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ABSTRACT. Time-dependent free surface problem for the incompressible Navier—Stokes equations which
describes the motion of viscous incompressible fluid nearly half-space are considered. We obtain global well-
posedness of the problem for a small initial data in scale invariant critical Besov spaces. Our proof is based
on maximal L!-regularity of the corresponding Stokes problem in the half-space and special structures of
the quasi-linear term appearing from the Lagrangian transform of the coordinate.

1. INTRODUCTION AND MAIN RESULTS

We consider a time-dependent free surface problem for the Navier—Stokes equations which describes the
motion of viscous incompressible fluid. The domain ; C R™ (n > 2) is occupied by the fluid and the velocity
of fluid @(t,y) and the pressure p(t,y) for y € ; satisfy the incompressible Navier—Stokes equations:

Oyut+(a-V)u — divT(a,p) =0, t>0, ye,

diva =0, t>0, yey, L1
T(ﬂ7i))1/t = 07 > 07 Yy e 8975’ ( . )
u(0,y) = uo(y), y € Qo.

Here, 02; denotes the boundary of Q;, 14 = 14(y) is the unit outward normal at a point y € 9, T'(u,p) is
the stress tensor defined by T'(, p) = (Va+(Vu)")—pI, where I is the n xn identity matrix, (V,u);; = %Za
and (V)T denotes the transposed matrix of V. ug is the given initial velocity. In our setting (1.1), we do
not take into account the effect from the gravity force or the surface tension.

Free boundary problems for the incompressible fluids are considered by many authors. The pioneer work
was done by Solonnikov [64], he established local well-posedness of (1.1) whose initial state €2 is a bounded
domain in the frame work of Holder spaces C?t1+9/2 with o € (%, 1). Solonnikov also proved global
well-posedness of (1.1) in the class of Sobolev space Wl%l with n < p < co when n = 2, 3, where surface
tension is excluded. When initial state is bounded and the surface tension is excluded, Mucha—Zajaczkowski
considered the case where the self-gravitational force exists, they proved in [39], [40] the local in time unique
solvability in W' with n = 3 and 3 < p < oo for arbitrary initial data. Shibata-Shimizu [61], [62] developed
the LP-theory for the problem and showed global well-posedness of (1.1) in the class of Sobolev space Wli’pl
with n < ¢ < 0o and 2 < p < co when n > 2.

In the case when initial state is bounded and the surface tension is included, Solonnikov proved the global

in time solvability in W5 ' "*/? with 1/2 < < 1 provided that initial data are sufficiently small and the
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initial domain is sufficiently close to a ball. There are many other contributions in the case when the effect
of surface tension is included, for instance [33], [37], [49], [63], [65]-[69] and references therein, we do not get
involved with the case because in this paper we consider without surface tension case.

Another typical free boundary problem describes the motion of a fluid which occupies a semi-infinite
domain between the moving upper surface and a fixed bottom. Beale [7], [8] considered the free surface
problem in a three dimensional region with a bottom, in the L?-based Bessel potential spaces Hy /2" where
3 < r < 7/2. His problem (called as the ocean problem) has a similar setting of the following Lagrange
coordinate equations and showed that the global in time solvability for small initial data in L, Bessel-
potential space setting. Since the ocean problem has a finite depth, however, the spectral property for the
linearized problem is different from the case for a domain close to the half-space. Priiss—Simonett [53], [54]
proved local well-posedness of (1.1) whose initial state € is close to the half-space R’} in the class of Sobolev
space Wg’l with p > n 4 2. There are many other contributions on this direction, for instance, [1], [9], [10],
[19]-[21], [29], [30], [39]-[42], [53]-[55], [61], [70]-[72] and reference therein.

Recently, Shibata [57], [58] considered local and global well-posedness on general unbounded domain in
the space W(i’pl withn < ¢ <ooand 2 <p < .

The incompressible Navier—Stokes equations are invariant under the following scaling: For all A > 0,

{ﬂ(t,y) = ax(t,y) = )\ﬂ(/\Qt, Ay),
p(t,y) — palt,y) = N2p(A%t, \y).

Subsequently, it is well-known that the Cauchy problem of the Navier-Stokes equations can be solved globally
in time in the invariant Bochner—-Sobolev space L’ (R+; H 3 (R™; R"))

L, (1.2)
p D
which is observed in the celebrated result by Fujita—Kato [26] (see also Prodi [52] and Serrin [56] for the
relation between regularity of solutions and the scaling invariance). When we choose p = oo, we obtain
s = =1+ n/p by (1.2), and the critical class at s = 0 is given, in particular, by L°°(0,T; L™(R™)), where
Kato [32] considered global well-posedness of the Cauchy problem. Such a critical setting for the Cauchy
problem is considered by several authors in the framework of the scaling critical Besov spaces Bp_ ,1;+"/ P(R™),
where 1 < p < oo and 1 < o < oo ([4], [13], [14], [15], [34]). Meanwhile, it is proved ill-posedness of the
problem in [12], [77], [80], namely the continuous dependence on the initial data in the classes ug € BO’O{U(R"),
1 < 0 < oo breaks down. In view of those of well-posedness results to the Cauchy problem, it is natural to
ask if the free surface problem can be solvable in such a scaling critical function class. Our main motivation
is to consider the free surface problem (1.1) near the half-space R’} in the scaling critical function space.
In this paper, we show global in time well-posedness of the Lagrangian transformed problem for (1.1)
under small data in the scaling critical Besov space B; iﬂl/ P (R%) for all n < p < 2n — 1, via maximal
L-regularity of the linearized problem associated with (1.1). As far as the authors know, there is almost
no result of global well-posedness to (1.1) in the scale critical space whose initial state Qg is an unbounded
domain except the recent result due to Danchin—-Hieber-Mucha-Tolksdorf [18]. They consider the analogous
problem in the scaling critical Besov spaces forn — 1 < p < n.
Let the half Euclidean space and its boundary be denoted by

RY ={(2/,2); 2’ € R"™!, 2, > 0},
ORY =R" ! x {0} = {(2/,z,); 2’ e R"', z, =0}

We also set R” as the negative part of R”, i.e., R® = R’} UJR"} UR”. Aside from the dynamical boundary
condition, a further kinematic condition for the free surface is satisfied which gives 0€); as a set of points
y=y(t,x), x € 0Qy = OR", where y(t, ) is the solution of the Cauchy problem:

% =a(ty@®), t>0,  y(0) == (1.3)
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Let the Euler coordinates y € €2; be transformed into the Lagrangian coordinates z € R’} connected by
(1.3). If a(t,y) is Lipschitz continuous with respect to y, then (1.3) can be solved uniquely by

t
y(t,z) =z +/ u(s,y(s,z))ds. (1.4)
0
By the kinematic condition of the original boundary €2, it is described by the map Yy : (¢,2) € Ry xR"} —
(t,y) € Q, where €, is given by
Q=Y (t,RY) = {(t,y(t,2)); t >0, y(t,x) satisfies (1.4) and = € R’} }.
Setting
u(t, ) = u(t, y(t, z)),
p(t @) = p(t,y(t,x)),

and applying the Lagrangian coordinate to the original problem (1.1) yields that the system is transformed
into the following form:

Ou — Au+ Vp = F,(u) + F,(u,p), t>0, reRY,
div u = Gaiy (u), t>0, zeR:,
1.5
(Vqu(Vu)T—pI))Vn = H,(u)+ Hp(u,p), t>0, ze€dRY, (1.5)
(0, z) = up(x), xz € RY,
where v, = (0,---,0,—1)T denotes the outward normal ! and the nonlinear terms of (1.5) are given by
¢
F.(u) =div (J(Du)—l (J(Du)—l)Tvu - vu) =2n—2 (/ Du ds) D?u, (1.6)
0
¢
Fy(u,p) = — (J(Du)™ = 1) Vp=T12"" (/ Du ds> Vp, (1.7)
0

Gaiw (w) = — tr((J(Dw) ' = 1) Vu) = tr (Hggl ( /O "Du ds) Du>
—div (ndw ( | pu ds) ) (18)
(

( (Du) ) Vu + (Vu)" J(Du)fl)(J(Du)*lfI)Tz/n

— (D)™ = 1) Vut (Vo) (J(Dw) " = 1) )

t
:HiZ_Q (/ Du ds) Duvy, (1.9)
0
t
Hy,(u,p) =pI (J(Du)™' — I)Tyn = H;Lp_l (A Du ds) D Vn. (1.10)

Here J(Du)~! denotes the inverse of the Jacobian matrix, I denotes the identity matrix, (Du);; = % and
J

II7* (d) denote m-th order polynomials of d = (d;x)1<jk<n With

dji, = (/Ot Du(s)ds)jk = /Ot Oz, uj(s)ds

(here the notation * stands for either u, p, div or bu, bp). Those polynomials are indeed given by the inverse
matrix of the Jacobi matrix, J(Du)™! as follows:

([ o) 55 11 ([

=1 1<j¢,ke<n

1Practically natural setting is 20 = R™ under the gravity circumstance.
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with oy, , is either 1 or —1.

By using the Lagrangian transformation, the free surface problem (1.1) can be transformed into the
initial-boundary value problem in R} with the fixed boundary R’} and the system is transformed into the
quasi-linear parabolic equation (1.5) (see e.g., [67]).

Before stating our results, we define the Besov spaces and Lizorkin—Triebel spaces in the half-space.
Since the global estimate requires the base space for spatial variable x in the homogeneous Besov space, we
introduce the homogeneous Besov space over R’} (see for details, Bergh-Lofstrém [11], Lizorkin [36], Peetre
[50], [61], Triebel [74]-[76]).

Definition (The Besov spaces). Let s € R, 1 < p,o < oo. Let {¢,},ez be the Littlewood—Paley dyadic
decomposition of unity for x € R™, namely ¢ is the Fourier transform of a smooth radial function ¢ with
#(€) >0 and supp ¢ C {£ € R* | 271 < |¢] < 2}, and

6;(€) = 6(277€), D 6;(&)=1 forany E€R"\ {0}, jeZ
JEZ
and  ¢5(¢) + Y ¢;j(§) =1 forany £ €R", (1.11)

Jj=1

where gz/%(f) = (| (€]) with a low frequency cut-off

1, 0<r<l,
¢(r) = { decreasing in 1 <7 < 2, (1.12)
0, 2<r.

For s € R and 1 < p,0 < o0, let B;,a (R™) be the homogeneous Besov space with norm

X - 1/o
(D2 los fIg) © 10 <00,
1fllg, =1 7€

sup 2%, * Flp. o= o,
JEL
where ¢; * f stands for the convolution operation with a constant correction ¢, = (2m)~"/2 given by

b8 =en [ 0 =) )y (113

for f € S(R™) and its standard extension to f € S'(R™). In what follows, we always regard this correction
of the constant against the convolution operations for all kinds of the Littlewood—Paley decompositions.
Also let By ,(R") be the inhomogeneous Besov space with norm

~ o o 1/o
i (o 7l + 3205 Fllg) ) 1< 0 <o,
HfHB;,G = B JEL ~
||¢o*f||p+$1€11232”||¢j*f||p, o = oo.
J

We define the homogeneous Besov space B;,U(R:L_) as the set of all the restriction f of the distribution
J€B;,(RY), ie, =]

B with

. e r . . r j— . £ / — 3
HfHB;;,(,(Ri) = mf{”f”B;ya(R") <oo; f= Z¢J *finS, f= f’Ri}- (1.14)
jez
Analogously we define the inhomogeneous Besov space B; ,(R}) in a similar manner.

Definition (The Bochner—Lizorkin—Triebel spaces). Let s > 0, 1 < p,o < 0o and X be a Banach space with
the norm || - ||x. Let {¢}rez be the Littlewood-Paley dyadic decomposition of unity for ¢t € R. For s € R
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and 1 < p < o0, F;G(R; X) be the Bochner—Lizorkin—Triebel space with norm

~ 1/o
(2ot Fe %) ],y TS0 <00,
1Fllig, oy = 2 ]
Hsupr’“lm « f(t,") : o= .
keZ

Analogously above, we define the Bochner—Lizorkin—Triebel spaces F;U(I ; X) as the set of all the restric-
tion f of a distribution f € szyg(R;X) ie., f= f|1 on X with

10y ey = 08 {UF i ey <003 £ =11}

where I = (0,T) denotes the time interval. We denote R, = (0, 00) as the half real line and R = [0, 00) as
its closure. We note that all those homogeneous spaces are understood as the Banach spaces by introducing
the quotient spaces identifying any difference of polynomials.

Let Cp(I; X) be a set of all bounded continuous functions from an interval I to a Banach space X.
We also use the notation C,(R") for a set of all continuous functions vanishing at x| — oo. Obviously

Cu(RY) C Cy(R1).

Theorem 1.1 (Global well-posedness under the Lagrangian coordinates). Let n < p < 2n —1. There erists

small eg > 0 such that if the initial data ug € B 1's_"/p(R") with divug = 0 in the sense of distribution
satisfying
[uoll ,~142 < eo, (1.15)
+

then (1.5) admits a unique global solution
uer(R+,B (R"))ﬁwll(R+,B
Au, Vpe L! (R+,B (R"))

1+"

" (RY)),

plwn:oeFf,l (R+,B (R 1))ﬂL1(R+;Bp‘i (R"1))

with the estimate

a - n D2 - n — n
H tuHLl(]R ‘B 1+p ®2) + || u”Ll(RJF;BPiJFP &) || p|| R+,B 1+p (®2) (1 16)
+ [Plancol| R + [Pl = ns <ey, '
P2 p(RJﬂB P (Rn—1)) Ll(R+;Bp‘i’ (R7—1))

where D*u denotes all the second order derivatives of u by x and €1 = £1(n, p, o) is a constant.

Corollary 1.2 (Global well-posedness). Let n < p < 2n — 1. For the same €y in Theorem 1.1 and uy €

Bp }Jrn/p(R”) with divug = 0 in the sense of distribution satisfying (1.15), let (u,p) be the global solution of

(1.5) obtained in Theorem 1.1. Then the pull-back (u,p) of (u,p) with the estimate (1.16) satisfies (1.1).

Concerning the half-space problem, Danchin-Mucha [19] proved well-posedness of the Cauchy—Dirichlet
problem of the density-dependent incompressible Navier—Stokes equations with the 0-Dirichlet boundary
data. The result there is also applicable for the incompressible Navier—Stokes equations in the scaling
invariant Besov spaces p = n, namely in B,Ol,l(]Ri).

Let us mention on the two results between Danchin-Hieber-Mucha—Tolksdorf [18] and ours. Their result
based on the abstract interpolation spaces based on the original idea that goes back to Da Prato—Grisvard [22]
and based on the result due to Danchin—Mucha [19] and [20], where the authors considered the 0-Neumann
boundary condition for the linearized system of the Stokes equation. Our approach is very much different
from theirs. We handle the boundary potential for non-stress boundary condition directly in the homogeneous
Besov spaces and as a result, our result covers the initial data as a class of distributions (negative indices of
regularity in the scaling critical homogeneous Besov space B Hn/ P (R%) with n < p < 2n — 1), while they

treats the function case n —1 < p < n for B 1'm/p(R") case in [18]. Theorem 1.1 (and hence Corollary 1.2)
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is the first result for treating the scaling invariant distribution as an initial data for the free boundary value
problem, as far as the authors can find.

