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Abstract. We consider a continuum percolation built over stationary

ergodic point processes. Assuming that the occupied region has a unique

unbounded cluster and the cluster satisfies volume regularity and isoperimetric
condition, we prove a quenched invariance principle for reflecting diffusions on

the cluster.

1. Introduction

1.1. Models and result

Let Ω be a configuration space on Rd, namely

Ω =

{ ∞∑
i=1

δxi

∣∣∣∣∣
∞∑
i=1

δxi
(K) < ∞ for all compact set K

}
.

Here δx denotes the Dirac measure. Ω is equipped with the σ-field B(Ω) which is gener-

ated by the sets {ω ∈ Ω | ω(A) = n}, A ∈ B(Rd), n ∈ N. We identify each configuration

ω =
∑∞

i=1 δxi ∈ Ω with the subset {xi}i of Rd if {xi}i are distinct. Fix ρ > 0. For ω ∈ Ω,

define the subset L(ω) by

L(ω) =
⋃
x∈ω

B(x, ρ),

where B(x, ρ) is the Euclidean open ball with center x and radius ρ. Let W (ω) be the

unbounded connected component of L(ω) if there is a unique unbounded component.

Otherwise, we set W (ω) = ∅ by convention. We call W (ω) the continuum percolation

cluster. This is the continuum analogue of the discrete site percolation cluster. By

definition, W (ω) can be written as
⋃

x∈I(ω) B(x, ρ) with some subset I(ω) of ω. We also

take ρ′ ≥ ρ and we introduce the modified cluster W ′(ω) given by

W ′(ω) ≡ Wρ′(ω) =
⋃

x∈I(ω)

B(x, ρ′).

Set

∆ =

ω ∈ Ω

∣∣∣∣∣∣
ω =

∑
i

δxi
, |x− y| = 2ρ (for some x, y ∈ ω)

and each xi is distinct

 .
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Define the subset Ω̂ of Ω by

Ω̂ = {ω ∈ Ω \∆ | 0 ∈ W ′(ω)}.

We define the shift τz : Ω → Ω by

τzω(A) = ω(A+ z) =
∑
x∈ω

δx(A+ z) =
∑
x∈ω

δx−z(A),

where A+ z = {x+ z | x ∈ A} for z ∈ Rd.

Let P be a probability measure on Ω. It is called a point process on Rd.

Assumption 1. Assume that P satisfies the following conditions:

(1) P is stationary and ergodic with respect to {τx}x.

(2) P(Ω̂) > 0 and P(∆) = 0.

Set P̂(·) = P(· ∩ Ω̂)/P(Ω̂) and we denote its expectation by Ê. Note that W ′(ω) is

a Lipschitz domain for P̂-a.e. ω ∈ Ω̂. Thanks to P(∆) = 0, we only need to consider

whether 0 ∈ W (ω) or not. The existence of a unique unbounded component is an

important problem in the study of continuum percolation theory and there are many

studies. If P is a Poisson point process and the radius ρ is bigger than the critical value,

it is known that there is a unique unbounded component (see [25]).

We denote the Euclidean inner product by 〈·, ·〉. Let a : Ω → Rd×d be a positive-

definite symmetric matrix. Define the bilinear form E on L2(W ′(ω), dx) by

Eω(u, v) =

∫
W ′(ω)

〈a(τxω)∇u(x),∇v(x)〉dx.(1.1)

Let Fω be the completion of C∞
c (W ) with respect to E(·, ·) + ‖·‖L2(W ′(ω)).

Assumption 2. There exist constants λ,Λ > 0 such that

λ|ξ|2 ≤ 〈a(ω)ξ, ξ〉 ≤ Λ|ξ|2

holds for all ξ ∈ Rd and P̂-almost all ω.

According to [17] and [18], under Assumption 2, we have that the Dirichlet form

(Eω, Fω) is strongly local and regular P̂-almost surely. Hence, we have the associated

conservative diffusionXω
t . It is called a reflecting diffusion since the domain Fω of Dirich-

let form corresponds to a reflecting boundary condition (more precisely, the Neumann

boundary condition).

We further impose an assumption for reflecting diffusions:

Assumption 3. The reflecting diffusion Xω
t has a transition density pωt (·, ·) for

P̂-almost all ω.

When we consider the case that a(ω) = 1/2Id, Xt is the reflecting Brownian motion.

Bass and Hsu ([6]) study a condition under which Xt has a density. Recently, Mat-

suura ([24]) considered more detailed conditions. Our model satisfies the conditions of
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Matsuura [24], and hence the reflecting Brownian motion has a density.

Next, we impose a geometric condition that plays an important role. Let x ∈ Rd

and R > 0. Let W ′(ω, x,R) be a connected component of W ′(ω) ∩ B(x,R) containing

x. Throughout the paper, we write W ′ = W ′(ω) and W ′
R = W ′(ω, 0, R) if there is no

confusion.

Assumption 4 (volume regularity and isoperimetric condition).

(1) For P̂-almost every ω there exists positive constant CV such that for a.e. x ∈ W ′(ω)

CV R
d ≤ |W ′(ω, x,R)|, R ≥ RV

holds for some positive constant RV , where | · | denotes the Lebesgue measure.

(2) There exists θ ∈ (0, 1) such that for P̂-almost all ω ∈ Ω̂, there exist RI > 0 and

cH > 0 such that

CIL := inf

{
Hd−1(W

′ ∩ ∂O)

|W ′ ∩O| d−1
d

∣∣∣∣∣ O ⊂ B(0, R) is connected open,

R ≥ RI , |O| ≥ Rθ

}
> 0(1.2)

and

CIS := inf

{
Hd−1(W

′ ∩ ∂O)

|W ′ ∩O| d−1
d

∣∣∣∣∣O is bounded open,

Hd−1(W
′ ∩ ∂O) < cH

}
> 0(1.3)

hold, where Hd−1 denotes the (d− 1)-dimensional Hausdorff measure.

The main result of this paper is the following.

Theorem 1.1 (quenched invariance principle). Let d ≥ 2 and ρ′ ≥ ρ > 0.

Assume that Assumptions 1, 2, 3 and 4 hold. Let Pω
0 be the law of {Xω

t }t starting at 0.

Then for P̂-a.s.ω, the scaled process {εXω
ε−2t}t under P

ω
0 converges in law to a Brownian

motion with non-degenerate covariance matrix as ε tends to 0.

Remark 1.2. When ρ′ > ρ, the condition (1.3) is automatically satisfied. On the

other hand, the condition (1.3) doesn’t hold when ρ′ = ρ in general.

Example 1.3 (Reflecting Brownian motion on Poisson Boolean model).

Let P be a Poisson point process with intensity λ. We take the radius ρ greater than

the critical radius ρc. We also take the radius ρ′ > ρ. Set a(ω) = 1/2Id. Then the

corresponding diffusion is the reflecting Brownian motion. We can easily verify that

Assumption 1 and 2 are satisfied. Assumption 3 is satisfied by the result in [24]. Now we

need to check the Assumption 4. We check this by comparing the modified cluster W ′(ω)

to the Bernoulli site percolation model as in [33]. To do this, we prepare a percolation

model on δZd, δ > 0. We call the model the δ-approximating Boolean model. Set

G(z, δ) = [−δ/2, δ/2]d + z. Take δ ∈ (0, 1). We say that a site z ∈ δZd is δ-open if

G(z, δ) ⊂ W ′(ω). Let Vδ be the collection of δ-open sites on δZd. We introduce the

graph Gδ = (Vδ, Eδ) with vertex set Vδ and edge set Eδ = {{z, z′} ⊂ Vδ | |z − z′| = δ}.
For x ∈ Vδ, let Bω

δ (x,R) be an open ball of Vδ with respect to the graph distance. For
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a cube Q = G(z, nδ), write Q+ = G(z, 3
2nδ). We say that a cluster C in a cube Q is

crossing for a cube Q′ ⊂ Q if for all d-directions there exists an open path in C ∩Q′ that

connects the two opposing faces of Q′. Let C∨(Q) be the largest cluster in Q. As in [4],

set

R0(Q) = {there exists a unique crossing cluster C in Q+ for Q+ such that

all open paths contained in Q+ of diameter greater than nδ/8

are connected to C in Q+ and C is crossing for each cube

contained in Q whose side length is greater than or equal to nδ/8}

and

R(Q) = R0(Q) ∩ {C∨(Q) is crossing for Q} ∩ {C∨(Q+) is crossing for Q+}.

First we consider the following estimate:

P(R(G(z, kδ))c) ≤ c exp(−c′k), k ∈ N.(1.4)

In [4, Lemma 2.8], the estimate (1.4) is proved in the case of the Bernoulli site percolation.

