κn = ωn+1

carries a strongly centered normal filter for every n < ω.

If there is a huge cardinal, then we get a sequence ⟨κn : n < ω⟩ as in Theorem 7
by the standard argument. Compare the proof of [2, Theorem 2] and the following

Proof. Let P be the inverse limit of ⟨Pn : n < ω⟩, where Pn is defined by recursion

so that P0 = P (ω, κ0) and Pn+1 = Pn ∗ Ṗ (κn, κn+1). We claim that P works.
By induction we show that Pn+1 forces κn = ωn+1 to carry a strongly cen-

tered normal filter. The case n = 0 follows from Theorem 1. Let n > 0. Then
Pn−1 ⊂ Vκn−1 forces κn to be almost huge, as witnessed by an extension of jn.
Applying Theorem 1 in the generic extension by Pn−1, we have that Pn+1 =

Pn−1 ∗ Ṗ (κn−1, κn) ∗ Ṗ (κn, κn+1) forces κn = κ+
n−1 to carry a strongly centered

normal filter, as desired.
By the standard argument we have P ≃ Pn+1 ∗ Q̇n+1, where Q̇n+1 is forced

to be κn+1-closed. Thus a strongly centered normal filter on κn = ωn+1 in the

generic extension by Pn+1 remains so after forcing with the interpretation of Q̇n+1,
as desired. □
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