Our proof of Theorem 1.1 is heavily depending on the end-point estimate of maximal regularity for the
initial-boundary value problem of the Stokes system in the half-space R”!. Many of the existence results are
related to the spectral analysis for the linearized equation and derive the decay property for the linearized
Stokes equations. On the other hand, maximal regularity for the parabolic equation gives a suitable estimate
for treating the quasi-linear terms effectively ([3], [5]). In contrast with those results, our method is a direct
application of maximal L'-regularity for the half time line R, to treat the system under the Lagrange
transformations. This method enables us to handle main terms appearing the quasi-linear perturbations
(1.6)—(1.10) directly and we may treat them globally in the transformed problem (1.5). Namely, to obtain
global well-posedness of (1.5), it is required to treat the terms with

t
dij = 0p,; + lim / Oz, uj(s, x)ds, k,j=1,2,--- ,n.
t—o00 0 )

We then establish maximal L'-regularity for the transformed Stokes system via maximal regularity estimate
for the initial-boundary value problem of the heat equations obtained in the previous work of authors [48] (see
for its announce [45]). Such argument was developed by Danchin [16], [17] for treating global well-posedness
for the Cauchy problem of the compressible or incompressible density dependent Navier—Stokes equations.
The main difference here is to treat the boundary inhomogeneous terms appearing in H,(u) by maximal
L'-regularity and usage of the sharp trace estimate of the boundary terms. Such an estimate is available
for analyzing the potential expression of the pressure term p for the Stokes system with the free surface
boundary condition obtained in [61]. Maximal regularity and its sharpness is obtained by establishing the
almost orthogonal estimates for the pressure potential and the Littlewood—Paley space-time decompositions
of unity that defines our sharp function class of the well-posedness.

In order to enlarge the solution class into the critical Besov spaces, the divergence free condition is crucial.
In particular to enlarge the class for the bilinear estimate remains valid, the multiple divergence-rotation-free
structure is another crucial point (cf. [46]). This nonlinear structure was partially observed by Solonnikov
[64] and Shibata—Shimizu [59] for treating the terms in the Sobolev spaces. However in order to apply the
bilinear estimate in the critical Besov space, we need to ensure such a special structure for each decomposition
steps of sub-matrix expansion of the inverse of Jacobi matrix. In this stage, we show that a divergence-curl
free structure (div-curl structure, in short) holds for each step of sub-cofactor of expansion involving the
null-Lagrangian structure (cf. Evans [25]). This was shown in [46] for the initial value problem for the
Lagrangian coordinate case. We develop the analogous estimate and establish the multiple Besov estimate
in the half-spaces. It is well-known that the convection term @ - V& maintains the div-curl structure and
it helps to enlarge the solution class. Although the convection term vanishes after the transformation into
the Lagrangian coordinate, all the nonlinear terms inherit the div-curl structure from the divergence free
condition and then the solution class can be reach the critical homogeneous Besov space.

We should like to notice that regularity for the solution obtained in Theorem 1.1 is weaker than known
results, we do not assume the compatibility conditions on the initial and boundary data. The regularity of

solution ensures us that the velocity fields has a sufficient regularity Vu € L'((0, c0); B;Ly/lp (R%)) so that the
Lagrange transformation (1.4) is uniquely determined and the inverse of the transformation has meaningful

by B;L’/lp(RTfr) C Cy(R7}). Thus the original problem (1.1) is solvable.

The rest of this paper is organized as follows. We present a solution formula of the linear problem of (1.1)
in the next section. Maximal L!-regularity of the Stokes system (Theorem 2.1 stated in Section 2) is a key
estimate for our argument. Section 3 is devoted to prove almost orthogonality between the pressure potential
and the space-time Littlewood—Paley dyadic decomposition, which is crucial to prove maximal L'-regularity
of the Stokes system. Using the almost orthogonal estimates, we show maximal regularity for the Stokes
system in Section 4. The bilinear estimates as well as the div-curl lemma are discussed in Section 5, both of
them are necessary to treat nonlinear equations. Finally we devote to the proof of Theorem 1.1 in Section
6. Some supplementary estimates are described in the Appendix.

Throughout this paper we use the following notations. For z € R™, (x) = (14 ]z|?)/2. The transpose of a
matrix A is denoted by AT. The Fourier and the inverse Fourier transforms are defined with ¢,, = (2r)~"/2
6



FO=F© = en [ =S, F AW = e [ e pe)ie

n

For any functions f = f(t,2',z,) and g = g(t, 2", z,,), f (*) g, f( * )g and f ( * : g stand for the convolution
t t,x’! Ty

between f and g with respect to the variable indicated under %, respectively. If both f and g are vector field
functions, f ( - : g denotes the convolution in 2’ as well as the inner-product of f and g, i.e.,
t,x’

n—1
f x g= Z/ / Jot —s, 2" —y")ge(s,y')dy'ds. (1.17)
(t,z") —1 /R JRn—1

In the summation ), ,, the parameter k runs for all integers k € Z and for Ekg i k runs for all integers
less than or equal to j € Z. We denote D'(R’;) the distribution over R’} and the norm of the Lebesgue space

LP(R™') with 2/ € R"~! variable by || - ||z» . In the norm for the Bochner spaces on F;ﬁp(I; X(R™1)) we
use

/1

unless it may cause any confusion. For the Besov spaces, we abbreviate R™ for B;"U = B;U(R”) and its
norm || - ||z . For a € R™, we denote Br(a) as the open ball centered at a with its radius R > 0. We also
p,o

Fs (LX)~ | ] Fp (I; X (R7=1))

denote the compliment of B r(0) by B%. T'(-) denotes the Gamma function. Various constants are simply
denoted by C unless otherwise stated.

2. MAXIMAL L'-REGULARITY FOR THE STOKES EQUATION IN THE HALF-SPACE

2.1. Maximal L!-regularity for the Stokes flow. Maximal L!-regularity in the half-space is considered
in [45], [48] (see also Danchin-Mucha [19] for 0-boundary data). Here we develop maximal L'-regularity for
the Stokes system corresponding (1.1) and (1.5) with inhomogeneous free stress boundary condition:

Ou — Au+ Vp = f, t>0, xzeR%Y,
divu =g, t>0, veRY,
. N (2.1)
(Vu+ (Vu)' —pl) v, = h, t>0, xedRY,
U(O,I) = Uo(CC), x € Rn7
where g, f, g and h are given initial, external and boundary data, respectively and v,, = (0,0--- ,0, —1)T

denotes the outer normal on R’ . The following theorem is the main result of this section.

Theorem 2.1 (Maximal L!-regularity). Let 1 < p < oo and —1+ 1/p < s < 0. The problem (2.1) admits
a unique solution (u,p) with
u € Cy(Ry; By (R) NWHH (R By 1 (RY)),
Au, Vp € L'(Ry; B34 (RT)),
P . n— -s+1-1 n—
pl, o € F TRy Bp (R H)NLY R B, "(R™H)
if and only if the data in (2.1) satisfy

ug € By, (RY), divug = g|,_,in D'(R}), f € L'(Ry; By, (RY)),
Vg e L'(Ry; By 1(R})), V(=A)"'g e WH(Ry; By, (RY),

'%_ﬁ 5S n— ~s+1—% n—
he Fy 7 (R By (RH)NLY Ry B,y "(R™T),
7



where (—A)~1g is given by G * glrn with g as the even extension of g (see (2.4) blow). Besides the solution
(u,p) satisfies the following estimate for some constant Cpr > 0 depending only on p, s and n

Hat“|‘L1(R+;B;1(R1)) + HD2“HL1(R+;B;1(R1)) + HVPHLI(M;B;I(RQ))

+{lple,=oll 3 -2 + {|plz, ol

- R Ls+1-1
B2 PP Ry B (Rh1)) LY(Ry;B,, P (Rm1))

§CM<||UO| B (R7) + ||fHL1(R+;B;J(R1))

+ ||v9||L1(R+;B;Y1(Ri)) + ||8tv(*A)719||L1(]R+;B;1(]R1))

a0 I S S o )| ob1-d
By PRy By (RPT1) L'(Ry;B,, " RrT

. 2.2
) (2:2)

The general theory of maximal regularity for the parabolic type partial differential equation is extensively
developed in the UMD Banach space (see, for instance, [23], [24], [27], [28], [31], [35], [43], [54], [60], [78], [79],
[81]). However the end-point exponent is normally excluded in the general theory. If the space is restricted
the homogeneous Besov space or Fourier transformed measures, one can see the end-point estimate holds as
is seen in [6], [16], [20], [27], [44], [45], [48].

To establish maximal regularity of the half-space problem (2.1), we reduce the problem (2.1) into the
several partial components of the data and reduce the problem into the inhomogeneous problem with only
boundary data. At first we remove the divergence data. Introducing the even extension of divergence data
g with respect to z,;

§(t7l‘) — g(t?x:7I7l)7 xn > 07
g(t,(t 77‘%71)’ Tn < 0

for ' = (21,22, -+ ,2n_1), we consider the problem
—A¢p =7, t>0, reR"
2.3
o =0, t>0, 2’ e R"L. (2:3)
x,=0

One of the solution of (2.3) is given by the Newtonian potential ¢ = (—A)~1g = G * g with the Newtonian
kernel G in R™;

L log |x| 7t n=2 212
Gx) = ) 27 ) ’ = . 2.4
. {((n—2>wn>1|x<n2>, nzs 24

Then the gradient of potential V¢ satisfies the estimate for 1 <p < oo and —14+1/p<s<1/p

HVS(;SHLl(RJr;B;J(Ri)) < OHVQHLl(RJr;B;I(RQ‘_))’

o (2.5)
HatV(bHLl(R%B;J(Ri)) < Cl|o,V(=A) 1g||L1(R+;B;1(R1))'

Indeed the corresponding estimate to (2.5) in R™ follows directly from the elliptic estimate for the Poisson
equation (or the Bernstein type estimate) and hence the estimate (2.5) in the half-space naturally follows
from the definition of the Besov space in R’}. Setting w = u + v¢|Ri’ the pair of functions (w, p) satisfy the
equations

atw—Aw—i—Vp:f—i—(8tV¢—AV¢)‘zn>O, t>0, zeRY,

div w =0, t>0, veRY,
(Vw+ (Vw)" = pI) vy =h+ (V26 + (V?¢) ) v,  t>0, z€IRY,

where v, denotes the outer normal to IR .
In order to exclude the external and initial data, we extend them into R", more precisely, we extend f;
(1 <j<n-1) by odd functions and for the n-th component f,,, we employ the even extension (we write
8

(2.6)

n
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them f7 and f;, respectively) and set f=(f0,--fo_1, f&)7. For the initial data ug, we also employ the
same extension with respect to x,, and write it 7 and set

f=T+(0.Vé—AV9), t>0,zeR", 2.7)
ug(z) = u(z) + Vo(0, ), z € R, '
and we consider the Cauchy problem:
Ol — AL+Vp=f t>0, z€R",
div u =0, t>0, zeR", (2.8)
u(0,z) = ug(z), x € R"™.
Then it is known that the solution (@, p) of the equation (2.8) satisfies maximal L!-regularity
HatﬂHLl(R+;B;l(]R"))+||V26||L1(R+;B;1(R")) + HV5||L1(R+;B;1(R"))
SCM (H'EO/‘ B;,l(R") + Hf||L1(R+;B;’1(Rn))> (29)

for any —1/p' < s < 1/pand 1 < p < oo (see Danchin-Mucha [19] and Ogawa—Shimizu [44], see also [81]).
By restricting the solution (u,p) over the half-space R’} (and we denote them in the same notation) we
directly obtain from (2.5) and (2.9) that

~ 2~ ~
19 12 ey s, Ry HIV Ul a5, ey + IV La @y 3
<Car (1@ 5,y + 1l o asss )
<Car (ol

+ |‘v9||L1(R+;B;1(R1)) + Hatv(_A)_lgHLl(R_,_;B;,l(]Ri)))v (2.10)

where the inverse operator (—A)~! is given by the solution operator to the elliptic problem (2.3) and it is
realized by the Green’s function (2.4).

Finally we consider the difference between the solutions (w,p) to (2.6) and (@,p) to (2.8) restricted in
R". Letting v = w — uls,>0 = 4+ V¢|z, >0 — Uz, >0 and ¢ = p — pls,, >0 and we reduce the original problem
into the following initial boundary value problem for (v, q):

B @) Tl s, @)

Ow — Av+ Vg =0, t>0, veRY,
dive =0, t>0, ze€RY,
. (2.11)
(Vo+ (Vo) —ql)v, =H, t>0, xz€dRY,
v(0,z) =0, z € RY,
where we set
H=h-— (va + (V)T - m) Vn
(2.12)
—h — (V2 + (V2) ") — (va +(va)T - 51) V-
In order to prove Theorem 2.1, it is essential to show maximal L!-regularity for (2.11).
Theorem 2.2. Let —1+1/p <s<0 and 1 <p < co. The problem (2.11) admits a unique solution
v € Cy(Ry; By 1(RY)) N WHI(Ry; By 1 (RY)),
Av, Vg € L'(Ry; B3 (R7)), (2.13)

L1 1 . sl 1
romo € By P (R By, (R ) N LRy B 7 (1)

q
if and only if the data in (2.11) satisfy

1-i el s4l-L
H e Bl (R B (RN L R By 7 (RY), (2.14)
9



Besides the solution (v,q) satisfies the following estimate for some constant Cpy > 0 depending only on p,
s andn

HatUHLI(R+;B;1(R1)) + HDQUHLI(R+ Bs 1(RD)) + quHLl(R+ Bg L(R7))
lalewmoll iy

+ ol 11
. OHFfl 211’<R+;B;,1<R"*1>> LY(Ry;B,, P (Re-1) (2.15)
<C(1Hl,s s, AN ey )
7P (RSB (RP1)) LU(Ry;B, ;P (Rr1))

Once we obtain corresponding maximal regularity Theorem 2.2 to the solution (v, q) for (2.11), we may
prove maximal L'-regularity for the original Stokes system (2.1) combining with those estimates (2.5) and
(2.10) and the relation

u(t,z) =u(t,z) + v(t,x) + Vo(t,x), t>0, zecRY, 016
(L) =p(t,2) + alt, ), 150, 2 el (210
as well as the following trace estimate (see Appendix below, cf. [45], [48]):
H (Vi ) wnl| 1o + H (Va+ D)l s
Bl (5B (Rh1) LHI3B,, TR 1) (2.17)

§C<||5t17||u(1;1'3; () T AU L s (R")))'

2.2. Solution formula of the Stokes equation. We construct the solution formula of (2.1) according to
the method by Shibata—Shimizu [59] and [62].