We can generalize the estimate (1.4) to the δ-approximating Boolean model by renormal-

ization used in [33]. Hence as in [4], we can show that the process {1R(G(z,kδ))}z∈δZd dom-

inates the Bernoulli site percolation with parameter q∗δ (k), which tends to 1 as k → ∞
and satisfies q∗δ (k) ≤ q∗δ′(k) for δ ≥ δ′. Therefore, for sufficiently large n and a cube

Q = G(z0, nδ), we can prove the weak relative isoperimetric inequality

#{{z, z′} | z ∈ A, z′ ∈ C∨(Q)−A, |z − z′| = δ} ≥ c1n
−1#A(1.5)

holds for connected subset A ⊂ C∨(Q) with #A ≤ 1/2#C∨(Q) such that C∨(Q) − A is

also connected, and the volume regularity

c2R
d ≤ #Bω

δ (z,R) ≤ c′2R
d(1.6)

holds for all z ∈ C∨(Q+)∩G(z0, 5/6nδ) with G(z,R+k)+ ⊂ Q+ and R ∈ (cHnα, n) as in

[4, Proposition 2.11 and Theorem 2.23]. Then by [10, Lemma 2.10], there exist θ ∈ (0, 1)

and N3 such that Vδ satisfies the isoperimetric inequality for large sets

#{{z, z′} ∈ Eδ | z ∈ A, z′ ∈ Vδ −A}
(#A)

d−1
d

≥ c3(1.7)

holds for R ≥ N3 and A ⊂ Bω
δ (0, R) with #A ≥ Rθ. Note that Bω

δ (0, R) is contained

in the unique infinite cluster of Vδ. Furthermore, we can take constants c1, c2, c
′
2, c3 > 0,

and N3 > 0 independently of δ ∈ (0, δ0) for some δ0 (This is because these constants

depend only on k and q∗δ (k) is decreasing in δ.).

Now we can check Assumption 4. Since ρ′ > ρ, the condition (1.3) is satisfied (see

Remark 1.2.). Because Bω
δ (x,R/δ) is contained in W ′(ω, x,R), we have |W ′(ω, x,R)| ≥

δd#|Bω
δ (x,R/δ)|. Hence we can easily see that (1) of Assumption 4 holds. To check (2)
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of Assumption 4, we introduce some notations. Set

Gδ = {G(z, δ) | z ∈ Qd}, G =
⋃

δ∈(0,1)∩Q

Gδ, Qfin =

{
N⋃
i=1

Qi | Qi ∈ G

}
.

Take a connected subset D ∈ Qfin with W ′(ω) ∩D 6= ∅. We can choose δ > 0 so that

D is written as
⋃N

i=1 G(zi, δ), zi ∈ δZd, i = 1, . . . , N . Moreover, we can take δ > 0

smaller if we need. Set Z = {z1, . . . , zN}. Let Zo be the collection of δ-open sites of

Z and ∂extZo be the external boundary of Zo. Observe that at least one face of cubes

in
⋃

z∈∂extZo
G(z, δ) belongs to W ′(ω) ∩ ∂D. Therefore we have Hd−1(W

′(ω) ∩ ∂Q) ≥
δd−1#∂extZo. Next, let Zc = {z ∈ Z \ Zo | G(z, δ) ∩W ′(ω) 6= ∅}. Then we have that

|W ′(ω)∩D| ≤ δd(#Zo+#Zc) ≤ 2δd#Zo for sufficiently small δ. Hence if |D| ≥ Rθ, using

the isoperimetric inequality (1.7), we have that Hd−1(W
′(ω)∩∂D) ≥ C1|W ′(ω)∩D| d−1

d .

For a general connected open subset O ⊂ B(0, R), we can take a sequence of Di ∈ Qfin

such that |W ′(ω) ∩Di| → |W ′(ω) ∩ O| and Hd−1(W
′(ω) ∩ ∂Di) → Hd−1(W

′(ω) ∩ ∂O).

Hence, the condition (1.2) holds.

Example 1.4. Let {Zz}z∈Zd be a collection of i.i.d. Bernoulli random variables

with parameter p ∈ (0, 1) and U be the uniform random variable on [0, 1)d. Let P be the

distribution of
∑

z∈Z Zzδz+U . Let ρc > 0 be the critical radius. We remark that ρc = 1/2

if the parameter p is greater than the critical value of the Bernoulli site percolation. Take

ρ > ρc and let ρ′ = ρ. Set a(ω) = 1/2Id. Then we can check Assumption 1, 2, and 3 hold.

Similarly to Example 1.3, we can check (1) of Assumption 4 and (1.2) hold. To check

(1.3), observe that by construction, there is only a finite number of possible distances

between overlapping balls. Indeed, their values are of the form |x|, x ∈ Zd, and the

maximum is strictly less than 2ρ. Therefore, computing Hd−1(W
′∩∂O)

|W ′∩O|
d−1
d

in each case, we

can check (1.3).

Early in the history of homogenization, Kipnis and Varadhan[21] proved that the an-

nealed invariance principle for random walk on supercritical (bond) percolation cluster.

After two decades, Sidoravicius and Sznitman [31] proved the quenched invariance princi-

ple for random walk on supercritical percolation cluster when the dimension is more than

or equal to four. In 2007, Berger and Biskup [7] proved quenched invariance principle for

random walk on the supercritical percolation cluster including two and three dimensions.

(Note that one-dimensional percolation cluster is infinite only when the probability that

bond is open is equal to one and in that case the QIP follows from classical Donsker’s

invariance principle.) Mathieu and Piatnitski [23] gave another proof. Quenched invari-

ance principle for the random conductance model, which is a more general model, was

shown by many authors ([1], [2], [5], [8], [22]). Recently, the quenched invariance princi-

ple for random conductance model with more general assumptions was shown ([3], [10]).

They include not only the bond percolation cluster but also percolation clusters in mod-

els with long-range correlations and random conductance models defined by level sets of

the Gaussian free field. In these papers, the proofs are based on an analysis on (gen-

eral) weighted graph. They also use geometric conditions such as a relative isoperimetric

inequality and a volume regularity.

In these results, they consider discrete settings. When we consider the continuum
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settings, the diffusion process is one of the fundamental objects. For the diffusion process,

there are many homogenization results. In [29] and [30], annealed invariance principles

were shown. (precisely, slightly stronger results were proved but not quenched results.)

For quenched results, there are [9], [13], [14],[12],[26] and [32].

The homogenization problem of the continuum percolation cluster is considered by

some researchers. Tanemura [34] and Osada ([27], [28]) proved the annealed invariance

principle for the reflecting Brownian motion in the continuum percolation cluster. How-

ever, to our knowledge, there are no quenched results.

1.2. Method

A basic but powerful method to prove a quenched invariance principle is harmonic

embedding. A key ingredient of this approach is the corrector, a random function, χ : Rd×
Ω → Rd which is the solution of Poisson type equation

Lωχk(x, ω) = LωΠk(x), (k = 1, . . . , d)(1.8)

where Lω is the corresponding generator of the diffusion {Xω
t }t and Πk(x) = xk is the

projection to the k-th coordinate. Then yk = Πk − χk is a harmonic function. This

implies that

Mω
t = Xω

t − χ(Xω
t , ω)

is a martingale and a quenched invariance principle for the martingale part M can be

easily shown by standard arguments. In order to obtain a quenched invariance principle

for the process X, it suffices to show that for any T > 0 and P̂-a.s. ω

lim
ε→0

sup
0≤t≤T

ε|χ(Xω
t/ε2 , ω)| = 0 in Pω

0 - probability,

which can be deduced from the L∞-sublinearity of the corrector:

lim
ε→0

sup
x∈W ′

R

|χε(x, ω)| = 0, P̂-a.s.,(1.9)

where χε(x, ω) = εχ(x/ε, ω). The non-degeneracy of the covariance matrix follows from

the L∞-sublinearity and the ergodic theorem. So, important things are the followings:

(1) How to construct the corrector.

(2) How to prove the L∞-sublinearity.

One way to construct the corrector is to decompose the space of random function

into a space of “potential” and its “orthogonal” space.

Although the L∞-sublinearity is difficult to show, a Lp-sublinearity, which is the

equation obtained from (1.9) replacing the L∞-norm by the Lp-norm, is easily shown by

the ergodic theorem. In [9] and [10], it is mentioned that the L∞-sublinearity follows

from the Lp-sublinearity and a maximal inequality (3.21). They also suggested in these

papers that Moser’s iteration scheme is useful to obtain the maximal inequality. Since

this method is analytic and robust, we can use this for the reflecting diffusion case.

Throughout the proof, we will mainly follow the argument that appeared in Chiarini

and Deuschel [9]. However, different from their paper, we need to consider the boundary
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effect. For example, we have to solve the equation (1.8) with the Neumann boundary

condition. Due to this boundary condition, the proof of the maximal inequality (3.21)

is more complicated. To consider this boundary condition, we have to analyze the space

Fω. Unlike the spaceH1
0 (W ) (the closure of C∞

c (W ) with respect to a Sobolev norm), the

trace of functions that belong to Fω doesn’t vanish in general. Thus, we have to control

the boundary effect to obtain the maximal inequality. To overcome this difficulty, we kill

the process Xω
t at the boundary ∂W ′(ω, x,R) − ∂W ′(ω) and consider local inequalities

in Section 3.