Let H = H(t,a") = (H'(t,2'), H,(t, ")) be the boundary data extended into ¢ < 0 by the zero extension.
Let F and F~! denote the Fourier and the inverse Fourier transform with respect to 2’ € R*~!, and £ and
L~! denote the Laplace and the inverse Laplace transform for ¢ and 7, respectively. Namely

LFONE 20) = (2m) 3 / / M€ f( of a) da'dt,
R+ Rn 1
// A (N ¢ @) dEdA,
Rn 1

LTAYFNf(t 2 xy) = (2m) e
21

where I' denotes an integral path given for some v > 0 by I' = {\ = v +ir; 7 € R}. Applying the Fourier-
Laplace transform with respect to (a/,t) to (2.11), we have the solution formula for the n-th component of
the velocity and the pressure as follows:

Un(1, € 2n) ~Bre) |§|§| e )(2¢\§’|B(T, &) H) - (¢ + B(r,¢))H ) 1€ |on
+ (B(r, &) _|£|§|/|)D(T7 &) ( — (|€']? + B(r,&")?)i¢" - H' +2|¢'| B(r, g')ﬁ;)e—mns’)wn, (2.18)
i(r,€00) =S Z0E (o) (€ 1) — (€ + B &), ), (2.19)
there we have set H = (H'(r,&'), H,(7,£')) as the Fourier-Laplace transform of the given boundary data
an

=it +[¢]2, ReB(r,¢) >0, (2.20)
D(ﬂ f/) = B(r,&)? +|¢'|B(r, &) + 3|’ B(r, &) — €' (2.21)

10



Hence we see for any smooth rapidly decreasing boundary data (I/-I\’ , I;T;) in both (7,&’) variables, we see by
passing v — 0 to obtain

’U’n(ta .13/, x’ﬂ)

_ it iz’ & ‘€/| A S i / 7\ =€ |zn
=Cn+1P-V. //" e Hiwhg {(B — |f/|)D(T, 5/) (QB(Zf -H ) - (|§ |2 + BQ)Hn)e ¢

|£/| 12 2\; ¢! TF! Nnpir \,.—Bzn /
T Eo |£,|)D(T,£,)(— (I€']* + B?)i¢’ - H') + 2|¢ |BHn)e }drdg, (2.22)
q(t, z', )
. Y 4 B ~ — ’
= o1V // gitTHie’ € {'g!:w (2B(i§’ CHY = (1€ + Bz)Hn) }e—f (o0 drdg’, (2.23)

where we take a limit of the integral pass avoiding the singularity at (7,¢") = (0,0). All the other components
of the velocity fields ve(t,z) (¢ = 1,2,--- ,n — 1) are given by the above two components (v,,q) and the
boundary data H = (H', H,,) from the equation (2.11) (see for the details [62]).

Our main task is to prove maximal L!-regularity of the pressure term ¢ in (2.11) which is directly obtained
from the inhomogeneous boundary data. Then the maximal L'-regularity estimate for the velocity term v
of (2.11) follows from the estimate for ¢. Applying the gradient to the solution formula (2.23), we obtain
the explicit expression of Vq as

VQ(tax/axn)
=Cpi1 // eitTJri;z;’-g’(ié./ 7|§/|)T |£I| + B (23(15, . ﬁ/) o (|£/|2 +BQ)I/{;> ei‘gllx"d’rdf/ (224)
n ’ D(r,¢") ’
where B = B(7,¢') and D(r,&’) are defined by (2.20) and (2.21), respectively. We also set the following
Fourier multiplier m(7, &) : R x R*~! — R” as
m(Ta 5/) :(m/(Ta 5/)a mn(Tv 5/))
:(23(|€’|+B). ) (I£’|+B)(|£'|2+Bz)> (2:25)

D(rg) " D)
2.3. The homogeneous Besov spaces on the half-space. First we recall the summary for the homoge-
neous Besov spaces over the half Euclidean space R’f. We recall the retraction and the coretraction defined
in the way of Triebel [75] as follows:
Definition ([75]). Let A and B be Banach spaces and let R and E be linear operators as

R : A — B bounded,
E : B — A bounded, (2.26)
RE = 1Id: B — B bounded,

where Id is the identity operator from B to B. Then R is called as retraction and F is called as coretraction.

Definition. Let 1 < p < oo and 1 <o < oo with s € R. Let
OS n J— BS.U(R”)
By ,(RY) = Cge(RY) 7 A (2.27)

B o (E")
}

© 0
B, ,(RY) = {f € By ,(R"); supp f C R} (2.28)

It is shown that the above defined space coincides with the space B;J(Ri) defined by the restriction in
(1.14). First we observe that the duality is well-defined in certain range of the exponent.

Proposition 2.3 (cf. [75]). Let 1 <p < oo and 1 <o < oo. For0<s<1/p, it holds

(B ,(RY)) =~ B (RY).

where ~ stands for the both spaces being equivalent as the normed space.

The part of the following proposition is shown by Danchin—-Mucha [19].
11



Proposition 2.4 ([19]). Let 1<p < oo and 1 <o <oo. For -1+ 1/p<s<1/p,
By, (RY) =~ B, (RY),
© .
By ,(RY) ~ By ,(RY),

where ~ stands for the both spaces being equivalent as the normed space.

We consider the restriction operator Ry by

Rof(z) = f(z)

2.29
z€RY ( )

for all f € B;},U(R”) with s > 0 and it is understood in the sense of distribution for s < 0.
Let x4+ be a cut-off operation defined by multiplying a cut-off function

1, inR?,
n|\T) =
Xey (@) {o, in R7.

o} ®
Let the extension operator Ey from B, ,(R’}) given by the zero-extension, i.e., for any f € By (R ), set
f(z), inRY,
Eyf = 2.30
of {0, in R7. (2:30)

One can find that those operators are basic tool to recognize the homogeneous Besov spaces. Using
Proposition 2.4, the following statement is a variant introduced by Triebel [75, p.228] .

Proposition 2.5. Let 1 <p < oo, 1 <o <ooand —1+1/p <s < 1/p, and let Ry and Ey be operators
defined in (2.29) and (2.30) It holds that

Ry : B; ,(R") — B3 ,(RY), (2.31)
Ep: BS »(R}) = Bs (R™), (2.32)

are linear bounded operators. Besides it holds that
RoEy = 1d: B ,(R%}) — B (R, (2.33)

where Id denotes the identity operator. Namely Ry and Ey are a retraction and a coretraction, respectively.

The proof of Proposition 2.5 is along the same line of the proof in [75]. Note that the spaces are homoge-
neous Besov spaces and then the arrangement appears in Proposition 3 in Danchin—-Mucha [19] is required.

Proof of Proposition 2.5. To see the first operator (2.31) is bounded, let f € BS o(R™) and we show that
[ Rof]
is valid under the restriction s > 0. Let —1/p’ < s <0 and f € B;’J(]R”). For any test ¢ € C§°(R"™),

R")||¢”B—f ,(R")>

Bs ,(R%) = inf ||R0f||Bgﬁ(]R”) < ||XR1f||B;16(Rn ||f||B - (R™)

Bs (Rn XRK(Z&HB;/S,U/(R")

(2.34)

since 0 < —s < 1/p’ and the last inequahty follows from the pointwise sense. Thus from the definition of
the norm in By  (R" ), it holds similarly to the above that

o su ‘ <XR” f) ¢>‘
R N L

- (R7) < HXR” SR

For the second bound (2.32), see [19, Proposition 3]. Since the both operators are bounded, we see that
RoEy = 1d: B ,(R%}) — B (R,

holds by the density argument in Proposition 2.4. d
12



Proposition 2.6 (cf. [18], [75]). Let 1 <p < oo and —1+1/p < s <n/p—1. Then for any f € B;’J(R’_f_),
||Vf||B;’1(R1) ~ || f]

where ~ stands for that the both side of the norm is equivalent.

By (R

For the proof, see [18, Proposition 3.19, Corollary 3.20].

Remark. In what follows, we restrict ourselves to the regularity range of the Besov spaces Bfw(Ri) in
—14+1/p<s<1/pforl < p < oo unless otherwise stated. According to Proposition 2.5, we can regard
that any distribution in B;’U(Rﬁ) under such restriction on s and p can be extended into a distribution
over whole space R™ and conversely any distribution in stw (R™) is restricted into a distribution over the
half-space R’}. We frequently use those facts without noticing for every case below.

2.4. The L-P decomposition with separation of variables. In order to split the variables 2’ € R™*~1
and z, € Ry, we introduce an x’-parallel decomposition and an x,-parallel decomposition by Littlewood—
Paley type. In what follows n € R, denotes a parameter for x,-axis in R’}. We introduce {®,,}mez as a
Littlewood—Paley dyadic frequency decomposition of unity in separated variables (£, &,).

& }

2m+1

0 2m—1 om 2m+1 ‘6/ ’

Fig 1: The support of Littlewood—Paley decomposition {®,, }mez
Definition (The Littlewood—Paley decomposition of separated variables). For m € Z, let

1,  0< &l <2m,
Gnl(€n) = { smooth, 27 < [g, ] < 27+,
O’ 2m+1 S |£n‘7

(one can choose C/;L(r) = rem_1 (;?z(r) +QT,:(T) with a correction distribution qL/\OO(r) supported at r = 0)
and set B

(2.35)

—

©1u(6) = m1€) @ Cni1(n) + Cn(1€']) © Gun(6). (2.36)
Then it is obvious from Fig. 2 (restricted on the upper half region in R™) that
ST =1, €=(€,6) R\ {0} (2:37)
meZ

Indeed, from (2.35) and (2.36),

G

meZ
=S omlEN® S bele) + D ST Gu(€) @ dml€a) + Y balI€]) @ b ()
meZ —oco<t<m-—1 meZL<m mEZ
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=Y onlene (X e+ dulen) + o wllEh @ Y dmlén)

meZ —oco<t<m—1 {>m meEZ
S amEne Y b+ i nENe S i) — 5 nl€]) @ n(En)
meZ LeZU{—o0} LeZU{—o0}

=1- 6 (1€]) © P o).

Definition (Varieties of the Littlewood—Paley dyadic decompositions). Let (7,£,&,) € R x R*™! x R be
Fourier adjoint variables corresponding to (¢,2',7) € R x R*~1 x R.

o {D,,(z)}mez: the standard (annulus type) Littlewood—Paley dyadic decomposition by

z = (z',n) € R™.

{®,,,(2) }mez: the Littlewood-Paley dyadic decomposition over z = (z/,n) € R™ given by (2.36).
{Y,(t) }rez: the Littlewood—Paley dyadic decompositions in t € R.

{¢j(:r’)}jez and {¢;(n)}jez: the standard (annulus type) Littlewood-Paley dyadic decompositions
in 2/ € R"~! and n € R, respectively.

{(m( Nymez and {Cn(n) bmez: the lower frequency smooth cut-off given by (2.35), respectively.
Let qu @j—1+ ¢; + ¢j4+1 be the Littlewood-Paley dyadic decompositions with its j-neighborhood

to d)j'
e All the above defined decompositions are even functions.

Then in view of Proposition 2.5 and the remark at the end of the previous sub-section, we see that the
norm of the Besov spaces on R™ defined by {®,,},, is equivalent to the one from the Littlewood—Paley
decomposition of direct sum type, {®,,},, over R" and hence one can identify those norms as it appears the
homogeneous Besov space over R as follows. Indeed, for any 1 < p < oo and —141/p < s < 1/p,

I94(8) 15, gy <CIVa@Ilo (Rn):CHEO[VQ(t)]\

p, 1\ T+

By, (R)

PILFEID |

me7Z —k|<1 L (&)
<3C Z QSmH(I) * Eo [Vq ]HLP (R™)
meZ
<BC Y 2@ x> By x Eo[Va)] |l
mez (®) |m—k|<1 @

<320 ) 2| @y x Bo [Va(t)]

meZ

o eny

<3%C||Vq(t)| (2.38)

By 1 (RY)

In what follows, we freely use the retraction and coretraction operators as observed above and for simplicity
we avoid reprised usage of them.

3. ALMOST ORTHOGONALITY OF THE PRESSURE POTENTIAL

Almost orthogonality is the key lemma to obtain the maximal L!-regularity estimate. In this section, we
derive almost orthogonality concerning the pressure.

Defintion (The pressure potentials). For j,k € Z, let {¢x(t)}kez, {¢;(2')};ez be the Littlewood—Paley
decompositions for ¢t € R and 2’ € R"~! valuables, respectively. We set for n = x,, > 0,

W(t,l‘l,?’]) = Cpt1 // 1 eitT-i-iq;’{/ (Z,S/7 —|§’\)Tm(7, 5/)6—|5’\77d,7_d€/7
RxR"—

Th,j(t 2’y m) = Y 59 w(t, 2, n) (3.1)
= (Wk,j (tv ' ) 77), Tn,k,j (t’ Z, 77))7
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where m : R x R"~! — R" is defined in (2.25). We extend the potential 7 (¢,2’,n) into all n € R by the even
extension (i.e. exchange 7 into |7]).

Setting ¢; = ¢; 1 + &5 + $j1, ¥k = Y1 + Y + Y11 and noting that

S S h(Md©) =1, TE#£0,

keZ jez
we have for z,, > 0 that
Vq(t,x', x,)
=Cnt1 // R (T T (m’(T,E) H' +my,(r, ) H ) e lon Zzwk &)drde’
* kEZ jET
=303 (W (e 5 x ) g, (B 2 0 H)).
ke€Z jEZ

where we use the notion of the inner product-convolution (1.17) and the data is extended by the zero
extension for ¢ < 0. We show the almost orthogonality and its variation in the following.

3.1. The almost orthogonality. For the symbol of the gradient of the pressure, we introduce the useful
notation for a part of the symbol defined by (2.20); B(r,¢’) = /it + [£']%.

Definition. Let 0 € R and ¢/ € R"~! with 1/2 < |g|, [¢| < 2. For a > 0, we set

b(o,¢’,a) = \io +a2|¢'|2,
( ) ¢l (3.2)
d(o,(',a) = Va~2io + ||,
Lemma 3.1. Let 0 € R and ¢’ € R"~ 1.
(1) For the time dominated region k > 27,
1 :
— < |b(o, ¢, 2577)| < 2014, (3.3)

V2

in particular, there exist constants 0 < ¢ < C' independent of j and k such that
2% < |B(2%0,21¢")| = 2% |b(o, ¢!, 22 9)| < C25. (3.4)
(2) For the space dominated region k < 2j,
5 < ldlo,, 275 < 201/,
in particular, there exist constants 0 < ¢ < C' independent of j and k such that
2 < |B(2F0,21¢")| = 2|d(o, ¢, 207 3)| < €293, (3.5)
Proof of Lemma 3.1. (1) In the case when k > 2j, by using 27! < |o]| < 2, 27! < |{’| < 2, it holds that

B(250,27¢') =2%b(0, (', a)| _x_, = 2%\[io + (207%)2|C'|?

a=22"J

o E 4/ 7 1 2k0'
722 . U2+( ‘C’D eXp <§tan W)’
and (3.4) follows from
273925 <25 .42 < |B(2%0,20¢")| = 2% -4\ /o2 + 245 -2k| (/|4 < 2014 . 23

(2) In the case when k < 2j, it holds that

27197 < 27 4 /|¢]2 < |B(2F0,27¢")| = 27 - 4\ [22k—4ig2 4 gy |4 < 201/% . 20

The constants ¢ and C can be taken as ¢ = 1/\/5 and C' = v/2V/5. d
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Lemma 3.2 (Almost orthogonality I). Fork,j € Z, let my, ;(t,2',n) be the pressure potentials defined by (3.1)
and let {¢x(t) }kez and {¢;(z)} ez be the Littlewood—Paley decompositions for time and space, respectively.

(1) For the time-dominated region k > 27, there exists Cp, > 0 such that for any n € Ry and t € R,

. - oG- 2k
’|7T;€7j(t, "77)HL1, <C,2 (1 +(277) +2)e 2V e (3.6)
where || - |1, denotes the L*(R™™') norm in a’-variable.
2) For the space-dominated region k < 27, there exists C,, > 0 such that for any n € Ry andt € R,
+

j Jyyne2y 26y 2%
H Z T, (t, -,77)H e (1+(27n)"*?)e CETER (3.7)

k<2j Lo { )

The estimates are extended to n € R by the even extensions.

Proof of Lemma 3.2. (1) In the time-dominated region k > 2j, by using the expression of the fundamental
solution and using change of variables 7 = 2¥¢, ¢ = 27(¢’ and then 2/ = 2773/, we first observe that

17k (& )|z,

win [ [ e g Tt ¢ € G B2 dr

1
L,

— Cn+1// eith0+i2jz/'C/(2ji</’_2j‘CI|)Tm(2kJ7 2_j</)e—2j\C’|n$(0)$(<1)2(n—1)jdc—/2kdo,
R JRn-1

L,
—9itk—(2'71n) Cn+1// ez‘z’vwﬂzjm’-c’(icl’_|§/|)Tm(2ka72j</)
R JRn—1
x exp (= 2n(|¢' ~ *))@( )o(¢h2" M dg!do
L,
=oftie= (I e,y / / e oW (i —|¢|)T
R JR7-1
. _ 1o~ ~
% m(2a,2¢" ) exp (= 2(1¢| - 3))H(0)B(C)dC do (3.8)

1
Ly/

Since the Fourier inverse transform of the most right term of the above equation contains the Littlewood-
Paley cut-off for o and (’, it is integrable absolutely with respect to o and ¢’. If the symbol m(2%7, 27¢")
is bounded, then my, ;(t,277y’,n) are integrable with respect to y’ when |y’| < 1. Therefore we check the

boundedness of the symbol m (2, 27¢’). Recalling the definition of m/ (7, £) in (2.25) with using b(c, ¢, 22 /)
n (3.2) and its bound (3.4), it holds that

m' (2%, 27¢")
€ EPBiE

&' B+ [€|B2 +3[¢'2B — [€' | ;—ok g er—nicr

0; ¢ 2529|¢'b(0,¢, 25 ) + 254 |¢'|b(o, ¢, 22 )

e 28%b(0, ¢, 2577)% + 2649 |¢'[b(0, ¢, 25 79)2 4 3 252 |¢'[2b(0, ¢, 257 ) — 2333

0; S 272501 %b(0, (', 227) + 27 G| b0, ¢, 25 7)?

YT blo € 2T ) + 2 D[ b, €287 432 5 2 b €. 2 ) 2 9 DG

and thus for the case k — 2j > 3, it holds 2=™(5 %) < 273™ with m = 1,2, 3 and from (3.3), we have

) 2—(3
|m/ (280, 29¢")| < Cib( <C, (3.9)
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and otherwise 0 < k — 25 < 3 it is obviously bounded from above and below since the denominator never
vanishes. Furthermore,

mn (280, 27¢")
__ (¢1+B)(€P + B
B3 + ‘€/|B2 + 3|§,|ZB - |£/|3 T=2ko €/=2i¢’
(27]¢/| +22b(0,¢, 25 7)) (2%9|¢' | + 2%b(0, ¢, 22 )?)
(2% b(0,C.2579)3 + 29[ ¢'[b(o, . 259)2 + 3257 [¢/2b(o, ¢, 25 ) — 2% [¢'P
(27 I¢] +b(0,¢, 22 7)) (2G| + b(0,¢, 25 7))
(b0, 25793 + 275D b(o, ¢, 2579)2 + 3- 272570 | (72 b(o, ¢, 28 7) — 2735 0|73

and similarly

5-5)3
bo G20 _
b<U7C72§7J)3

Note that the common denominator B3 + |¢'| B2 + 3|¢/|2B — |¢'|3 has no zero point except (7, &) = (0,0) (cf.
Lemma 4.4 in [59]).
For t < 1, we obtain from (3.9) and (3.10) that

175 (s Ly, (8,5 (3.11)

ei(2kt0+y’-(’)

Imn (280, 27¢)| < (3.10)

—C, 2k +ie= (@ ')

R JRn—1

< (i, | Tm(240, ¢ exp (~ 2n(IC'| — 5)) D)) do

L?ll/ (Bl)
SCn2k+je_(2j71").

Next we consider the case when ¢ > 1. It is important that we gain decay of time for ¢ > 1 by integration

by parts. Noting that
2
ei(2’“ta’+y'-(') _ ( 1 > aQei(thUer'-(:')’

2kit v
and integrating by parts with respect to o twice, we obtain
gt )zt (s, ) (3.12)
_2k+] -

i@ to+y’-¢)
C
n+1//]Rn 1 Qk’Lt

% (i =[¢')TO2 (m(2"0,2/¢ ) (o) ) exp (= 2/n <|<\—f)) O(¢')d¢'do

L;;/(Bl)

Again we separate the region k > 25 and k < 2j. For m/, from (3.9) we use b = b(o, C’,ﬁ‘j) defined in
(3.2) and a = 2277 to see

dem/ (28c,29¢) (3.13)
_ (2 ¢ |¢pPBle|B? )
[€'] B3+ [¢'|B> 4+ 3IE'PB — [€'P |, _yr g er—nics
_g; S 00O [('[Pa”2b +[¢|a”'b?
IC’I8oabb3+a‘1|<’|bz+3a‘2IC’Pb a=3[¢[?
_ ¢ fa Mt 20 AP0 — 207 PP 4 20 [P0+ a0
¢ { (b3 + a=1|¢'| b2 + 3a=2|¢"|2 b — a=3|¢"]?)” }
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Analogously

Demin (280,27¢") (3.14)
o ( (1¢'| + B)(|¢|> + B?) )
T=2kg, £/ =24’

00 \ B3+ |¢/|B2 +3|¢'2B — €3
) (@ '¢'[+b)(a”?|¢"]* + %)
" 90 3b (¥ + a [0 + 3a2[¢2b — a 3|
20?0 — a7 BP0 — a1 - ‘5\C’I5
b (B3 4 a B + Ba2(C2b — a3|C)P)

By Lemma 3.1, 9,m'(2%¢,27¢") and 0, m,,(2¥c,27¢") are bounded from above for all (k, j) when k > 2j. Since
the denominator does not vanish because it is smooth on the support of o and 7 such that |o|, || € (1/2,2),
there is no diverging coefficient from o-derivative of m, 92m is bounded on the support of 1»(c). The situation

is same for the second derivative with respect to o. Therefore for ¢ > 1, it holds from (3.12)-(3.14) that
l|7k5 (¢, )||L1,(B2 )

sk 1o
= Cn+1// ei(2 oty ()
R Rnfl

x (1!, = |02 (m(2*0, 2 ) (o) ) exp (— 27n (|<\—f))$< ')d¢'do

—ok+i—(2'7"n)

L;;/(Bl)
k
iy 2

oy
<C2e 72]%)2.

(3.15)

—~

On the other hand, in the case ¢y € B$(0) we differentiate the symbol

m(2%a,27¢')(ic!, —|¢')e 2 1S 112G

n times with respect to ¢’. If we obtain boundedness of the symbol uniformly ,# and j, then we obtain
(t,y')-decay estimate by using

i kg v 1 1 '3 o
i@ to+y'-¢") (Iy’l” (21%)2)3 (- A</)2e(2 tot+y'-¢’)

In this way it holds that

I Mo, e )

Cn+1 i(2%to4y'-¢")
\n e
W) Jr Jro—r

X (1-02)- (1= 8c)? (¢~ 10D (2o, 27 exp (— 27n(I¢'| — 5))F@)C) ) dc'do

L, (Bf)

<O (14 (27" +2) e (3.16)

(2k)*

Combining with (3.11), (3.15) and (3.16), we obtain the estimate (3.6).

(2) In the space-dominated region k < 2j, the proof is almost the same as in (1). Using the notation
C( —2r) = > k<2j ( ¥(27%7) for the LittlewoodPaley decomposition (see (1.12) and (2.35)), and applying
the change of variables & = 2/¢’, 7 = 2%/ and then ' = 2774/, we have for E(Z_QjT) =D j<oj 12(2_’“7')

18



that

| 32 msteom],

k<2j

- C"“/R/Rn,leitf*”"é'<i5/,f|s’\)T m(r,¢)e 1 N B2 r )¢ de dr

k<2j I,
x

1
z/

N +/ / e 2ot (91! 97 |¢! | Tm (2% 5, 20¢ e 1K INC (272 1) (¢ )2 ¢ - 2% do
R JRn—1

1
L,

:Cn23j€7(2j_177) 622]it0+iy'~(' (iCI7 7|CI|)Tm(22jU’ 2j</)

R JRn—1

~ o~

x exp (= 2n(I¢ = 1/2)C(0)(¢ ) do | |
Using d = d(0, ¢, 1), we have from (3.5) that
(@i, 2307y =2 S DI+ [P + 291G + [ (317
€129 \fia 4+ 1T + 29| (io + |C72) + 8- 29|72 fio + [CTF — 2% ¢/
5. [PV ICP + ¢ + 1)

I i T IOF + G0 + 1) + 3107 + 0P~ O
1o i O <
TOTE +1¢ 1 + 3 Pd—1CF ~ P
(|C|+\/W+IC’ 2 (IS + (o +1¢'%))
Vio FICT + |1 (6r + 223 |712) + 31712 far + 22102 — |72
_ (T4 d) (¢ +a?)
P+ |0 + 3P~ P
where ~ stands for the equivalence with a constant. Besides by d = d(o,(’,1) for simplicity, and noting
2d(o,¢',1) =i(2d)"1, we see

mn(2%0,27¢") =

~ C,

¢ od o I¢"2d + |¢'|d? N C . C
[('] 00 0d d® + |¢'|d? +3|('Pd — [P~ &(0,{,1) — (o)
L od 0 |C'P+|C1Pd+ ¢ |d? + &3 c C
Dymn (29 0,27¢") =— = ~ o~ 3.18
0 = e ad (B R + 3P [CF) @ (o) (818)
Similarly one can estimate the second derivative of the symbol m(2%/¢,27¢’) and it is now clear that the

second derivatives are also bounded over the support of '(ZJ\(O') and qAS(C/ ).
Hence by the boundedness obtained from (3.17) and (3.18), the rest of computation go through along the
same line to (3.11), (3.15) and (3.16), and we conclude for the ball By-; with radius 277 around the origin

Dem/ (2% ¢,21¢") =2i

that

T (T, - ’

Hk;j ki,

i 1 i L
<Cue @l L EET O T (14 02) (m(20,2¢) o)
(3.19)
x exp (=271 (ICI—*)) o(¢)d( do
Llll/(Bl)
_ 22j

<CYe M
- (2%71)

19



Very much similar way to the case except the cut off function Z (o) instead of QZ(U), we proceed as before
that

| 2 mste)

k<2j Lo (B3-)
. j— 1 C - ok i
93—ty _ 1| Cn // i@ oty ¢')
‘ @202 || )" Ja Jans
X (1= 32) - (1= 8t (¢~ | ) Tm(20, 2y exp (— (¢~ 2)T)BC) ) dc'dor 1
L., (Bf)
Y
<O (14 (27" +2)e= 0 2 (3.20)
From (3.19) and (3.20), we conclude the desired estimate. |

3.2. The second almost orthogonality. We consider the almost orthogonality estimate of second type
which will be used for the triumphal arch type Littlewood—Paley dyadic decomposition.

Lemma 3.3 (Almost orthogonality II). Let k,j,m € Z and 7y ;(1,&',n) be the pressure potential given
by (3.1) and let {¢r(t)}kez and {¢;(x)}jez be the Littlewood—Paley decompositions for time and space,
respectively. Assume that j < m. Then for any N € N, there ezists a constant C, n > 0 depending on n
and N such that the following estimates hold:

(1) For the time-dominated region k > 27,

9i9—(m—j) 9k
[ém & T (6| 1, <Cnn N e (3.21)
(2) For the space-dominated region k < 2j, it holds that
9i9—(m—j) 92j
H > bm 5 et ,n)‘ < Con = e (3.22)

k<2j

Proof of Lemma 3.3. (1) In the time-dominated region k > 25, by using the expression of the fundamental
solution and using change of variables 7 = 2%¢, ¢ = 27¢’ and then 2’ = 277y, we have

||¢m(*)7rk ]( ) 777)HL1

ons [ [ G )Tl €) (6 5 e )G dr

L,
=2 fewps [ [ e R (2 2 () o e ) D)GCNAC do
Rn—1 (m) L1,
Y
(3.23)
Applying
i(2kta+yl-C/) _ 1 82871 z(2kt0+y () 3.24
‘ T T (324
and integration by parts in the right hand side of (3.23), we see that
||¢m (*) ij( 9 777)||L1
2’“ita+iy'-§' 1— 2 ( 9% (29 (i’ —|¢')T w e~ 21
th — ( 0) Z ¢ ( (Ca |CD ((,ZS (77) ))

lar|+]az|+|az|<n
x 037 (m(250,2C)) 03 B(C') ) blo)de dr

20
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1 Fito+iy' ¢’ oj y P Nany —29|¢
<y’>"/R/Rn_162 to+iy 42.7(1—8§)< > Cn(gzsm 5 (14 [¢| + (@) )e K¢ \n>

n
|a1|+]az|+|as|<n

x 027 (m(2, 2fg'))ag,3$(g'>>$(a)dg'da (3.25)

1
Ly’

Note that the above estimates are also valid even for o« = a3 + as + a3 = 0. Since all the functions in
the integrand involving ¢'(= 27¢’) are spherically symmetric, we employ integration by parts with respect
to |¢’], then 7 = 27|¢’|n appears. Namely, if we take integration by parts || times, the same estimate holds.
There is no influence from integration by parts with respect to o.

To consider the effect from the convolution ¢m(*), we restrict 7 < m (cf. (4.11)). Applying the change of
n

variable § = 20, 7j = 21 and setting
Pal'sm,0,0) = (IC1(1+1¢'1+ (27 (n = v0))*) + (2~ v0)) ")
and noting [, ¢m(0)df = 0, it follows that
[om x (14 11+ @) 1)

=\ [ 0n0)2 (14 1¢1+ @0 = 0)) exp (=21 ln—0)
—(U I+ @) exp (= 27(¢ ) ) |
<),

Mt a , . N .
O [ 0+1C1+ @ = v8)) exp (=2 [ ln = vol) )
< [ [ 1on®l2 (2101010 + 1)+ @0 = 10)") + 2 e (n = v9)" )
x exp (—27|('||n — v0|)dbdv

1
= [ [ 2omo@r oo’ n.b.)exp (~ 211y — vol) dod
0 R

do

1
= [ @I D 2 A D)~ 1 — vl i
>317

1
)¢ / /9| 192 DI B B e (I~ vA) s
<iln

=I+1I, (3.26)

where we set
=21y, 0= \C 0, (3.27)
Pa(71,0) = pa(('71,0,v). (3.28)

By 1/2 < |¢'| < 2 we note that

|Da (i1, 0)| exp (— 277 — v]) < C(l + |7 — V§|O‘) exp (—27'n—vl]) <C. (3.29)
21



For the first term I of (3.26), by using the decay property of ¢ € S, we know for sufficiently large N € N
there exists C'y > 0 such that by (3.29) that

Cn2m279|¢'|7110| ) -
= 1 o — |7 —vé])dod
< / /9> \n\ (2m2-i|¢!|~16)2N ‘p m; )’eXP( | —v |) v

: Cn(@m71¢™Y) @71 17)210] = aNad
=277t / / Pa(7,0)| exp ( — |77 — v0|)dbdv
PG, Jy o iy o000 (= 1-0)

jOn27mH / @ 71¢~Y216] s
EmmtN Jg (2mea|¢ o)
CN27m+j2j‘C/|72 ) 27m+j
SN S ONY (3.30)

where we used j < m. For an estimate of the second term I7 of (3.26), we use the following lemma.