2. Harmonic embedding

For x ∈ Rd and F : Ω → Rd, define TxF by (TxF )(ω) = F (τxω). Set

L̂2 = {F : Ω̂ → Rd | Ê[〈aF, F 〉] < ∞}. We endow it with inner product 〈aF,G〉 for

F,G ∈ L̂2.

We define the i-th derivative Di by

DiU = L2- lim
h→0

TheiU − U

h
,

where ei is the i-th coordinate vector and U ∈ L2(Ω̂, P̂).
Denote the domain of Di by D(Di) = {U ∈ L2(Ω̂, P̂) | DiU exists}. Set

C =

{∫
Rd

f(τxω)φ(x)dx

∣∣∣∣ f ∈ L∞(Ω, P̂), φ ∈ C∞
c (Rd)

}
.

We can easily show that if v(ω) =

∫
Rd

f(τxω)φ(x)dx ∈ C, then the i-th derivative of v

exists and it is given by

Div(ω) = −
∫
Rd

f(τxω)∂iφ(x)dx.(2.1)

Moreover, if v ∈ C, then v ∈
⋂d

i=1 D(Di).

Definition 2.1. We define the gradient and the space of potentials as follows:

(1) For v ∈ C, set Dv = (D1v, . . . , Ddv) ∈ L̂2.

(2) Define the subspace L̂2
pot of L̂2 by the closure in L̂2 of the set {Dv | v ∈ C}.

Remark 2.2. (1) In the settings of [9], the mean of a potential is zero and the

authors of [9] used this property to prove the sublinearity of the corrector. Remind

that the space C and the space of potentials can be generalized on (Ω,P). Then, for
all generalized potential Ũ , we have that E[Ũ ] = 0. However, the equality Ê[U ] = 0

does not hold for a general potential U ∈ L̂2
pot.

(2) For v ∈ C, set v(x, ω) = v(τxω). Then we have Dv(x, ω) = ∇v(x, ω).
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Lemma 2.3. Let U ∈ L̂2
pot. Then for all η ∈ C∞

c (Rd) and i, j = 1, . . . , d, we have∫
Rd

Ui(τxω)∂jη(x)dx =

∫
Rd

Uj(τxω)∂iη(x)dx(2.2)

for P̂-a.e. ω ∈ Ω.

Proof. We first consider the case v ∈ C. Then x 7→ v(τxω) is infinitely many times

differentiable, P̂-a.s. Integrating by parts we get∫
Rd

Div(τxω)∂jη(x)dx = −
∫
Rd

v(τxω)∂i∂jη(x)dx

= −
∫
Rd

v(τxω)∂j∂iη(x)dx

=

∫
Rd

Djv(τxω)∂iη(x)dx.

For general U ∈ L̂2
pot take approximations and use the fact that as n → ∞, ∇vn → U in

L̂2 implies Divn(τ·ω) → Ui(τ·ω) in L1
loc P̂-a.s. □

Let πk be the unit vector in the k-th direction. Since πk ∈ L̂2, for each k = 1, . . . , d,

there exist functions Uk ∈ L̂2
pot and Rk ∈ (L̂2

pot)
⊥ such that πk = Uk + Rk. Then we

build the corrector starting from the functions Uk ∈ L̂2
pot. For k = 1, . . . , d, we define

the corrector to be the function χk : Rd × Ω → R such that

χk(x, ω) =

d∑
j=1

∫ 1

0

xjU
k
j (τtxω)dt.

Proposition 2.4 (weak differentiability). For k = 1, . . . d, the function x 7→
χk(x, ω) is in L1

loc(Rd), weakly differentiable P-a.s. and ∂iχ
k(x, ω) = Uk

i (τxω) for i =

1, . . . d.

Proof. Let η ∈ C∞
c (Rd). We calculate

∫
Rd

χk(x, ω)∂iη(x)dx =

∫
Rd

 d∑
j=1

∫ 1

0

xjU
k
j (τtxω)dt

 ∂iη(x)dx.

By changing the order of integration (this can be done since Uk
j (τtxω) ∈ L1

loc) and

applying the change of variables y = tx, we get

∫
Rd

 d∑
j=1

∫ 1

0

xjU
k
j (τtxω)dt

 ∂iη(x)dx =

∫ 1

0

d∑
j=1

∫
Rd

yj
td+1

Uk
j (τyω)∂iη

(y
t

)
dydt(2.3)

Since for j 6= i,

yj
td+1

∂iη
(y
t

)
= ∂i

(yj
td
η
(y
t

))
,(2.4)
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Lemma 2.3 and (2.4) give∫
Rd

χk(x, ω)∂iη(x)dx =

∫
Rd

Uk
i (τyω)

∫ 1

0

∑
j ̸=i

∂j

(yj
td
η
(y
t

))
+

yi
td+1

∂iη
(y
t

)
dtdy.(2.5)

Finally, observe that for y 6= 0,∫ 1

0

∑
j ̸=i

∂j

(yj
td
η
(y
t

))
+

yi
td+1

∂iη
(y
t

)
dt = −

∫ 1

0

1

td−1

d

dt

(
η
(y
t

))
dt = −η(y)(2.6)

Combining (2.5) and (2.6), we have∫
Rd

χk(x, ω)∂iη(x)dx = −
∫
Rd

Uk
i (τxω)η(x)dx.

Hence we have that for each η ∈ C∞
c (Rd), there exists a P̂-null set Nη such that the

above equality holds for ω ∈ Ω̂ \Nη. To obtain the desired result, we have to remove the

dependency of η. Because C∞
c (Rd) is separable with respect to the supremum norm, we

can remove this ambiguity considering a countable dense subset {ηn}n ⊂ C∞
c (Rd) and a

null set N =
⋃

n Nηn . □

Definition 2.5. We say that u ∈ Fω
loc if for any relatively compact set G ⊂ Rd,

there exists a function uG ∈ Fω such that u = uG a.e. on G ∩W ′(ω).

Proposition 2.6. For k = 1, . . . d, the corrector χk(·, ω) ∈ Fω
loc for P̂-a.e. ω ∈ Ω.

Proof. By construction, there exists {fn}n ⊂ C such that ∇fn → Uk, n → ∞ in L̂2.

This implies that for any ball B ⊂ Rd,

Ê
[∫

B

〈a(τxω)
(
∇fn(τxω)−∇χ(x, ω)

)
,∇fn(τxω)−∇χ(x, ω)〉dx

]
=

∫
B

Ê[〈a(τxω)
(
∇fn(τxω)− Uk(τxω)

)
,∇fn(τxω)− Uk(τxω)〉]dx

≤Λ|B|E[|∇fn − Uk|2]P(0 ∈ W ′)−1 → 0

Observe that gn(x, ω) = fn(τxω)− fn(ω) belongs to C∞
c (Rd) and satisfies

gn(x, ω) =

d∑
i=1

∫ 1

0

xi∂ifn(τtxω)dt.

It follows that gn → χk on B with respect to ‖·‖L2(B) + E(·, ·). This implies that

χk(·, ω) ∈ Fω
loc P̂-a.s. □

To obtain a martingale decomposition, we introduce a weak notion of the harmonicity.

Definition 2.7. We say that u ∈ Fω
loc is Eω-harmonic if it satisfies

Eω(u, φ) = 0
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for all φ ∈ C∞
c (W ′(ω)) .

Set yk(x, ω) = xk − χk(x, ω).

Proposition 2.8. For k = 1, . . . , d, x 7→ yk(x, ω) are Eω-harmonic P-a.s.

Proof. It is enough to show that for any function φ ∈ C∞
c (Rd),∫

W ′
〈a∇yk,∇φ〉 dx = 0(2.7)

since a function in C∞
c (W ′(ω)) is embedded in C∞

c (Rd).

We introduce a subset of C. Define C0 by

C0 = {v ∈ C | v(ω) = 0 if 0 /∈ W ′(ω)} .

Since

L(τxω) =
⋃
z∈ω

B(z − x, ρ) = L(ω) + x,

we have

W ′(τxω) = W ′(ω) + x

and hence the condition 0 /∈ W ′(τxω) is equivalent to −x /∈ W ′(ω). To prove (2.7), for

all f ∈ C0, using Fubini’s theorem we have

Ê
[
f(ω)

∫
W ′

〈a(τxω)∇yk(x, ω),∇φ(x)〉 dx
]

= Ê
[
f(ω)

∑
i,j

∫
W ′

aij(τxω)∂iy
k(x, ω)∂jφ(x) dx

]
=
∑
i,j

∫
Rd

∂jφ(x)Ê[f(ω)aij(τxω)∂iyk(x, ω)1{x∈W ′}] dx.