Lemma 3.4. For N € N\ {1} and a > 0, it holds that

dx 4a
< . 3.31
[aﬁa:ﬁa (1 + ‘x|2)N/2 N (1 + a2)1/2 ( )

Proof of Lemma 3.4. For any N > 1 and a <1

/ _dr </ dr=92a< 20
—age<a L+ 1PN T Jip1<a T (14a?)/

while for any N > 2 and a > 1,

/ dx < / dz 9tan-1q < 4a
_— ——— =2tan” a < ———.
—a<z<a (1 + “r|2)N/2 B |z|<a 1+ |$|2 o (1 + a2)1/2

This shows (3.31). |
Proof of Lemma 3.3, continued. Under the condition || < |5|/2, it holds that |7 — v > |n| — 0] >
|7l = 177|/2 = |77]/2. By using the above estimate, (3.29) and (3.31), by changing the integral variables

ﬁ:2m2—j|</|—l—’ 9:2m2—j‘cl|—19’7

the second term IT of (3.26) is estimated as follows:

Cy2m2-31¢'| 1 o
IT =29|¢ 1/ / Da(7,0)| exp ( — |7 — v0])dOdv
s Jas raaierrgp e Ol e (=i =)

2m279|¢' 7?16 L
J m+j B B
=Cn2727 / /9| 1 (2m23|('|- 19 NIl |pa )|exp( |7 y9|)d9dy

2

N 2mTﬂCFUWI o
<On272 +7/ / | (IO BN exp (— 27" — v0])dodv
[0|<5|7

. . 1 0

<ON227™Hexp (— =7 =
" ( 4| ) 1<) (O)NF

o—m+j 1 8-2m277[¢|7
§0N2~72 JrJeXp(*zh?Dm

279—m+j

(3.32)

CTIES

where we used (3.27) and Cly is a constant depending on sufficiently large N € N. Hence the similar estimate
as in Lemma 3.2 holds and we gain the decay for variables ¢y’ and ¢t. Applying (3.26), (3.30), (3.32) into
22



(3.25) and recalling (3.18), we see that

||¢m(;)7rk,j (& mllet,

/ / J2itotiy C23(1_32)< Y G0 (m(2b0,2C))
Rn— 1

th
lo [+]az|+|as|<n
X (9m 2 (1+1C1+ <2fn>6“)e‘2j"'”)$<0)833$<<’))d<’da 1
L ’
k .
<ol o o Plew s (1 IC]+ @) P i do
RO W™ Ja1cio)<2 J2-1<|r)<2 (n) L,

CN2j2_(m_j) ok
@mN - (2k)2

From the estimate (3.33), we conclude that (3.21) holds.
(2) To see the estimate (3.22), we recall the low frequency restriction ¢ given by (1.12) and it follows

H Z¢7n * 771@,] 5 ,77)‘

(3.33)

k<2j
= cn+1/R/Rn_1e””“m'f’(ig’,—|§’|)Tm(7,g')(¢m x e~ 1€') k;]zp 279¢"\de dr .
lenss / / T E (i 1) T (r, &) (6 * e 1€M@ )BT de dr
R JRn—1 (m) L,
=C,2% / / 2t (i 1) Tm(25 6,27 ) (b * e 21N () H(¢)dC! do (3.34)
Rn—1 ()

Lt
y!

Applying (3.24) and integration by parts in the right hand side of (3.34), we see by using (3.26), (3.30) and
(3.32) again that

Sl

k<2j
2211t0+z ¢! 2 o 2j j
22gt //]R o Tera-e )( > CndZ? (m(270,2°())
lo [+]az|[+]as|<n
< (om (1414 @) ) M C0)0g 3 ) dcdo
n L;’
Cn2io—(m=3)  92j
N . (3.35)
@ (2¥t)?

The estimate (3.35) shows (3.22). This completes the proof of Lemma 3.3. |

4. PROOF OF MAXIMAL L!-REGULARITY

In this section, we prove maximal L'-regularity Theorem 2.2. The key estimate is the bound for the
derivative of the pressure term Vq(¢,x). Indeed, once we obtain the required estimate for the pressure, then
the estimate for the velocity directly follows from the estimate for the heat equation. Note that the velocity
term can be also expressed by the potential as is shown in (2.18).

4.1. Maximal regularity for the pressure. To show Theorem 2.2, we show maximal L!'-regularity for
the pressure term. We recall the notations for the potential (3.1) for the pressure Vg.
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Proposition 4.1. Let 1 <p < oo and -1+ 1/p < s < 1/p. For given data
s+1—

He F121 % (RJr:Bs (R*1)nL! (R%B (Rn ),
there exists C > 0 independent of H such that the pressure part q of the problem (2.11) satisfies the estimate
. < 1 .
[Nz Py c(an b d g oyt ”H”L1<R+;B;ﬁl-z(RH))) (4.1)

To show the pressure estimate (4.1), we use the potential expression 7 (¢, ', ) in (2.24) and the Littlewood—
Paley decomposition of unity (2.36);

®,, x (m(t,2',n))
(=’,m)

=Cn1®m(7',n) * / / e gl | ) Tn(r, € eI Indg! dr
(@'m) JR Jrn—1
Gea () 5 ensr [ [ TG~ (e
(7]) Rn—1 JR
o) s ennn [ [ ] TG € 1) Tm(r ¢ e 1€ Mg dr
() R JR7-1 JR
=(m-1(n) * ¢m(z’) * w(t,2',n) + dm(n) * Cm(a’) = w(t, ' n). (4.2)
(m) (') (m) (")
Concerning the first term of the right-hand side of (4.2), we estimate that the convolution with (,,—1(n) can

be treated by the Hausdorff-Young inequality in n-variable. Note that the potential 7 (¢, x’,n) has the even
extension in 77 € R and hence the LP(R”}) norm of the term is estimated as follows:

m—1 % m -'17, * T t,x/, ‘
HC 1(n)(¢ ( )(w') ( 77)) LP(Ry 3 LP (R™=1))

<Jenr p (9mia) 5 w(t.a'm)

LP Ry, p; LP (R 1)) (4.3)

M’m(aj/) (;‘/) W(t, :E/, 77) HLp(R+Yn;Lp(Rn—1))

S”Cm_l ||L1(R+,n)

§O||¢m (I/) (:’) ﬂ-(t’ x/’ 77) HLD(Rer;LP(Rn_l))

and we apply Lemma 3.2. Concerning the second term of the right-hand side of (4.2), the number of
overlapping supports of the kernel (,,(z’) (*) ¢;(z") is infinite, i.e., m and j run independently. We apply
the almost orthogonality of the second type stated in Lemma 3.3.

Proof of Proposition 4.1. Let us recall that the boundary data H(t,z’) = (H'(t,2'), H,(t.z")) is extended
into ¢ < 0 by the zero extension. By (4.2), we divide the term into two terms.

Vq(t, 2, xy)

—cunn [T i )T (€ B O, )€ e S0 S G () (€ dr”

kE€Z jEZ

EZZ (Tr/kvj (t.,:’) ({p\’; (t)g;'(;,) ) +7Tnk] 71’ (wk * ¢)J ))

kEZ jEL

Then observing the estimate (4.3), we see

IVall a5, e

S 2| ([ Jonert) o ome) 5 mtewty e a1 a)

gc]
MEZL
P N\1/p
dn)

Lr@®r =)L (Ry)

=)

ZSmH ‘(bm (m(x’) * ﬂ(t,x',n)(-*)H
t,x’

g (=)

mez Le(Rr=1) L} (R4)
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1/p
P

<C 25m /Hd) >|< m(t, 2’ x H(t,2' d~>

Hmze:z < m@) &y T S H OO ™) e

) ) p 1/p
i C 2'”(/“ n() % Gulz') = m(t,a’,n)) =+ H(t d~>
\ onli) 6 Gule) 1 wit) o O] an)

=[Py (t )||L§(R+) + 12O L vy (4.4)

where we denote the inner product-convolution by (1.17). Noting that the data H is divided into the the
time-dominated region k > 25 and the space-dominated region k < 2j, respectively, as

=> ) Hej(ta)+ )Y Hij(t,a)), (4.5)

keZ2j<k k€Z 2j>k
where we set

Hy j(t,2") = P (t) b 6;() UG ),

—~ (4.6)
H;(t,2") = ¢j(a) (;) H(t,2'),

where we use 35 = ¢j_1 + ¢; + ¢j41 and % similar arrangement. Then applying ;bg (*) ¢; = ¢; and
x/

Ur (*) Y = ¥, and Proposition 2.5, we divide P;(t) into L;(t) and Ls(t) to have the following:
¢

t) SCZ?’”HH% ) gy wat) xS0 Y Hi(ha 2|

mezZ JEL k>2j Le(R7™) LP (R4 )
+C223m““¢m "ok ow(ta'n) - /ZZHthx) .
meL (@) (t.2) 727 <oy Lr@® D Loy )
<y 28’”(/ S o Hk,m(t,z/)’p dn>1/p
mez Ri " p>2m (t.2") Lr(R)
v ([ S o )| in)
mez R " p<2m (t,") Le(RY™)
=L (1) + L2(1), (4.7)

where {7 m }k,m are defined in (3.1). For the time dominated part Lq, since k > 2m, we apply the almost
orthogonality estimate (3.6) in Lemma 3.2, by using the change of valuable 2™y = 7 it holds that

AT <cHZzsm< (s /H”’m I

+  k>2m

RS —

meZ k>2m

1
w’

1/p
P
Hy (s, 2") HLP ds} dn)

Li(Ry)

p 1/p
ds} dn)
Ly

./

2k ~  ~
X/@wfmﬂwé@w%H“ﬂ
:CHT,LZEZQS% ZQm/ @l g e, )
y Q,m( / (0 e e) )
Ry
St 3 [ o],

mEZ

L(Ry)

L(R4)

g

LERy)
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<CZ2 2(1=3

e 22 g o)
kEZ

<CZQ’5<1—é)H > QSmek * H,, HLP

kEZ mEZ
222(1 ‘wk * Hp(t, )’
keZ

<C||H| .4 (4.8)
B By, ()

P
Lo Li(R4)

Li(R4)

Bpa B0l my)

On the other hand, when k < 2m, For the space dominated part Lo, applying the almost orthogonality
estimate (3.7) in Lemma 3.2 with using the Minkowski inequality, the Hausdorff-Young inequality, we obtain

1/p
| L2l 22 <H Z 23m</ / H Z Tem(t —s,2',n ‘Ll HHm(S,-)HL,;,ds}pdn>

k<2m
Z 2sm</ {(2m(1 + (2m77)n+2)e_(2m71n)>
meE”ZL Ry
22m P 1/p
X/RW_SQHH Nz, ds d’?)

gl oo
Rt

meZ
o p\ 1/P
A Lmaplnte )

[t ),

Ly (Ry)

<C

LE(Ry)

Li(Ry)

S e
€2 ey

<c|\H .
=C HLl(ﬂh, D ey

Li®) L}(Ry)

(4.9)

In the same way for P1 (t), we decompose P»(t) as a space-dominated region and a time-dominated region.

t)<C 2 ‘qum(n) 5 Gml@) g ombalm) e Y Y Hit ‘

Le (R

mez keZ 2j<k LP (R4 p)
+CZQSmHH¢m(n) * Cm(x/) * wtm M) , ZZH;” t:U .
el (m) z’) ( T )keZQJ>k: Lr (R LP(Ry )

<C Z 25m</ m(n) &R R Hk,j(tvx/)’

» 1/p
dn)
Lr®?)
meZ k€EZ 2j<mln(2m k) *
N 1/p
reX e ([ IS5 ot gms oz, ma) o)
meZ kEZ k<2j<2m x

=M (t) + Ma(t). (4.10)

For the time dominated part M;, Setting h; = ;5; x h, using the Minkowski inequality and the Hausdorff—
Young inequality, and also using (3.21) in Lemma 3.3 (1) (the second almost orthogonality), we have

HM1HL1(R+)
H 3 oo / > > /H% 5 gt = 5,2 77)‘ .
meZ k€Z2j<min(2m,k) () Ly
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(m—j)

Sor(f{X % 2J<22T>

e
meZ k€Z 2j<min(2m,k)

P 1/p
Lz/ds} dn)

Li(Ry)

DD

meZ k€Z 2j<min(2m,k)

X 21'2—(’”—”/7<2k(2 Hm * H;(s, )‘

1 . 1/p
ds / _2_jd77>
L?, ( r, (MPY

Li(Ry)
_ sm io—(m—j)g—2
|y, Y wrs ,,/W o s 65,0, 5]
meEZ kE€Z 2j<min(2m,k) z Li(Ry)
. . ok
smo—(m—j7)o(1—3)j
<O\ L2 S | gl g o,
k€EZ2j<k m>j z L;(Ry)
(setting m = m’ + j and changing m — m’)
s(m'+j)o—m’o(1—3)j e .
<C ZZ D astmiHagmmy /<2k Hwk* js,)‘Lp/ds 1
kEZ2j<k m'>0 o lLimy)
1-1)josj
fwzzp<wW/@W:¢WMH<mb%
k€Z 2j<k o LIy
_1yk o
Cl| S 2005 37 9%y « Hj(s")H )
kez 2j<k (=) Lollor ey
<C||H]| , (4.11)

F2 zp (R43Bj (R~ 1)’
where we use s < 1 for the convergence of the 4th line from the bottom.

The space dominated part Ms is estimated in the similar way as M;. We apply the Minkowski inequality
and the Hausdorff-Young inequality

1/p

p

0327 ( [ {S [lon g 3 mate= sl Ity oo} am)
meZ k<2 ! i

Using the almost orthogonality (3.22) in Lemma 3.3 (2) for k < 2j we have

sm CN2J2_(m_J) 223 P 1/p
e, <o ([ {3 D /R gl a0} o)

meZ j<m

Li(R+)

. . 1 . 1/p
<C 28m 232*<mﬂ)/ H ’ </ 2Jd7~]>
mze:Z j; 22] ) R, (P Li(R)
L 22j
<C 25m " 979759~ (m =) /7“11(5)’ ds
= x e L PR
. N 22j
<C 9= (m=i)gsmo(1-3)i / TE. HH‘(S)‘ ds
mZeZJ;% R (27(t = 5))? ’ Le Li(R4)
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<C 2(5—4—1—%)3' 2—m’+s7n/ (b * H(t)’
].EZZ 7%0 7 (@) Lo llLiry)
“cll, iz

LBl T @)

where we use m—j = m’ > 0, m — m/ in the third line from the bottom, and s < 1 to obtain the convergence
of Y2 <0 2-m'+sm’ Tp the last line, we enter the t-integral in the sum of of ¢/, and delete the convolution
with respect to ¢ by using the the sum of of #'. Combining (4.4), (4.7)—(4.12), we obtain the estimate (4.1).
The restriction on the regularity exponent s stems from the structure of the homogeneous Besov space stated
in Propositions 2.3-2.6.

This complete the proof. d

The following estimate is required for showing maximal regularity for the velocity part of the Stokes
equation.