Next using the shift invariance of P, we have∑
i,j

∫
Rd

∂jφ(x)Ê[f(ω)aij(τxω)∂iyk(x, ω)1{x∈W ′}] dx

=
∑
i,j

∫
Rd

∂jφ(x)E[f(ω)aij(τxω)∂iyk(x, ω)1{x∈W ′}1{0∈W ′}]P(0 ∈ W ′)−1 dx

=
∑
i,j

∫
Rd

∂jφ(x)E[f(τ−xω)aij(ω)∂iy
k(0, ω)1{0∈W ′}1{−x∈W ′}]P(0 ∈ W ′)−1 dx

=
∑
i,j

Ê
[
aij(ω)∂iy

k(0, ω)

∫
W ′

f(τ−xω)1{−x∈W ′}∂jφ(x) dx

]
.

Since f ∈ C0, the trace of a function x 7→ f(τxω) to ∂(−W ′(ω)) is identically zero. Hence
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by the Gauss-Green formula, we calculate

d∑
i,j=1

Ê
[
aij(ω)∂iy

k(0, ω)

∫
−W ′

f(τxω)∂jφ(−x)dx

]

= −
d∑

i,j=1

Ê
[
aij(ω)∂iy

k(0, ω)

∫
−W ′

∂jf(τxω)φ(−x)dx

]

= −
d∑

i,j=1

Ê
[
aij(ω)∂jy

k(0, ω)

∫
W ′

∂if(τ−xω)φ(x)dx

]
.

Again, by the shift invariance, we find that the last line equals to

−
d∑

i,j=1

∫
Rd

φ(x)Ê[aij(ω)∂iyk(0, ω)∂if(τ−xω)1{−x∈W ′}]dx

Because f belongs to C0, the function x 7→ ∂if(τxω) vanishes on Rd \ (−W ′(ω)). Hence

we calculate

= −
d∑

i,j=1

∫
Rd

φ(x)Ê[aij(ω)∂iyk(0, ω)∂if(τ−xω)1{−x∈W ′}]dx

= −
d∑

i,j=1

∫
Rd

φ(x)Ê[aij(ω)∂iyk(0, ω)∂if(τ−xω)]dx

=

∫
Rd

φ(x)Ê[〈a(ω)∇yk(0, ω),∇f(τ−xω)〉]dx.

Since τ−xC ⊂ C and ∇yk ∈ (L̂2
pot)

⊥, we get∫
Rd

φ(x)Ê[〈a∇yk(0, ω),∇f(τ−xω)〉]dx = 0.

Since C0 ⊂ Lp(Ω, P̂) for all p ≥ 1 densely, it follows that∫
W ′

〈a∇yk(x, ω),∇φ(x)〉dx = 0, P̂-a.s.

This ends the proof. □

If a function f is harmonic, the process Mt = f(Xt) is a martingale from a standard

result of Markov processes. To deduce the same result for Eω-harmonic functions, we

will use the following theorem due to Fukushima, Nakao and Takeda [15, Theorem 3.1].

We refer the terminology of Dirichlet forms to [16].

Let W be a Lipschitz domain on Rd. Let (Yt, Qx) be a Hunt process associated with

strongly local regular Dirichlet form (E ,F) on L2(W ). Fix a point x0 ∈ W and consider

the following conditions for the process (Yt, Qx) and for a function u:

(1) The transition function pt of Xt satisfies pt(x0, A) = 0 for any t if Cap (A) = 0.
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(2) The function u belongs to Floc. Moreover, the function u is continuous and E-
harmonic.

(3) The energy measure ν⟨u⟩ of u is absolutely continuous with respect to the Lebesgue

measure on W and the density function f satisfies

Ex0

[∫ t

0

f(Xs)dx

]
< ∞, t > 0.

Lemma 2.9. ([15, Theorem 3.1]) Assume that the above conditions hold. Then the

additive functional Mt = u(Xt)− u(X0) is a Px0
-square integrable martingale with

〈M〉t =
∫ t

0

f(Xs)ds, t > 0, Px0-a.s.(2.8)

Corollary 2.10. The process y(Xt, ω) is a martingale with quadratic variation

〈yk(X·, ω), y
ℓ(X·, ω)〉t =

∫ t

0

d∑
i,j=1

aij(τxω)∂iy
k(Xt, ω)∂jy

ℓ(Xt, ω)ds, (k, ℓ = 1, . . . , d).

Proof. To apply Lemma 2.9 for yk, we need to check the assumptions of Lemma 2.9.

Since the reflecting diffusion {Xt}t has the transition density (say qt(x, y)), we have

pt(x0, A) =
∫
A
qt(x0, y)dy = 0 if Cap (A) = 0. Hence assumption (1) of Lemma 2.9 holds.

By Proposition 2.8, for P̂-a.s.ω, the function x 7→ yk(x, ω) satisfies a solution of the

equation ∫
W

〈a(τxω)∇yk(x, ω),∇φ(x)〉dx = 0, φ ∈ C∞
c (W ).

Thus, assumption (2) follows from classical results in elliptic partial differential equations

(see [19, Section 9]). We have

2Eω(ykv, yk)− Eω((yk)2, v)

= 2

∫
W ′

v〈a(τxω)∇yk,∇yk〉dx+ 2

∫
W ′

yk〈a(τxω)∇v,∇yk〉dx− 2

∫
W ′

yk〈a(τxω)∇yk,∇v〉dx

=

∫
W ′

2〈a(τxω)∇yk,∇yk〉vdx

for all v ∈ C∞
c (W ). Since the function x 7→ yk(x, ω) is weakly differentiable, the energy

measure ν⟨yk⟩ is given by

ν⟨yk⟩(dx) = 2〈a(τxω)∇yk(x),∇yk(x)〉dx

and absolutely continuous with respect to the Lebesgue measure. Moreover, its density

f is written by

f(x) = 2〈a(τxω)∇yk(x),∇yk(x)〉.

Next using the stationarity of the environment process {τXω
t
}t under P̂ (see [26]), by
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using Fubini’s Theorem and the translation invariance, we compute

Ê
[
Eω

0

[∫ t

0

f(Xω
s )ds

]]
=

∫ t

0

Ê[Eω
0 [f(X

ω
s )]]ds =

∫ t

0

Ê[Eω
0 [f(X

ω
0 )]]ds = tÊ[Eω

0 [f(0)]] < ∞.

Therefore, assumption (3) is satisfied. □

3. Maximal inequality

In this section, we consider deterministic settings. Let W ⊂ Rd be an unbounded

Lipschitz domain containing the origin. We denote the connected component of B(0, R)∩
W containing the origin by WR. We assume that there exists positive constants CV and

RV such that

|WR| ≥ CV R
d(3.1)

for R ≥ RV . We further assume that there exist θ ∈ (0, 1) and cH > 0 such that

CIL := inf

{
Hd−1(W ∩ ∂O)

|W ∩O| d−1
d

∣∣∣∣∣ O ⊂ B(0, R) is connected open,

R ≥ RI , |O| ≥ Rθ

}
> 0(3.2)

for some RI > 0 and

CIS := inf

{
Hd−1(W ∩ ∂O)

|W ∩O| d−1
d

∣∣∣∣∣O is bounded open,

Hd−1(W ∩ ∂O) < cH

}
> 0(3.3)

hold.

Set ζ = 1−θ
1− θ

d

. For a bounded open subset, the following weak isoperimetric inequality

holds.

Lemma 3.1. There exists positive constant CI such that

Hd−1(W ∩ ∂O)

|O| d−ζ
d

≥ CI

R1−ζ
(3.4)

holds for open subset O ⊂ W (0, R) and R ≥ RI .

Proof. The general idea of the proof goes back to [9, Lemma, 3.3]. First we consider a

good and connected open subset O. When O satisfies |O| ≥ Rθ or Hd−1(W ∩ ∂O) < cH ,

from (3.2) and (3.3), we have

Hd−1(W ∩ ∂O)

|O| d−ζ
d

=
Hd−1(W ∩ ∂O)

|O| d−1
d |O| 1−ζ

d

≥ CIL ∧ CIS

|O| 1−ζ
d

≥ CIL ∧ CIS

|B(0, R)| 1−ζ
d

≥ C

R1−ζ
.(3.5)

Next we consider the case where |O| < Rθ and Hd−1(W ∩ ∂O) ≥ cH . Using the relation

θ · d−ζ
d = 1− ζ, we estimate

Hd−1(W ∩ ∂O)

|O| d−ζ
d

≥ cH

|O| d−ζ
d

≥ cH

Rθ· d−ζ
d

=
cH

R1−ζ
.(3.6)
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Combining (3.5) and (3.6), we get (3.4) when O is connected. For a general open subset

O, it follows from the fact that (a1 + a2)/(b1 + b2)
β ≥ a1/b

β
1 + a2/b

β
2 ≥ M for β ∈ (0, 1)

and positive numbers a1, a2, b1, b2,M with a1/b
β
1 ≥ M and a2/b

β
2 ≥ M . □

Let E ⊂ W be a bounded set. For a function u : E → R, α ≥ 1 we denote

‖u‖Lα(E) :=

(∫
E

|u(x)|αdx
) 1

α

, ‖u‖E,α :=

(
1

|E|

∫
E

|u(x)|αdx
) 1

α

.

Next we show a Sobolev type inequality. To do this, we need to consider functions

whose trace vanishes locally. For R > 0, set

CR = {u ∈ C∞
c (WR) | u = 0 on ∂WR − ∂W}.

Let a : Rd → Rd×d be a positive-definite symmetric matrix. Define the bilinear form E
on L2(W,dx) by

E(u, v) =
∫
W

〈a∇u,∇v〉dx, u, v ∈ L2(W,dx) ∩ C∞(W ).(3.7)

Assumption 5. (1) there exist positive measurable functions λ,Λ such that for

almost all x, ξ ∈ Rd,

λ(x)|ξ|2 ≤ 〈a(x)ξ, ξ〉 ≤ Λ(x)|ξ|2.

(2) there exist p, q ∈ [1,∞] satisfying 1/p+ 1/q < 2ζ/d such that for almost all x,

lim sup
R→∞

1

|WR|

∫
WR

(Λp + λ−q)dx < ∞.

We remark that the relation between p and q is more restricted than Chiarini and

Deuschel [9]. This is because of the boundary effect. Let FR be the closure of CR with

respect to ‖·‖L2(CR) + E(·, ·). Then if the Dirichlet form (E ,FR) is regular, the associate

diffusion is absorbed at ∂WR − ∂W and has a reflection at ∂WR ∩ ∂W . We note that

the domain CR is larger than the Sobolev space with zero boundary condition H1
0 (WR).

Hence, it is not obvious whether the Sobolev inequality holds. The key property is the

weak isoperimetric inequality (3.4).

Proposition 3.2. Let R ≥ RI ∨RV . Then we have

‖u‖
L

d
d−ζ (WR)

≤ C−1
S |WR|

1−ζ
d ‖∇u‖L1(WR)(3.8)

for u ∈ FR, where CS = CIC
1−ζ
d

V .

Proof. We first show (3.8) for non-negative u ∈ CR. Let v : Rd → R be a zero-extension

of u. That is, v = u in supp u and v = 0 outside the supp u. Then by the coarea formula
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(see [11, Theorem 3.10]), we have∫
WR

|∇v| dx =

∫ ∞

−∞
Hd−1(WR ∩ v−1({t})) dt.

Now, since v is non-negative, we have v−1({t}) = ∅ for t < 0. Moreover, u = v on WR.

Thus, we have ∫
WR

|∇u| dx =

∫ ∞

0

Hd−1(WR ∩ ∂{x ∈ WR | u(x) > t}) dt.(3.9)

Since u is continuous and minu = 0, we have WR ∩ {x ∈ WR | u(x) = t} = WR ∩ ∂{x ∈
WR | u(x) > t} for t > 0. Since u = 0 on ∂WR − ∂W , we also have WR ∩ ∂{x ∈ WR |
u(x) > t} = W ∩ ∂{x ∈ WR | u(x) > t}. Combining these and (3.9), we obtain∫

WR

|∇u| dx =

∫ ∞

0

Hd−1(W ∩ ∂{x ∈ WR | u(x) > t}) dt.(3.10)

Set Ut = {x ∈ WR | u(x) > t}. From (3.4), we estimate∫ ∞

0

Hd−1(W ∩ ∂{x ∈ WR | u(x) > t}) dt

≥ CI

R1−ζ

∫ ∞

0

|W ∩ {x ∈ WR | u(x) > t}|
d−ζ
d dt

=
CI

R1−ζ

∫ ∞

0

|{x ∈ WR | u(x) > t}|
d−ζ
d dt

=
CI

R1−ζ

∫ ∞

0

|Ut|
d−ζ
d dt

=
CI

R1−ζ

∫ ∞

0

‖1Ut
‖
L

d
d−ζ (WR)

dt.(3.11)

Using (3.1), we have 1/R1−ζ ≥ (CV /|WR|)
1−ζ
d . Combining this with (3.10) and (3.11),

we obtain ∫
WR

|∇u| dx ≥ CS

|WR|
1−ζ
d

∫ ∞

0

‖1Ut‖
L

d
d−ζ (WR)

dt.(3.12)

Now let r be positive number satisfying (d/(d− ζ))−1 + 1/r = 1. Take g ∈ Lr such that

g ≥ 0 and ‖g‖Lr(WR) = 1. Then, by the Hölder inequality,∫ ∞

0

‖1Ut‖
L

d
d−1 (WR)

dt ≥
∫ ∞

0

‖g1Ut‖L1(WR) dt =

∫
WR

g(x)

∫ ∞

0

1Ut(x) dtdx = ‖gu‖L1(WR).

Since g is arbitrary, putting this into (3.12), we obtain

‖u‖
L

d
d−ζ (WR)

= sup
g∈Lr(WR), g≥0, ∥g∥Lr(WR)=1

‖gu‖L1(WR) ≤ C−1
S |WR|

1−ζ
d ‖∇u‖L1(WR),

hence (3.8) holds. For general u ∈ FR, we can show the same bound by approximation.

□
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Set p∗ = p
p−1 , ρ = 2qd

q(d−2ζ)+d , and q# = 2q
q+1 .

Proposition 3.3. Let R ≥ RI ∨ RV . Let p, q be positive numbers as in (2) of

Assumption 5. Then we have

‖u‖Lρ(WR) ≤ Csob|WR|
1−ζ
d ‖∇u‖

Lq# (WR)
(3.13)

for u ∈ FR.

Proof. First observe that ρ = dq#

d−q#ζ
. Let r be a real number satisfying 1/q#+1/r = 1.

Set d̄ = q#(d − ζ)/(d − q#ζ). Using a relation dq#

d−q#ζ
= q#(d−ζ)

d−q#ζ
d

d−ζ = d̄ · d
d−ζ and

Proposition 3.2, we have(∫
E

|u|
dq#

d−q#ζ dx

) d−1
d

= ‖ud̄‖
L

d
d−ζ (WR)

≤ C−1
S |WR|

1−ζ
d ‖∇ud̄‖L1(WR) = d̄C−1

S |WR|
1−ζ
d ‖ud̄−1∇u‖L1(WR).(3.14)

Using the Hölder inequality with a pair (r, q#) and a relation (d̄− 1)r = dq#

d−q#ζ
, we have

d̄C−1
S |WR|

1−ζ
d ‖ud̄−1∇u‖L1(WR) ≤ d̄C−1

S |WR|
1−ζ
d ‖ud̄−1‖Lr(WR)‖∇u‖

Lq# (WR)

= d̄C−1
S |WR|

1−ζ
d ‖∇u‖

Lq# (WR)

(∫
WR

|u|
dq#

d−q#ζ dx

) q#−1

q#

.

Inserting this into (3.14), we get

(∫
WR

|u|
dq#

d−q#ζ dx

) d−1
d

≤ d̄C−1
S |WR|

1−ζ
d ‖∇u‖

Lq# (WR)

(∫
WR

|u|
dq#

d−q#ζ dx

) q#−1

q#

.

Dividing both side by

(∫
|u|

dq#

d−q# dx

) q#−1

q#

, we get the desired result since (d− ζ)/d−

(q# − 1)/q# = (d− q#ζ)/(dq#). □

Thanks to Proposition 3.3, we can prove the following inequality.

Lemma 3.4. Let R ≥ RI ∨RV . Then for all u ∈ FR

‖u‖2Lρ(WR) ≤ Csob|WR|
1−ζ
d ‖λ−1‖Lq(WR)E(u, u).(3.15)

Proof. By (3.13), we have

‖u‖Lρ(WR) ≤ Csob|WR|
1−ζ
d ‖∇u‖

Lq# (WR)
.

By the Hölder inequality and (1) of Assumption 5, the right hand side is estimated by

‖∇u‖
Lq# (WR)

=

(∫
WR

|∇u|
2q

q+1λ
q

q+1 · λ− q
q+1 dx

) q+1
2q
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≤
(∫

WR

(|∇u|2λ)
q

q+1 ·
q+1
q dx

) q+1
2q · q

q+1

‖λ−1‖Lq(WR)

≤ E(u, u) 1
2 ‖λ−1‖Lq(WR).

Therefore, we get the desired result. □

By cutoff on WR we mean a function η ∈ CR satisfying 0 ≤ η ≤ 1.

Proposition 3.5. Let R ≥ RI ∨ RV . Let η be a cutoff on WR. Then there exists

a constant C > 0, depending only on the dimension d ≥ 2, such that for all u ∈ FR

‖ηu‖2Lρ(WR) ≤ 2C|WR|
1−ζ
d ‖λ−1‖Lq(WR)(Eη(u, u) + ‖η‖2∞‖uΛ 1

2 ‖2L2(WR)),(3.16)

where we denote Eη(u, u) =
∫
W

〈a∇u,∇u〉η2 dx.