Proposition 4.2. Let 1 <p < oo and s € R. Given boundary data
H e F121 2p (RJMBG (Rn_l))’

let q be the pressure term defined by (2.23). Then there exists a constant C > 0 such that the following
estimates hold:

lalewoll 3-5 <cllal (413

1 .

(Ry;B; 1 (Rn1)) L T )

Proof of Proposition 4.2. Let {¢ }rcz and {¢; };ez be the Littlewood-Paley dyadic decomposition of the

unity in ¢t € R and 2’ € R"~! variables, respectively. For simplicity, we assume that ¢ € So(R" 1) and show

the estimates (4.13). The results follows by the density So(R"~1) C B;’l(R”_l), where So(R"~!) denotes

the rapidly decreasing functions with vanishing at the origin of their Fourier images. Then the resulting
estimates follows from the following bounds.

. <q|| (. . 414
[ e 05 . al,collivnn|, < Cllon 2 65 5 Bl (4.14)
Indeed, admitting the above estimate (4.14), the Minkowski inequality yields
(3—25)k sj
la wn:OH "33 : <CZ2 B 22 [k * éf’g zn:OHLl’(R"*l)
FP2) %P Ry B | (R71) P ez Li(Ry)
<O Y2 BN 09l x 65k Hlpown
kez JEZ Li(Ry)
<C 22(2 zp)kz231||wk * ¢j H|| Lo n-1)
her 7er Li®y)
<ty g s
B2 %P (Ry;By | (RP1))
which implies (4.13).
To see (4.14), from (2.23), it follows
wk(z‘:)(bj (taxl7xn)}xn=0
4.15)
_ itT+ix’ & |§/‘ + B . o5 712 2 — (
st / [ e B optie' )~ (€ + B ,) a6 arae

and the support of the symbol on the right hand side is in an annulus domain and hence there is no singular
point in both 7, |¢'|- variables and it gives a smooth symbol. Besides, for the time-like region k > 2j, by
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Lemma 3.1, (3.4), (3.9) and (3.10) implies that

271" + /2%io + 22| (7|
D(2F0,2i(")

C/
<]

(= 22910 f2rio + 2

)| — 0(1).

Analogously for the space-like region, we see from (3.5) that

29¢'| + \/2Fio + 227 [('|?
D(2ka,2i¢")

((¢2k0+2.22j|<'|2))' = O(1).
Those bounds enable us to treat the operator given by (4.15) is L?(R"~1) bounded in 2’ and L! bound in

t-variable. Thus the estimate (4.14) holds for all 1 < p < oco. d

Proposition 4.3. Let 1 < p < o0 and =1+ 1/p < s <1/p. There exists C > 0 such that for any
V(-A)"1f e O(Ry; By (RY)N nwh 1(R+,BS (R%)), Vfe Ll(I&_,BS (R%)), it holds that

zsg& (||f(~, "xn)HFffﬁ(R+;B;1(Rnfl)) + || £, .,xn)HLl(RﬁBilﬁ(RTH)))
SC(||vf||L1(R+;B;,1(R1))’ +Hatv(7A)71f”Ll(R+;B;,1(R:"_)))7 (416)
In particular, for 1 <p < oo,
xfgg+ Hf ot )HLl(RJr,B o 75(]1@" 1) SCHVfHLl(R%B;l(Ri))' (4.17)

The proof of the trace estimate (4.16) is along the line of proof for the trace estimate (7.1) in Theorem
7.1 shown in Appendix and we show it in subsection 7.1 of the Appendix below.

4.2. Estimate for the velocity. Once we obtain the estimates for the pressure Vg to (2.11), the required
estimates for the velocities v of the solution to (2.11) can be obtained by applying maximal regularity for
the initial boundary value of the heat equations:

Ou — Au = f, t>0, recRY,
Onu(t,x’ )|, _o = h(t,2), t>0, 2’ e R"L, (4.18)
u(t,z)|,_ =uo(z), xz € RY,

where x = (2/,x,) € R and 0,, denotes the normal derivative 9/0x,, at any boundary point of R?}.

Proposition 4.4 (Maximal L'-regularity [45], [48]). Let 1 < p < 0o and —1+ 1/p < s < 0. The problem
(4.18) admits a unique solution

we Cy(Rs By, (RD) N W Ry By, (RY)),
Aue L' (]RJF,BS (R}))
if and only if the external, the initial and the boundary data in (4.18) satisfy

up € By, (R}),  feL'(Ry; B3, (RY)),

s+1—

L1
he BT (R By (R ML R B 7 (RAY),

respectively. Moreover following the mazimal L'-reqularity estimate holds:
2
10vull 1 (g, By, ®e) T 1D%ul| 1 g, , B3 (R1))

<C (lluoll 5., ag) + 1123 sy, oy + 1003 HIRI, e

) (4.19)
F2 QP(RJNB 1 (R"=1)) H(R4;B,, p(R” 1)

where C' is depending only on p, s and n.
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For the proof of Proposition 4.4, see [45] and [48].

Proof of Theorem 2.2. Let the boundary data satisfy the regularity assumption (2.14). First we consider
the n-th component of the unknown velocity that satisfies the the corresponding system (cf. Shibata-Shimizu
[59, (4.24)], and [62, (5.19)]). Namely (v,,q) is given by the expressions (2.22) and (2.23). In particular
from (2.22), we see that

Orvn, (t; JJ/, xn)

_ itrizte | (B+EIE 5 2 2T =€ [z
—Cpi1D-V- // e ¢ {w<23(z§’ CHY (€ + B )Hn>e €'
B + 5/ 5/ ' >N _ B
+ BAEVEL (g 1 By e ) + 20 P, ) Bor Varag'. (4.20)
D(r,¢)
Via a very much similar argument for the pressure estimate in Proposition 4.1, we may derive the estimates
for 0yv,, Av,. Namely the n-component of the velocity fulfills the estimate:

||atUnHL1(R+~BS ®n) ||D2Un||L1(R+;B;1(R1))

4.21
<o(IH] 4y FIEL ) (21
B2 (Ry;By  (RP1)) L'(Ry5B, ;7 (R*1))

Note that the first term of the Fourier image of d;v,, in (4.20) is indeed expressed by the pressure and the
rest of the symbol which is the parabolic part involving the symbol

(B(r. &) + 1€

=06

(- (g +Blre >>‘| 21¢'2)

and the above symbol denotes the singular integral part and it is analogous to m(7,§) in (2.25) so that
the estimate (4.21) follows from the estimate of the pressure term and maximal regularity for the parabolic
part with quite similar argument found in the previous work, in particular using the [48, Lemma 6.5] with
a modification involving m as is shown in (3.9), (3.10), (3.13) and (3.14). Hence the maximal regularity
estimate for the n-th component of the velocity as well as the pressure follows from the estimate (4.21),
Proposition 4.1 and Proposition 4.2 and we obtain that

10svnll ez, ey + 1Dl 1., B3 (RD))

+ V4l s 5 ey + @la=oll A e ) (4.22)
H + [|H 11 .
(H || 2 2P(R+, 1(Rn 1) H ||L1(R+;Bp,+1 P(Rn—l)))

z,L:OH Ls+1-1 :
LIRyB,, 7 (Rn-1)

The other components of the velocity fields v' = (vq (¢, x), va(t, x), -+ ,v—1(¢, x)) satisfy the initial bound-
ary value problem of the heat equations as the pressure and the n-th component velocity as the external

The trace estimate (4.17) in Proposition 4.3 enable us to control the term ||q

force and boundary condition as follows: For £ =1,2--- 'n—1,
Oy — Avp = —0yq, t>0, zeRY,
Opve = —Hy — Opvp, t>0, z € IRY, (4.23)
ve(0,2) = 0, r e RY.
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Similarly to the above estimate, we have from Proposition 4.1, Proposition 4.3, Proposition 4.4 and the
estimate (4.21) that the solution v,(t, x) to the problem (4.23) has the estimate

10evell 11, By ®e) T 1D?vel 11 g, B | (R7))

<C(]|o s wnyy T IHA -1 + || H, a1
(0l 5y 18 AT Ry, (R7-1) H ZHLI(M;BPT P (&n-1))
+ ||Opv + ||Opv cr1_1
enl., _OHF"‘ o (R 5By, (R1) [ ””’L:°||L1<R+;B;,,+f ;(RH») (4.24)
s n + 1_ 1 + 1— '
(||CQ||L1 (Ry;BS 4 (R™) [ Hell P Ry, (Re1) ||H€||L1( R, .5 p+1 p(Rn -

+ ||6tvnHL1(]R+;B° L@y T & U”||L1(R+,BS 1(Ri)))

-k HIHI L s
B Ry By (Rn1)) vl T @)
Combining the estimates (4.21) and (4.24) for all £ =1,2,--- ,n — 1 as well as the pressure estimate (4.1)
in Proposition 4.1, we conclude that the desired estimate (2.15) holds.

Conversely, if the solution (v, ¢) to the problem (2.11) exists, then it holds by letting f by v in the trace
estimate (7.1) of Theorem 7.1 in Appendix and Proposition 4.3 that

C(lH]|

1 T TI—
BT (R, (Rh1)) LA@yB L T R
<2[|Vu| . T +2[| V| Let1-1
T (Rl (R01) LA RB) P R)
+ = 11 ) + Tp= Ler1 1
latenoll .33 B Rty la] °HL1<R+;B§ - (4.25)

Q@ﬂy&y<w—wvwmmﬂnw»

+ qu||L1(R+;B ry) T la

zn70|| 7% + Hq z,L:OH Ls+1-1

1 . .
B2 (ResBy (R 1)) L'(RysB,, 7 <Rn*1>>)

This shows regularity for the boundary data is necessary.

Concerning the uniqueness, we invoke the argument employed in [62, Theorem 4.3 and 5.7] for the half
space. Let (v,q) be a solution of the Stokes system (2.1) with vanishing data and satisfying the regularity
Theorem 2.1. For any ¢ € Cg°(R x R%}) and for any 7' > 0 with ¢ = 0 for ¢t € (—o0, —1) U (T'/2,00), set
or(t,x) = ¢(T — t,x). Let (®,6) be the solution of (2.1) with vanishing data except the external force
f = ¢ and set v (t,x) = ®(T —t,x) and ¢.(¢t,z) = (T —t,x) and arrange its support into the time interval
(=1,7/2). Then (v, g«) solves the adjoint Stokes system except the pressure sign in the subset of the dual
space LW(I;H*W'(R’#)) C L°°(I B *o(R)). If we choose p > 2p/(p + 1), then v, € WhA(I; L”/(Ri)) N
LP(I; H>P (R7)) € L=(I; H* (R")). Here we note that H—*7 (R?) C B,,° (R%}) = (B3, (R"))*, where
0 < —s<1/p'. Let x(r) be a smooth cut-off function of » > 0 over the annulub B»(0) \ B;1(0) with x(x) =
X(|z|) and set xr(z) = R™'x(R™'z) for any R > 0 and Dg = supp xr(z) = {z € R?; R < |z| < 2R}. By
the Poincaré—Wirtinger inequality for I = (—2,T'), there exists 6 € (1,00) such that

‘// q(t,z)xr(z v*tacdxdt‘

<@mmfﬂ i gy T IV e ) IR0l 0y (4.26)
’// g« (t, x)xr(x)v (t,z)d:cdt‘

< =i 2 / n .Ds ny - .
_C(|q*mn_0||L9(I;W;S+1_pl/(Rn1)) + ||Vq*||L9(1;H_s,p (R+))> ||XR v||cb(17Bp,1(R+)) (4 27)

By passing R — oo the both terms in the right hand side of (4.26) and (4.27) are vanishing (cf. by the

bilinear estimate (7.26) and ||XR||Bn/p(Rn) = O(R™')), which justify the integration by parts (cf. [59] and
p,1 +
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[62] for the details). Since the external force is smooth, the exceptional regularity can be avoided. The
analogous estimate above also justify the dual couplings at the boundary. Those observations ensure that
the following argument remains valid;

(v, )rxry = (v, =040 — Avs + V@i )rRxR7
= (0w, v)rxry + (Vv, Vo, + (V)T — @ Drxrr — (]2, =0, T (Vs; @) Vnle, =0) R xR -1
= (0w, v )rxry + (VU + (Vo) — I, Vo )rxry
= (00, vi)rxrr + (—Av + Vg, vi)rxrr + (T(0, Q)Vnle, =0, Vi)rxrn-1
= (0w — Av + Vg, v*>]R><R1 =0,

from which we conclude v = 0 by the arbitrariness of ¢, and hence ¢ = 0 by Vg = 0 in R} and ¢(-,0) =0
by (2.11). This proves Theorem 2.2. |

Proof of Theorem 2.1. Applying the maximal L!-regularity result to the initial-boundary value problem
of the Stokes equations with the boundary condition, we obtain end-point maximal L'-maximal regularity
from (4.21), (4.24) and Since by (2.16) v = 4 + v — V¢|z, >0 and p = p + ¢ is the solution to (2.1). Hence
by combining (2.3)-(2.5), (2.7), (2.10), (2.12), (2.15) in Theorem 2.2, we obtain (2.2).

Conversely, by using (2.17), (4.16) in Proposition 4.3 as well as (7.1) in Theorem 7.1, we conclude that
regularity for data is necessary for the existence of the solution (u,p) for the Stokes system (2.1). This
completes the proof of Theorem 2.1. d

5. MULTIPLE DIV-CURL STRUCTURE AND CRITICAL MULTI-LINEAR ESTIMATES

In this section, we show the multiple divergence-free-curl-free structure related to Jacobi matrix of trans-
formation from the Euler coordinates to the Lagrange coordinate, which is essential to obtain global well-
posedness in the critical Besov space B; Fn/ P (R’). The single divergence structure was firstly pointed out
by Solonnikov [67], and it is applied by Shibata—Shimizu [61] for the free boundary value problem. Our case
is a multiple extension from those divergence structure. Namely in order to apply the bilinear estimate in the
critical Besov spaces, we need to ensure that the divergence-free, rotation-free structure for every step when
we apply the bilinear estimate. Namely for multi-linear case, we need to make it clear that the nonlinear
terms in the equation maintains the multiple div-curl free structures. This was shown in [46] for the initial
value problem for the Lagrangian coordinate case. We develop the analogous estimate and establish the
multiple Besov estimate in the half-spaces.

5.1. Multiple div-curl structure. We show that the inverse matrix of Jacobian for the Lagrangian trans-
form and consequently the perturbation terms F,, F, and Ggiy have a special divergence structure. We
call a inner product of two vector fields f - g for f,g € D* maintains the divergence free rotation-free
structure (in short div-curl structure) if rot f = 0 and divg = 0 and the multiple-div-curl structure for
fF (g1 ®g2® - ®gg) if rot f =0 and divII = 0 and II can be decomposed into lower order component
consisting of div-curl structure. Such kind of structure easily yields us the original term can be expressed in
the divergence form and the bilinear estimate can be enlarged in the critical Besov framework.
We show such a structure holds for each of the semi-linear terms of the system (1.5).

Proposition 5.1 (Multiple divergence structure). Let I = (0,7) with T < oo and suppose that (u,p) has
the following reqularities;

Vue LNI; BE(RY)), Vpe LNI;B,, " (RL)).

Let Fy(u,p), Gaiv (u) be the polynomials of dji of order n — 1 defined in (1.7), (1.8). Then the terms are
subject to the multiple div-curl structure. Namely every component of those polynomial consist of the inner
products of divergence free vector and rotation free vectors.