Proof. By Lemma 3.4, we have

‖ηu‖2ρ ≤ Csob|WR|
1−ζ
d ‖λ−1‖Lq(WR)E(ηu, ηu).

Because 〈a(η∇u+ u∇η), (η∇u+ u∇η)〉 ≤ 2(η2〈a∇u,∇u〉+ u2〈a∇η,∇η〉), we estimate

E(ηu, ηu) =
∫
W

〈a∇(ηu),∇(ηu)〉 dx

=

∫
W

〈a(η∇u+ u∇η), (η∇u+ u∇η)〉 dx

≤
∫
W

2(η2〈a∇u,∇u〉+ u2〈a∇η,∇η〉) dx

≤ 2

∫
W

〈a∇u,∇u〉η2 dx+ 2

∫
W

‖∇η‖2∞u2Λdx

= 2Eη(u, u) + 2‖η‖2∞‖uΛ 1
2 ‖2L2(WR),

which leads to the conclusion. □

Let F be the closure of C∞
c (W ) with respect to ‖·‖L2(W ) + E(·, ·). We say that a

function u belongs to Floc if for all R > 0 there exists uR ∈ F such that u = uR on

WR. Let f : W → R be a function with essentially bounded derivatives. Consider the

following equation:

E(u, φ) = −
∫
W

〈a∇f,∇φ〉 dx.(3.17)

We say that u ∈ Floc is a solution of the equation (3.17) if it holds for all φ ∈ C∞
c (W ).

We say that u is a subsolution of the equation (3.17) if the equation (3.17) holds with

≤ for all φ ∈ C∞
c (W ). We also say that u is a solution of the equation in WR if the

equation (3.17) holds for φ ∈ FR.

Proposition 3.6. Let R ≥ RI ∨ RV and u ∈ Floc be a subsolution of equation of

(3.17) in WR. Let η ∈ C∞
c (WR) be a cutoff. Then there exists a constant C1 > 0 such
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that for all α ≥ 1,

‖ηu‖2αWR,αρ ≤α2C1‖λ−1‖WR,q‖Λ‖WR,p|WR|
2
d(3.18)

× (‖∇η‖2∞‖u+‖2αWR,2αp∗ + ‖∇f‖2∞‖u+‖WR,2αp∗).

Proof. Similarly to [9, Proposition 2.4], we can show that

‖η(u+ + ε)α‖2ρ ≤ 2C|WR|
1−ζ
d ‖λ−1‖Lq(WR)

[
(α2 + 1)‖(u+ + ε)2αΛ‖L1(WR)‖∇η‖2L∞(WR)

+ ‖∇f‖2L∞(WR)α
2‖(u+ + ε)2α−2Λ‖L1(WR)

+
α2

2α− 1
‖∇η‖L∞(WR)‖∇f‖L∞(WR)‖u2α−1Λ‖L1(WR)

]
.

(The only difference is using (3.16) instead of [9, Proposiotion 2.3].). Taking the limit as

ε → 0 and using the Hölder inequality with 1/p+ 1/p∗ = 1, we have

‖η(u+)α‖2ρ ≤ 2C|WR|
1−ζ
d ‖λ−1‖Lq(WR)

[
(α2 + 1)‖(u+)2α‖Lp∗ (WR)‖Λ‖Lp(WR)‖∇η‖2L∞(WR)

+ ‖∇f‖2L∞(WR)α
2‖(u+)2α−2Λ‖Lp∗ (WR)‖Λ‖Lp(WR)

+
α2

2α− 1
‖∇η‖L∞(WR)‖∇f‖L∞(WR)‖u2α−1‖Lp∗ (WR)‖Λ‖Lp(WR)

]
.

Averaging over WR and using the relation 2/ρ = 1/p∗ + 1/p + 1/q − (2ζ)/d and

(1 + ζ)/d ≤ 2/d, we get

‖η(u+)α‖2WR,ρ ≤ 2C‖λ−1‖WR,q‖Λ‖WR,p|WR|
1+ζ
d

[
(α2 + 1)‖(u+)2α‖WR,p∗‖∇η‖2∞

+ α2‖∇f‖2∞‖(u+)2α−2‖WR,p∗ +
α2

2α− 1
‖∇η‖∞‖∇f‖∞‖(u+)2α−1‖WR,p∗

]
≤ 2C‖λ−1‖WR,q‖Λ‖WR,p|WR|

2
d

[
(α2 + 1)‖(u+)2α‖WR,p∗‖∇η‖2∞

+ α2‖∇f‖2∞‖(u+)2α−2‖WR,p∗ +
α2

2α− 1
‖∇η‖∞‖∇f‖∞‖(u+)2α−1‖WR,p∗

]
.

By Jensen’s inequality we have

‖u+‖WR,(2α−2)p∗ ≤ ‖u+‖WR,2αp∗ , ‖u+‖WR,(2α−1)p∗ ≤ ‖u+‖WR,2αp∗ ,

therefore we can rewrite and get

‖ηu+‖2WR,ρ ≤ 2C|WR|
2
d

[
(α2 + 1)‖1WR

u+‖2αWR,2αp∗‖∇η‖2∞

+ α2‖∇f‖2∞‖1WR
u+‖2α−2

WR,2αp∗ +
α2

2α− 1
‖∇η‖∞‖∇f‖∞‖u+‖2α−1

WR,2αp∗

]
.

Absorbing the mixed product in the two squares, we obtain the desired result. □

We can prove the following inequality as in [9, Corollary 2.1].
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Corollary 3.7. Let R ≥ RI ∨RV and u ∈ Floc be a solution of equation of (3.17)

in WR. Let η ∈ C∞
c (WR) be a cutoff function. Then there exists a constant C1 > 0 such

that for all α ≥ 1,

‖ηu‖2αWR,αρ ≤α2C1‖λ−1‖WR,q‖Λ‖WR,p|WR|
2
d(3.19)

× (‖∇η‖2∞‖u‖2αWR,2αp∗ + ‖∇f‖2∞‖u‖WR,2αp∗).

The general idea of the proof of the following proposition is similar to that of [9,

Corollary 2.2] but we need to use (3.1).

Proposition 3.8. Take R ≥ RI ∨RV so that (3.1) and (3.4) hold. We write W (R)

for WR. Suppose that u is a solution of (3.17) in W (R), and assume that |∇f | ≤ cf/R.

Then there exist κ ∈ (1,∞), γ ∈ (0, 1] and C2 = C2(cf ) > 0 such that

‖u‖W (σ′R),∞ ≤ C2

(
1 ∨ ‖λ−1‖W (R),q‖Λ‖W (R),p

(σ − σ′)2

)κ

‖u‖γW (σR),ρ ∨ ‖u‖W (σR),ρ(3.20)

for any fixed 1/2 ≤ σ′ < σ ≤ 1.

Proof. Throughout the proof, we use C to denote a constant depending only on d, p,

q and C1 and may change from line to line. We are going to apply the inequality (3.19)

iteratively. For fixed 1/2 ≤ σ′ ≤ σ ≤ 1, and k ∈ N define

σk = σ′ + 2−k+1(σ − σ′).

It is immediate that σk − σk+1 = 2−k(σ− σ′) and that σ1 = σ, furthermore σk ↓ σ′. Let

p∗ = p/(p − 1). Then we have that ρ > 2p∗. Set αk = (ρ/2p∗)k, k ≥ 1. By definition,

we have αk ≥ 1 for k ≥ 1. Let η̃k : Rd → R be a smooth function which is identically 1

on B(0, σk+1R) and vanishing on Rd \B(0, σkR) and satisfies ‖∇η̃k‖ ≤ 2k

(σ−σ′)R . Define

a function ηk by the restriction of η̃k to W . An application of (3.19) and of the relation

αkρ = 2αk+1p
∗ yields

‖u‖W (σk+1R),2αk+1p∗

≤
(
C
22kα2

k|W (σkR)|2/d

(σ − σ′)2R2
‖λ−1‖W (σkR),q‖Λ‖W (σkR),p

)1/(2αk)

‖u‖γk

W (σkR),2αkp∗

≤
(
C

22kα2
k

(σ − σ′)2
‖λ−1‖W (R),q‖Λ‖W (R),p

)1/(2αk)

‖u‖γk

W (σkR),2αkp∗ ,

where γk = 1 if ‖u‖W (σkR),2αkp∗ ≥ 1 and γk = 1 − 1/αk otherwise. Iterating the above

inequality and stop at k = 1, we get

‖u‖W (σj+1R),2αj+1p∗ ≤
j∏

k=1

(
C

(ρ/p∗)2k

(σ − σ′)2
‖λ−1‖W (R),q‖Λ‖W (R),p

)1/(2αk)

‖u‖
∏j

k=1 γk

W (σR),ρ.
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Observe that κ := 1
2

∑
1
αk

< ∞,
∑

k
αk

< ∞. Using (3.1), we have

‖u‖W (σ′R),2αjp∗ ≤
(
|W (σR)|
|W (σ′R)|

)1/(2αjp
∗)

‖u‖W (σR),2αjp∗

≤
(
CV (σR)d

(σ′R)d

)1/(2αjp
∗)

‖u‖W (σR),2αjp∗ ≤ K‖u‖W (σR),2αjp∗ ,

for some K > 0 and all j ≥ 1. Hence, taking the limit as j → ∞ gives the inequality

‖u‖W (σ′R),∞ ≤ C

(
1 ∨ ‖λ−1‖W (R),q‖Λ‖W (R),p

(σ − σ′)2

)κ

‖u‖
∏∞

k=1 γk

W (σR),ρ,

Define γ =
∏∞

k=1(1− 1/αk) ∈ (0, 1], then 0 < γ ≤
∏∞

k=1 γk and the above inequality can

be written as

‖u‖W (σ′R),∞ ≤ C

(
1 ∨ ‖λ−1‖W (R),q‖Λ‖W (R),p

(σ − σ′)2

)κ

‖u‖γW (σR),ρ ∨ ‖u‖W (σR),ρ,

which is the desired inequality. □

The main goal of this section is the following inequality. It is proved as in [9, Corollary

2.2].