Before going into details of the proof, we introduce several notations. Let

t
dNij = §ij + dij = (52‘]‘ +/ ajui(s)d& (51)
0
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then the Jacobi matrix is written as

I+dn  diz -+ dip dy diy - din
da1 L+do - dan da1 daa -+ dan
J(Du) = . ) . : =1 . . .
dnl dn2 o 1+ dnn dnl dng s dnn
and set
b1 b1z -+ bin
L bar baa  --- b2y
JDu)~ =1 . .
bnl bn2 e bnn
For any 1 < ¢ <mn —1, let us denote an ¢ x ¢-submatrix of J(Du) as
dl71‘1'1 e jﬂlTZ
Jowl=1 + - |, (5.2)
dwﬁ e (2027'@
where (01,09, - ,04) and (71,72, -+ ,7¢) are any combination of ordered sub-factor from (1,2,---,n),

namely 1 <oy <o <---<oy<nand 1 <7 <7 <---<7p < n. We notice that
brj = (—1)¥* det J (Du)\ Y,

We prove the multiple div-curl structure for those (1.7)-(1.8) by induction. The proof for the case of
F,(u,p) in (1.7), Gaiv (u) in (1.8) can be shown along a similar way. Hence we mainly show (1.7) for the
case F,(u,p). In the case of n = 2 and n = 3, such a structure is shown in an explicit way for R™ case (see
[46]). Tt is easy to show (1.7) in the case of n = 2.

According to Evans [25] (section 8.1), we recall the null Lagrangian structure for the Jacobian of a
Lipschitz continuous function u. Let A be a n x n matrix and consider its ¢ x ¢ sub-matrix A,

Lemma 5.2 (Divergence free for sub-cofator). Let u : R™ — R™ be a Lipschitz continuous function and for
any 1 < € < n, let J(Du)¥ be an £ x L-submatriz of the Jacobi matriz J(Du) and cof (J(Du)l¥); =
(—=1)7* det J(Du)[g Y be the cofactor matriz of the sub-matriz J(Du)¥. Then for (k,j) component of
cof (J(Du)¥), it holds

div;j cof (J(Dw)¥) =0

kj
for any point x € R® with det(J(Du))(x) # 0.

We show the proof of Lemma 5.2 in the Appendix (Lemma 7.2) below.

Proof of Proposition 5.1. Assume that Vu € L' (I; Bn/p(]R”)) Since B"/p(R”) C Cy(R%) for almost
every t € I = (0,T), we regard that u is the Lipschitz continuous function in x € R”} for almost all ¢ € I.
Each component of J(Du)~! can be realized by the cofactor expansion by J (Du), namely

n

brj = (det J(Du)) ™" Y " (=1)*dy; det(J(Du)" ) :Z Iijcof (J(Du)), .,
j=1

where we recall that diva = 0 implies det(J(Du)) = det(J(Du)) = 1. Then it is easy to see that from

Lemma 5.2 and for each k,
t
dkj = (5}<;j -‘r/ ajuk<s>ds
0

is a rotation-free vector and hence the each component of cofactor of J(Du), namely J(Du)~! has the
div-curl structure and this structure can be decomposed into any order of its sub-factor by expanding the
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determinant of cofactor matrices J (Du)gg_l]. It can be realized by the form

~

det (J(Du)!) =" (=1)*dy; det (J(Du)l~1) dej cof (J(Du)l)
j=1
forall £ =1,2,---,n—1. It is clear from Lemma 5.2 that the above expression also maintains div-curl structure
unless det (J(Du)m) =0, since di, = (dg1,dr2, - ,dgn) is a rotation free vector for each k =1,2,--- n.

Now we finalized the proof to see that
(Fp(u,p))k = ((J(Du)_l - ) Zcof (Du)~ 1]) jﬁjp — Okp

with observing that the first term is an inner product of the rotation free vector Vp and divergence free
element cof (J (Du)gz._l]) and the second is also with a trivial curl-free element 6y;.

The proof for Ggaiy(u) goes almost the same way since each component of trace has the div-curl structure
as the above. The boundary term H,(u) is also decomposed into the div-curl free structure before taking
the inner product with v,. This completes the proof. -

5.2. Bilinear estimate for div-curl structure. In general, the following bilinear estimate does not hold
in the Besov space over R":
1791l g S Cliflloligll -1+
p 1

However it is possible to change the norm of L* into slightly stronger norm of Bg)/lq, which have the same

scaling invariance with L. The following bilinear estimate is essentially obtained by Abidi-Paicu [2] (cf.
[44], [46]) in R™.

Proposition 5.3. Let 1 < p,p1,p2 < o0 and 1/p = 1/py + 1/pa. Under the assumption s + s > 1, in

particular, for 1 < p < 2n, for all f € B;l 1(R?) and g € LP*(R%) N B;Z (R%), there exists C > 0

independent of f, g such that the following estimate holds:

1 all 51+ @ny < CllFlprse ey ( JED): (5.3)
In particular for g € B;ﬁp (R%)
1£gll vz o < CIFIL 5 ||9|| (5-4)

By, 7 (R} (RZ) P (RY)

Proof of Proposition 5.3. Since the bilinear estimates in (5.3) and (5.4) are established in the whole
space, we merely show the case for the half-space for (5.4). Let f € B H”/p(]R”) and g € B"/p(]R") then

1+”/P(Rn>

from the definition of the Besov space in the half-space, for any ¢ > 0 there exists f € Bp and

B;i/lp(R”) such that f = f in D'(R%) and g = § over R? and

||f|| ~1+3 <|IfIl. 5 @) +¢,
n < .o + €.
||9HB:1 Hg”B;’,l(Ri)

Then the corresponding estimate (5.3) in R™ now implies
1Fgll -2 _Hfg!Rn - Hfg‘
:D, +

1 P(RY)
< iamn
_C||f||Bpi+ P Ry ||g|| (R)

<CHf|| 1+"||9|| 55,

51_

Since € > 0 is arbitraly, this proves the estimate (5.4) in Ri. The estimate (5.3) follows in a similar way.

g
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Proposition 5.4 (Bilinear estimate under div-curl structure). Let 1 < p < oo. For any vector valued

functions f € B_1+n/p(]R”) and g € B"/p(R”) with div f = 0 and rot g = 0 in the distribution sense, there
exists a constant C' > 0 independent of f, g such that

17 -gll ez o S OIS - lgll o (5:5)

(R} 5 ®7)UBP(RY)
If f satisfies rot f = 0 and g satisfies divg =0 in D', then (5.5) also holds.

Proof of Proposition 5.4. The corresponding estimate to (5.5) in the whole space is shown in Proposition
7.5 in Appendix below (cf. [46]). To show the half-space case, the argument of proof of Proposition 5.3
works as well and this shows the proof. O

5.3. Multi-linear estimate under the div-curl structure. The perturbation terms for the Navier—
Stokes equations in the Lagrangian coordinate exhibit the multiple-div-structure. In this case, we use the
improved bilinear estimate in Proposition 5.4 in the critical Besov space for the nonlinear term(cf. for the
whole space case [46], Proposition 4.5-4.6).

Proposition 5.5 (Multiple div-curl estimates 1). Let n > 2, 1 < p < oo. For dyu, D*u and Vp €
Ll(RJr,B_Hn/p(R”)), let Fp(u,p) and Gaiv (u) be the terms defined in (1.7) and (1.8), respectively. Then
the followmg estimates hold:

F,(u, _ D?u|* Cam v _14n , 5.6
1E D) 5% ) j£j|| LT | PSS R )
VGaiv (u 14 <CY || D*u|! u 5.7
P 0y S TIPS &

In particular for 1 < p < 2n, it holds that
O (—=A)"'VGaiy (u - D?yl|* . du Ciem 5.8
102V G (I, 8 ;{;|| It 0 e B gy )

Proof of Proposition 5.5. First we show the estimate for F,:

Fy(u,p) = —(J(Du)™' = 1) vp=I12"! (/Ot Duds) v

Here I17~(-) is the n—1-th order polynomial of the component of inverse of Jacobi matrix J(Du)~! without

a constant term:
t n—1
HZA(/O Du ds) = ch / Optam, ds

k=1 m,l<n
By using (5.5) with 1 < p < 0o repeatedly, we have by inductively that

F,(u, =
Pl e )
<Csu H/ DudsH (v .
1oh Vel LRy, ””(R 1))
n—2
JrH c /Gumds)Vp‘ _ >
2 1 (g by @)
t
SC‘/‘Duds . vl e
0 L (R;BP, (RD)) LI(R+§BP1 P (R%))

supH/ DudsH Rn) Hch /Bgumds)Vp‘

t>0

LRLB, LT ®RY))
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<C H/ Dud H Cn
Z B Py e >>H p”Ll(R+B LR RY))

<C D?ul|* \V/ TS )
ZII HLI( Ry (Ri))ll pIILl(R%BNU(M))

This proves the estimate (5.6).
Next we show (5.7). The estimate of VG :

t
VGaiy (u) = Vir (ngl (/ Du ds) Du) .
0

Here IT7}; ' (-) is the (n — 1)-th order polynomial without a constant term:

t n—1
ngl(/o Duds) = ;ck / 8gumds

mf<n
By using (5.5), we have

VG )
IVGa )||L1<R+ 5 Ry

t
SHHZ;l(/ Duds)DZU‘ i4n H( Hgi;1</ Duds))div u’
LY(Ry;B, , * (RT)) 0
§C’supH/ Duds” HQL;Q(/ Duds Dzu‘
t>0 Bpl(Rn 0

+CsupH/ Duds

t>0

2
<C||D*u |‘L1(R+;B;+%(Ri))

t
<Hndw (/ Duds ) D*u| Cn
0 LR8P D))
t t
+Hngi;3(/ Duds)D(/ Duds )div ul e )
0 LiRy5B,, ? (RY))
<cY"||p? - H(/ Duds) Ddi ‘ Cn
ZH uHLI(]R_*_7 p1+P(]R ))( 0 was v LI(R+?BP,1+p(Ri))

t
Fldiva] s H/ Druds| iy )
L'Ry;BY RENI Jo LeRy;B,; " (R}))

LI(R+7B”1(R+))

LIRB,, P (RY))

Dngiv“'(/t Duds)div ul
0

n

Bpl(R ) LURE P (RY))

n
n—1

<C D2yl 5.9
;H ||L1<R+,B* 2 mny (5.9)

This shows (5.7).

Finally we show (5.8). Hg;,l(-) is the n — 1-th order polynomial of the component of inverse of Jacobi matrix
J(Du)~! without a constant term. By the div-curl structure it holds that

Gaiy (u) =111 (/ Du dS)leU, =divy ( Z Ch / 8¢umds) uk> = div Gaiy (u). (5.10)

k=1 m,f<n

By using (5.5) several times, we have
— _1 .

Hat( A) VGaiv (u )||L1(R+ - ”(R )
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< a G iv — n
SI8:Caie N g, 5715 gy

<C Hﬂgwl(/t Du ds)atu
0

t
_agn +CHHZW2</ Duds)Vu@u
L'(Ry;B, 1 P (RY)) 0

t
- D d)a H e
div </0 ) s, Ry

t
div / Du ds) Vu® u‘
0

L1
LIRy;B,, " (RY))

t
§CsupH/ DudsH_% -

t>0

—&—C’supH/ DudsH % -

SUp Ll(R+;B;+% (R7))
<CkZlHD2 oseo27 % ey 196 0%
+ C::Zj HDQUHLl (ResB,, 7 (RD)) J Du||L1<R+:B;1+%(Ri)>
SC:Zi HD2“||I;1(R+;B;*%(R¢)) ||atu”L1(R+;B;+%(R1))
+C:Z::HD2“HL1(R+ T (Rn)) Hvu||L1(R+;B§1(R p” H REYCE
<CZHD2“HL1 S (Hat“” VRGBT (RY) ?;18/ Ouuds 1+ZUR)>
<Ck§—:1HD2uHIZ1(R+;B 5 o 10 e 58 o

g

For the quasi-linear term F,(u) associated with the Laplace operator defined in (1.6), the structure is
slightly different from the others since total multiple-div-structure fails in the following whole form:

Fo(u) = div ((J(Du)—l(J(Du)—l)T - 1) Vu).
Indeed, the multiple-div-curl structure remains valid for (J(Du)_1 — I)TVu partially, as well as
for div (J (Du)~t F ) with any vector field F. However since the coefficient function is J(Du)™! which

is adjoint of (J(Du)_l)T7 the derivatives for the divergence ‘div’ outside does not commute with J(Du)™*
and the whole multiple div-curl structure does not hold. To recover this difficulty, we use the bilinear estimate
in Proposition 5.3.

Proposition 5.6 (Multiple div-curl estimate 2). Let n >2, 1 <p < co. For D*u € L'(Ry; B, 1+n/p(R"))
let F,(u) be the terms defined by (1.6). Then the following estimate holds:

2n—2
F,(u <C D?y||F ! n 5.12
1l 8 ; L v B,y ®D) (>12)

Proof of Proposition 5.6. To show the estimate (5.12), we first decompose the terms as
Fo(u) = div (J(Dur1 (J(Du)™) ' Vu - vu)
— div (J(Dur1 (J(Du)y~t = 1)" vu) + div ((J(Dur1 - I)Vu)

—div ((J(Du)™* = 1)(J(Du)™* = )" Vu ) +div ((J(Du) ™ = 1) V)



+div ((J(Du)™" ~ 1) Vu)
=Fl(u) + F2(u) + F3(u).
Here div E stands for [VTE]T, where E denotes the n x n-matrix valued function. To show the estimate
F!, one can use the div-structure up to estimate for the terms for div ((J(Du)_1 —1) F) for the vector field
F=(J(Du)~'- I)TVu since it maintains the multiple-div-structure. Namely since div ((J(Du)_1 —1) F) is
the adjoint operator of (J(Du)’1 — I)TVF, it maintains the structure and it follows that for any 1 < p < o0,

di D—l—IFH,n < / ds|* » div Fl| 1z
Jaiv (@0 =1 F)[ v OZH Vudslly IV Fl oy
and

Jdiv ((J(Du)~* = 1) F)|

. 71+%
LR+4;B,, © (RY))

n—1

<S5 e[ VulF . div F i
kzl 194 53, ey 19 sy 7% (5.13)
n—1

<C D?ul* 0 div F agm

>~ 2::1” “LI(R+7 p1+p(R ))” ||L1(R+;Bp11+p(Ri))

Letting F' = (J(Du)—1)TVu and using Proposition 5.3 and the div-curl bilinear estimate (5.5) in Proposition
5.4 for n — 2-times, we see for the last term of the right hand side of (5.13) that

div F . ’
Idiv ”L1<R+,B 1P RD)

< C||(J(Du)™ = 1) Vu

div ((J(Dw) " = 1)" Vu))|

SR
L1R4;B,,, * (R}))

Ll(R+;BP1(R )

<C H/ Vuds H v
ZC’“ Y Loy, - u”Ll(MB%(R D)

< CZ HDQUHLI(R B 1+" (R"))HDQUHLI(R% ';“’

s 5.14
= B,, P ®}) (5149

Combining (5.13), (5.14), the estimates for F! (u) and F2(u) are proven. It is then easy to see that a similar
argument of (5.14) can be applicable for estimating the last term F3(u) and we conclude that

2n—2
P e <C DX+t "
IFu 5718 ) SO 2 PP oo

We finally treat the boundary nonlinearity as follows.