Corollary 3.9 (maximal inequality). Let R ≥ RI ∨ RV . Suppose that u is a

solution of (3.17) in W (R). Then, for all α ∈ (0,∞) and for any 1/2 ≤ σ′ < σ < 1 there

exist C ′ = C ′(p, q, d, cf ) > 0, γ′ = γ′(γ, α, ρ) and κ′ = κ′(κ, α, ρ), such that

‖u‖W (σ′R),∞ ≤ C ′
(
1 ∨ ‖λ−1‖W (R),q‖Λ‖W (R),p

(σ − σ′)2

)κ′

‖u‖γ
′

W (σR),α ∨ ‖u‖W (σR),α.(3.21)

4. Sublinearity

In this section, we will prove the sublinearity of the corrector and non-degeneracy of

the covariance matrix. First, we will prove the Lp-sublinearity. In [9], the proof relies

on the fact that E[Uk] = 0. However, as we mentioned in Remark 2.2, since we consider

other measure P̂, we have Ê[Uk] 6= 0. To overcome this issue, we will take another

approach.

Lemma 4.1. Let φ ∈ C and define Φ(x, ω) by

Φ(x, ω) =

∫ 1

0

|x · ∇φ(τtxω)|dt.

Then,

sup
x∈Rd

Φ(x, ω) < ∞

holds P̂-almost surely ω.
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Proof. Let

φ(ω) =

∫
Rd

f(τxω)η(x)dx, η ∈ C∞
c (Rd)

and set K = supp η. Denote the diameter of K by δ. Then we have

Φ(x, ω) =

∫ 1

0

|〈x,∇φ(τtxω)〉|dt

≤
∫ 1

0

∫
Rd

|〈f(τtx+yω)x,∇η(y)〉|dydt

=

∫ 1

0

∫
K

|〈f(τtx+yω)x,∇η(y)〉|dydt

≤
∫ 1

0

∫
K

δ‖f‖∞‖∇η‖∞dydt

≤ δ|K|‖f‖∞‖∇η‖∞.

Hence we get the desired result. □

Set χε(x, ω) = εχ(x/ε, ω). To prove the Lp-sublinearity, we recall a functional analysis

result. Let B1,B2 be Banach spaces and T : B1 → B2 a compact operator. Then, for

each sequence {xn}n ⊂ B1 such that xn → x weakly, we have that Txn → Tx strongly.

Lemma 4.2 (Lp-sublinearity). For P̂-a.s. ω and R ≥ R0(ω),

lim
ε→0

‖χk
ε(x, ω)‖2p∗,WR

= 0.

for k = 1, . . . , d.

Proof. It is enough to show that for any η ∈ C∞
c (W ′

R) we have

lim
ε→0

1

|W ′
R|

∫
W ′

R

χε(x, ω)η(x)dx = 0.(4.1)

Indeed, the above property implies the weak convergence χε → 0 in L2(W ′
R). This

gives the strong convergence in L2p∗
(W ′

R), because W
1, 2q

q+1 (W ′
R) is compactly embedded

in L2p∗
(W ′

R) and the sequence {χε}ε>0 is bounded in W 1, 2q
q+1 (W ′

R). To show the equality

(4.1), we will be apart from [9]. The following argument is motivated by [10].

We have ∣∣∣∣∣ 1

|W ′
R|

∫
W ′

R

χε(x, ω)η(x)dx

∣∣∣∣∣
=

∣∣∣∣∣ εd+1

|W ′
R|

∫
1
εW

′
R

χ(z, ω)η(εz)dz

∣∣∣∣∣
≤ ε

| 1εW
′
R|

∫
1
εW

′
R

|χ(z, ω)η(εz)|dz
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≤ ε

| 1εW
′
R|

∫
1
εW

′
R

∫ 1

0

|z · Uk(τtzω)η(εz)|dtdz

≤ ‖η‖∞
ε

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

|z · Uk(τtzω)|dzdt.

Now, let φn ∈ C be an approximate sequence such that ∇φn → Uk in L̂2 and set

Φn(x, ω) =

∫ 1

0

|x · φn(τtxω)|dt.

Then we compute

ε

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

|z · Uk(τtzω)|dzdt

≤ ε

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

|z · ∇φn(τtzω)|dzdt

+
ε

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

|z · Uk(τtzω)− z · ∇φn(τtzω)|dzdt.

The first term of the right hand side is bounded above by

ε

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

|z · ∇φn(τtzω)|dzdt

=
ε

| 1εW
′
R|

∫
1
εW

′
R

∫ 1

0

|z · ∇φn(τtzω)|dtdz

=
ε

| 1εW
′
R|

∫
1
εW

′
R

Φn(z, ω)dtdz

≤ ε sup
z∈Rd

Φn(z, ω).

Since supz∈Rd |Φn(z, ω)| < ∞ by Lemma 4.1, this term tends to zero as ε → 0.

For the second term, using the Cauchy-Schwarz inequality, we estimate

ε

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

|z · Uk(τtzω)− z · ∇φn(τtzω)|dzdt.

=
1

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

|(εz) · (Uk(τtzω)−∇φn(τtzω))|dzdt.

≤ 1

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

√
|εz||Uk(τtzω)−∇φn(τtzω)|dzdt.

Using the fact that |z| ≤ R/ε for z ∈ 1
εWR and the change of variables, we have

1

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

√
|εz||Uk(τtzω)−∇φn(τtzω)|dzdt

≤ R
1
2

1

| 1εW
′
R|

∫ 1

0

∫
1
εW

′
R

√
|Uk(τtzω)−∇φn(τtzω)|dzdt
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= R
1
2

∫ 1

0

1

| tεW
′
R|

∫
t
εW

′
R

√
|Uk(τuω)−∇φn(τuω)|dudt.

By the volume regularity ((1) of Assumption 4), this is bounded above by

CR
1
2

∫ 1

0

1

|B(0, tR
ε )|

∫
B(0, tRε )

√
|Uk(τuω)−∇φn(τuω)|1{0∈W ′(τuω)}dudt.

By the ergodic theorem, we have

lim
ε→0

1

|B(0, tR
ε )|

∫
B(0, tRε )

√
|Uk(τuω)−∇φn(τuω)|1{0∈W ′(τuω)}du = Ê[

√
|Uk −∇φn|].

Letting n tend to infinity, this term converges to zero. Now we have∣∣∣∣ 1

|W ′
R|

∫
Rd

χε(x, ω)η(x)dx

∣∣∣∣
≤ ‖η‖∞

(
ε sup
z∈Rd

|Φn(z, ω)|

+ C−1
V R

∫ 1

0

1

|B(0, tR
ε )|

∫
B(0, tRε )

|Uk(τuω)−∇φn(τuω)|1{0∈W ′(τuω)}dudt
)
.

First let ε tend to zero and then n tend to infinity, we get (4.1) and obtain the result. □

Proposition 4.3 (L∞-sublinearity). For all R > 0,

lim
ε→0

sup
x∈W ′

R

|χε(x, ω)| = 0, P̂-a.s.

Proof. Observe that by Proposition 2.8, the function χk
ε(x, ω) is a solution of

Eω(χε, φ) =

∫
W ′

〈a(τxω)∇fk,∇φ〉 dx

in W ′
R for all ε > 0. Here fk(x) = xk and φ ∈ H1(W ′

R) ∩ C∞
c (WR). We first consider

the case R ≥ R0(ω). Since |∇fk| ≤ 1, by Lemma 4.2 we have

lim
ε→0

‖χk
ε(x, ω)‖2p∗,W ′

R
= 0.

Therefore, for R ≥ R0(ω), we get the desired result by the maximal inequality (3.21) with

α = 2p∗. It remains to treat the case that R ∈ (0, R0(ω)), but in that case, the desired

bound immediately follows from the fact that supx∈W ′
R
|χε(x, ω)| ≤ supx∈W ′

R0

|χε(x, ω)|
for R ∈ (0, R0). □

To prove the positive-definiteness of the covariance matrix, we show the following

lemma. Recall that Tx is the operator on L∞(P̂) defined by TxG(ω) = G(τxω).

Lemma 4.4. Let G : Ω → R be an integrable random variable such that G(ω) = 0
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for P̂-almost all ω ∈ Ω̂. Fix x ∈ Rd. Then for P̂-almost all ω,∫ 1

0

(Tγ(t)G)1{γ(t)∈W ′(ω)}γ
′(t)dt = 0,

holds for all smooth path γ : [0, 1] → Rd satisfying γ(0) = 0 and γ(1) = x.

Proof. First we fix a smooth path γ. Then for all F ∈ L∞(P̂), by Fubini’s theorem and

the definition of P̂, we have

Ê
[
F

∫ 1

0

(Tγ(t)G)1{γ(t)∈W ′}γ
′(t)dt

]
=

∫ 1

0

Ê[F (Tγ(t)G)1{γ(t)∈W ′}γ
′(t)]dt

=

∫ 1

0

E[F (Tγ(t)G)1{γ(t)∈W ′}γ
′(t)1{0∈W ′}]P(0 ∈ W ′)−1dt.

Using the translation invariance of P, the last line equals to∫ 1

0

E[(T−γ(t)F )G1{0∈W ′}1{−γ(t)∈W ′}γ
′(t)]P(0 ∈ W ′)−1dt

=

∫ 1

0

Ê
[
(T−γ(t)F )Gγ′(t)1{−γ(t)∈W ′}

]
dt

=

∫ 1

0

Ê[(T−γ(t)F ) · 0 · γ′(t)1{−γ(t)∈W ′}]dt

= 0.

Since F ∈ L∞(P̂) is arbitrary, we obtain∫ 1

0

〈Tγ(t)G, γ′(t)〉1{γ(t)∈W ′}dt = 0,

for P̂-a.s. ω. This implies the result because the collection of all smooth path is separable

with respect to the supremum norm (that is, for a path γ : [0, 1] → Rd, define its norm

by supt∈[0,1] |γ(t)|). □

Proposition 4.5. The covariance matrix D is positive-definite.

Proof. The general idea of the proof goes back to [10]. Assume that there is a vector

v ∈ Rd with |v| = 1 such that 〈v,Dv〉 = 0. We have

〈v,Dv〉 =
d∑

i=1

vi(Dv)i

=

d∑
i=1

vi

 d∑
j=1

dijvj


=
∑
k=1

Ê[〈aξ, ξ〉],
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where ξ = (〈v,D1y〉, . . . , 〈v,Ddy〉), y = (y1, . . . , yd) and Dky = (Dky
1, . . . , Dky

d). Thus,

we have 〈v,Dky(0, ω)〉 = 0 for k = 1, . . . , d P̂-a.s. Take ω ∈ Ω̂ and smooth path

γω : [0, 1] → Rd such that γω(0) = 0, γω(1) = x and γω([0, 1]) ⊂ W ′(ω). We denote

the k-th component of γ′
ω by γ′

ω,k. Since Dky(x, ω) = Dky(0, τxω) and

yi(x, ω) =

∫ 1

0

〈∇yi(γω(t), ω), γ
′
ω(t)〉dt =

d∑
k=1

∫ 1

0

Dky
i(0, τγω(t)ω)γ

′
ω,k(t)1{γω(t)∈W ′(ω)}dt,

it holds that

〈v, y(x, ω)〉 =
d∑

i=1

d∑
k=1

∫ 1

0

viDky
i(0, τγ(t)ω)γ

′
ω,k(t)1{γω(t)∈W ′(ω)}dt

=

d∑
k=1

∫ 1

0

〈v,Dky(0, τγω(t)ω)〉1{γω(t)∈W ′}γ
′
ω(t)dt.

Thus it follows from Lemma 4.4 that we have 〈v, y(x, ω)〉 = 0. Hence 〈v, x〉 = 〈v, χ(x, ω)〉
P̂-a.s. However, it implies

0 = lim
ε→0

sup
x∈W ′

R

〈v, εχ(x/ε, ω)〉 = lim
ε→0

sup
x∈W ′

R

〈v, ε (x/ε)〉 = lim
ε→0

sup
x∈W ′

R

〈v, x〉 > 0,

a contradiction. □

5. Proof of the main theorem

Recall that we have the decomposition

εXω
·/ε2 = εχ(Xω

·/ε2 , ω) + εy(Xω
·/ε2 , ω).

First, we show that the martingale εy(Xω
·/ε2 , ω) converges to a Brownian motion with

covariance matrix D.

Lemma 5.1. Set Mω
t = y(Xω

t , ω). Then εMω
·/ε2 converges to a Brownian motion

with the covariance matrix D.

Proof. By Corollary 2.10 and the ergodic theorem for the environment process {τXω
t
ω}t

(see [26, Proposition 2.1]), we have

〈Mk,ε
· ,M ℓ,ε

· 〉t = ε2
∫ t/ε2

0

d∑
i=1

〈a(τXω
s
ω)∇yk(Xs, ω),∇yℓ(Xs, ω)〉ds

→ Ê[〈a(ω)∇yk(0, ω),∇yℓ(0, ω)〉].

Hence, we get the result by [20, Theorem 5.1.]. □

It remains to show that the corrector εχ(Xω
t/ε2 , ω) converges to zero in distribution.

For that the sublinearity of the corrector will play a major role.



26 Y. takeuchi

Let T > 0 be a fixed time horizon. We claim that for all δ > 0

lim
ε→0

Pω
0

(
sup

0≤t≤T
|εχ(Xω

t/ε2 , ω)| > δ

)
= 0.(5.1)

Denote by τε,ωR the exit time of εXω
t/ε2 from W ′

R. Observe that

(5.2) lim sup
ε→0

Pω
0

(
sup

0≤t≤T
|εχ(Xω

t/ε2 , ω)| > δ

)
≤ lim sup

ε→0
Pω
0

(∣∣∣∣ sup
0≤t≤τε,ω

R

εχ(Xω
t/ε2 , ω)

∣∣∣∣ > δ

)
+ lim sup

ε→0
Pω
0

(∣∣∣∣ sup
0≤t≤T

εXω
t/ε2

∣∣∣∣ > R

)
.

By Proposition 4.3, we have

lim
ε→0

sup
0≤t≤τε,ω

R

|εχ(Xω
t/ε2 , ω)| = 0

and therefore P̂-almost surely

lim sup
ε→0

Pω
0

(
sup

0≤t≤τε,ω
R

|εχ(Xω
t/ε2 , ω)| > δ

)
= 0.

To obtain a bound of the second term of (5.2), we use again Proposition 4.3 to say

that there exists ε̃(ω) > 0, which may depend on ω such that for all ε < ε̃ we have

sup0≤t≤τε,ω
R

|εχ(Xω
t/ε2 , ω)| < 1. For such ε we have P̂-almost surely

Pω
0

(
sup

0≤t≤T
|εXω

t/ε2 | ≥ R

)
= Pω

0 (τε,ωR ≤ T )

= Pω
0

(
τε,ωR ≤ T, sup

0≤t≤τε,ω
R

|εy(Xω
t/ε2 , ω)| > R− 1

)

≤ Pω
0

(
sup

0≤t≤T
|εy(Xω

t/ε2 , ω)| > R− 1

)
.

Thanks to Lemma 5.1, the process εy(Xω
·/ε2 , ω) converges in distribution under Pω

0

to a non-degenerate Brownian motion with the deterministic covariance matrix given by

D. Hence there exist positive constants c1, c2 independent of ε and ω such that

lim sup
ε→0

Pω
0

(
sup

0≤t≤T
|εy(Xω

t/ε2 , ω)| > R− 1

)
≤ c1e

−c2R,

from which it follows

lim sup
ε→0

Pω
0

(
sup

0≤t≤T
|εXω

t/ε2 | > R

)
≤ c1e

−c2R.

Therefore,

lim sup
ε→0

Pω
0

(
sup

0≤t≤T
|εχ(Xω

t/ε2 , ω)| > δ

)
≤ c1e

−c2R
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and since R > 1 was arbitrary, the claim (5.1) follows, namely the corrector converges to

zero in law under Pω
0 , P̂-almost surely.

The convergence to zero in law of the corrector εχ(Xω
·/ε2 , ω), combined with the

fact that εy(Xω
·/ε2 , ω) satisfies an invariance principle P̂-almost surely and that εXω

·/ε2 =

εχ(Xω
·/ε2 , ω)+εy(Xω

·/ε2 , ω), implies that the family εXω
·/ε2 under P

ω
0 satisfies an invariance

principle P̂-almost surely with the same limiting law.
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