Proposition 5.7 (Multiple estimates for boundary nonlinearity). Letn > 2, 1 < p < 2n—1 and assume that
functions u and p satisfy Oyu, D*u, Vp € L' (Ry; B_1+n/p(R")) with plg, =0 € Fl/2 UQ”(R B_Hn/p(R" N
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LY(R B™ UM’(R” 1)). For the boundary terms Hy(u) and Hy(u,p) defined by (1.9) and (1.10), respec-

+1Pp,1
tively. Then the following estimates hold

H,(u 1.1 iin
D3 5
<C( T, = 1_1 _i4n = _14m )
Hp‘ n= O” 2 2p(R +p(]Rn_ +Hp n 0HLl(R+;BPi+p(Rn—1))
n—1 a ) k
o e 5.15
8 s (H ! ‘|L1<R+;BP,TP<R">> ID7ull T”(Rn») ’ (5.15)
|1 Hp(u, p)]| n-1 < C||ple, =0 HDZqu —_— (5.16)
! LIRyiB, T (Rh-1)) H H LIRyB, T 1>>; B P myy
k
) . (5.17)

[ D?ull 1R
LYR4;B, P (RY))

2n—1
Hy(uw)| 1_1 - (
H 3y 28 gy SO 2 (0l oot
2n—1
(5.18)

n—1

H,(u <C D*ull® U Rn))
IO 25 ey SO 2 PP et

Proof of Proposition 5.7. From (1.9) and (1.10) and from the regularity assumptions; we notice that the

1+" n— n; n—
PR LR BT (R, (5.19)

sharp trace estimate implies
L1
€Yy & *(Ry; B,
— I consists of a polynomial of fg Duds with its order

Du z,=0’ p|x”:0
We first see the estimate (5.15). Since J(Du)
up to n — 1, we show that
t 1
Hy(u,p) =105, (/ Duds)pl/n €F (R+,B (R" ). (5.20)
We introduce auxiliary norms of Chemin—Lerner type (cf. [15]) for the proof of Proposition 5.7
Definition. For 1 < p,p < occandr,s € R, the Bochner-Besov spaces of Chemin—Lerner type B;’l (R+; B;l (R”_l))
and LP(Ry; BS L(R™71)) are defined by the following norms
k
T ZT Z2SJHW * ¢J ’x/)HLf(R_,_;LP(Rnfl))’
(Ry:Bz , (BRP-1)) kez ez
(5.21)
— 257 (t, o
HfHLﬂ(R_,,;B;,l(Rn—I)) ; Hd)J * f a! HL (R Le(R™—1))"
Letn > 2,1 <p<2n—1 and assume that

Lemma 5.8 (Multiple estimates for boundary nonlinearity)
functions F and G over Ry x R"™1 satisfy F € Fll’/lz_l/Qp(R+, Bp_’ﬁn/p(R” NN LY Ry B(n 1)/p(R” )

and G € BY27 YR, B 1T/P(Re-1)) 0 L/O‘?\(_]Ig_s_; B;?l_l)/p(R" Y)). Then the following estimate holds

F ne
HIE ; pl(Rnl)))

<o(||F||H
(Ry:B,, ? (Rr-1)) L'(Ry:B, P
. ) (5.22)

(Rm—=1))

<(lell

The proof of Lemma 5.8 directly follows from Proposition 7.6 with p =1 and (7.30)—(7.31) in Appendix

el s

—142
L (Ry;B

FG i n

) PP (Ry;B,, T (R™1)
,L
,12p(R+§BP,1

50 (R2)

8 m\»—A

below.
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Now we set
F(t7x/) = p(t7qf‘lvxn)|wn:0;

¢
G(t,z') = ng_l(/o Du(s,x’,xn)ds)

Tn,=0

in Lemma 5.8 with regarding (5.19) to find that

1 Hp(w, )l

%1 %(R+,Bil+%(R"_l))
<HpI"OH BT R, (RH))+Hp"‘”":°HL1(R+, 7 (e 1>>>

<H"1 /Dusx xnd>

el

+Hnn ! / Du(s, 2’ xn)ds> H at > (5.23)

wn=0llL®y;B, 7 (R"-1))

To complete the estimate we use the following lemma.
Lemma 5.9. For any 1 < p < oo,
Du(s) ds H — ) <C||Duly, —o Cn , (5.24)
H/ zn=0 Béi%(R ;B;?F(Rn—l)) H || 2 2P(R+1 p(R"’l))

H/ Du(s) ds R <C||Dul,, o et (5.25)

0 n=0lL>([R;B, T (R"1)) LY(Ry;B, T (R )

Proof of Lemma 5.9. The first estimate (5.24) follows by using 1 () = ¥p_1(t) + Yk (t) + rs1(t) and
noticing |0; "l L@, ) < ¥kl . ), where 8; "4y, is defined as in (7.6) below that

1

2

t
H/Du(s)ds i
0 P (R4:B,, T (RTTY)

— Z o(=1+3)J Z 2(%‘%)’6

1
z,,:OH 52
g B
0,1

t
* P x Du(s)ds
Ve 3y 91 (w’)</o ®)

a:n:O) ‘

JEZ kEZ LP(Rnil) L;X)(R‘F)
S;Q(_l+g)j ;;2(%_%% H(at_lw’“) & o 6% & @(/ot Duls) o ds)‘ Lr@® || Loy
SEQ(H;M ;Zz(éﬁ)kuatlwkHL?C(R”HH% 5 oy 5 Du Iznzo‘ ) P
<jze%2(_1+;)j;Zz(%_é)kwknmm” H%(T) 0i (:')DU‘E"ZO‘LP(R"”) L}(Ry)

<C ;2( 142)j %%2% 25k Hi//k * ¢J % u|xn=o‘LP(Rn71) .
<OlDulecall s g oy

F2 2”(R+, p1 | (R )
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The second inequality (5.25) follows from the following estimate:

t
H/ Du(s) ds no1 gZQn;lj
JEZ

zn:oHLZJ(Tl@B ety
<3270 3, Dulecolisgeny

s Du(s) |, —od
oy D) |0 ol sy L (Ry)

‘ez Li(Ry)
ZQ P L b * Du =0 n-1 = ||Du =0 n—1 .
JEL | T |2 HLP(]R ) LI(Ry) || | ||L1(R+;Bp,f (Rn—1)

g

Lemma 5.10. LOO(]R BI(]n1 D/P(Rn=1)) is the Banach algebra, namely for any f, g € LOO(R+ (” D/p(rn-1y)
it holds

T 1 R ¥ S 520
+5 (R7=1)) ©(R4;B, 7 L% (R B (R+)
In particular for Dul,, —o € L*(Ry; Bpn?l (R™~1)),
H”l/D yas)| |l <N ||Duls, 5.27
B ezl mmnT @y ,;H wlen=oll e, 5wy O

Proof of Lemma 5.10. To see that (5.26) holds, we start from Bony’s paraproduct decomposition: Setting
P, (*) F=3 cm®m (*) F and Q, (*) F=3 v (*) F, it follows that
x’ = z’ t = t

Iroll —  n

L= Ry B, p (R™=1))

<y 2 JHII%II 165 25, oo P52 2 9l e

< L‘X’(R+)
+ 227 il Piz 5 Pl 183 5 ollon | e
JEL

s sl 3 lom 2 Sl I3 5 0

JEZ m>j—2

sszw@;ﬂmwﬂ

e

LY @Y pee(ry)

N [ a1 PSS

(Y ayeeuey | AR (N [ Y pote

Z L (®s)
+Y 2 Y 2t
JEZ m>j—2
. H”‘bm &y ey Ly ®y) Iom 2 9l g L (Rs)
<22 P HH¢] fHLp L3°(Ry) HgHLOO(Rnfl) L (Ry)
W )22 (R Py

e

meZj<m+2

<
= 527 )

’WW @) fHLP Rn-1) ||¢ gHLP(R”*U

L5 (Ry) Ly (Ry)

1

HgHLOO(]R+ Loo(Rn—1)) T HfHL‘” (R4 L0 (R™~ 1))HgHL°°(R B, T (Ry)
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+mze:z &l L°°<R+>iue%2 H”% & Moo Ly ®s)
wnﬁaagwwmewﬂwgﬁrwmﬂhmw” [
O el —
< (Ry;B,, (]R ) L”(R+» 0 (R+)
<O||fll — H | e
= (R+ B (R )L (RyB, r®y)
which shows (5.26). The estimate (5.27) follows from the estimate (5.25). |

The polynomial term can be estimated as the following way: From Proposition 7.6 in Appendix with
p = 0o, Lemma 5.10 and (5.24) in Lemma 5.9 we see that

/Du ds T n
B2 P (R, P (R1))

t
(H/ Du(s)ds H —— N +H/ Du(s)ds
x,=0 “2p -1+ 0

a:,LfOH

k
[P
n=0lL=(R;B, ] (R"~1))

M |

h=1 Bi P(Ry;B,, P(R"1)
n—1 .
<C |Dul,,— . Dul, )
< ;(|Mnﬂ22m%mwml+uuuﬂ|MBfWU)
n—1 .
<0y (Hatu||L1(R+;B;+z(Rn_l)) + HAu’|L1(R+;B;+Z(Rn_l))> (5.28)

by the sharp trace estimate Proposition 4.3. Combining the estimates (5.23)-(5.28), we obtain (5.15).

To show the estimate (5.16), we notice that L>(R; B](Dfll_l)/p (R™~1)) is the Banach algebra and from the
sharp trace estimate (4.17) , it follows from (4.17) that

1 (s )II no1
LYRy;B, ] (R™1)

<Cllplan=oll, ey [ ( [ puas)
LY (R4;B (Rn—1)

P
p,1

.Ln_OHLoo(R+ Bp1 (Rn 1))

t
H ([ puas)
xn=0 L“(R+B (R—1) 0
n—1

§C||p|xn=0”  n-l ZHDuhn_OH LR, B p (R’n 1))

LY (Ry:B, T (Rn-1)

n—1

rn—OHLw<R+;B,,,f (®=1))

<Olplen=oll | oo H / Duds
LY(Ry3B, 7 (Rn—1)

<Cp lz.=ol Z 1D?ull* T (5.29)

DRGBT @) D EE P R

On the other hand, for the estimate (5.17) of the velocity boundary term, we split H,(u) into two parts
as

Hy(w) :((J(Du)’l)TVu + (Vu)TJ(Du)’1> ((J(Du) ™7 = I,

+ (DW= 1)V (SO0 = 1)Va) o,
=H}(u) + H(u). (5.30)
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By setting

)

F(t,2') = ((J(Du)—l)Tvu n (vu)TJ(Du)—l)

xn=0
) t
G(t,z') =11}, D s )d
( .’L') bu (/0 u(S,l’,fI; ) S) zn,=0
in Lemma 5.8 with ¢
J(Du)y™)T — T :H”*l/D " an)d ;
((J(Dw)™) )zn:O - ( ; u(s, ', ) s) o
we find that
H 121
” ”Fz 2P(R+B e (Rn—l))
_1\T -
<o( (o0 vur 00| g e
o =011 F2, +:Bp1 "

v H ((7(Dw) ™) Vu+ (Vu) I (Du) )

L
x (Hngu (/O Du(s,a,,)ds) %:OHB%

t
+ Hﬂgu_l(/ Du(s,:z:’,xn)ds) ’ o ne1 > (5.31)

0 om0l L B, T ()
The first term of the right hand side of (5.31) is estimated by applying the sharp trace estimate (4.16) as

well as a similar way in (5.9), (5.11) to obtain
H(J(Du)—l)Tvu+(vu)TJ(Du)—1 _O)

gC(Hc’)t(—A —1v((J(Du)—1) Vu + (vu)TJ(Du)—l)(

L P ®)
+HV((J(D“ LiRyB, L R )))
<c(|(Ewn o @umsw0 )|
n—1 t _
—1—“;%(/0 Du(s)ds)k 1

Duxu‘

x,=0

L®B, T (Rn—w)

—_—
1

P (RyB,, P (Rn1))

R S —14+n
R2% (ﬂh,B TP (Rn-1))

L1+
1 .
L'(Ry;B,

) ' Vu+ (vu)TJ(Du)—l) ‘

R
1 .
L (]R+,Bp,

P ey
+ || (7 (D)) VUt (Fu) T (Du) |

(ZH/ Du(s) ds HLOO(R+ B”l(R ))
S| [ o],
+ZH/ Du(s ds

L (R B R L R#»v R

ian Oru
S0 5 (Pl

L1<R+;B§1<R¢>>)

|9¢u] 43

L*Ry;B,, *(RD))

.
P

TN o N L e,
+:Pp 1 B + 1

FID%l et )
P (R%)) LY(Ry;B,, 7 (RY))

(5.32)
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while

n—1

LY(Ry;B, Y (R71))

H (J(Du)™) ' Vu + (Vu)TJ(Du)~!

LL:O‘

is estimated by the right hand side of (5.32) in much simpler way as in (5.27), since BI(:Lfl)/p(R”_l) is the
Banach algebra. By (5.31), (5.32) and the estimates (5.27) and (5.28) with the sharp trace estimate imply

H(u 1_1 —14+2
H u( ) F},l 21"(R+;Bp;+p(R“’1))
2n—1 k
e ( D2 Cm ) . 5.33
< 10l 43 Gy TIP3 ) 3%

k=2

The estimate for the term H2(u) can be shown in the same way as is shown in (5.32), which shows that
(5.17) holds.

For the proof of (5.18), we notice that Bz(fl_l)/p(Rnfl) is the Banach algebra, the same argument to (5.29)
shows for 1 < p < oo that

[ H o ()| =t
L'(Ry;B, T (Rn—1))

SCH ((J(Du)—l)Tvu - (vu)TJ(Du)—l)

t
xHng—l(/ Duds)
0

+ CH (7w = 1) 'Vu— (Vo) (J(Du) ™ = 1) )

LRy (Rh1))

ln—O‘

zn_OHLoo(RJr Bpl (Rn 1))

n—1

xnzo‘

L'(Ry;B, 7 (R*1))
2n—2

<C||Du |z, = ne H/ Du(s)ds H

|| ‘ O”Ll(R_,_;Bp’f (Rn=1)) % Z 2z, =0 L°°(]R+,B f (Rn—1))

2n—1 2n—

k
<C Duy, - | D?u]|® .
- z_: H | n OHLl B T’ (Rn 1)) kz:: | ||L1(R+, o, 1+P(R ))
This show the estimate (5.18). (|

6. THE PROOF OF MAIN THEOREM

Proof of Theorem 1.1. We define the complete metric space

we O B <R">> AW R, B, L (RY)),
X = ¢ (u,p): (Au, VP)GLI(R+,B T (RY)), [(u,p)llx <M,
- +" n— n; n—
P|wn:o€Ff,1 (R+7B T(R)NLY(Ry; B, (R™TY),
where )
= 14 D _q1an _qan
Il =0l v NP, g IR
+ Ty = c1/9-1 n + Tp= n—1
||p| 2 OHF11/12 /2P(R B +P(]Rn 1 Hp| 0||L1(R+,Bpf (R" 1))

The constant M > 0 is chosen to be small enough depending on the norm of the initial data. Given
(a,p) € X, we consider the liner inhomogeneous initial boundary value problem:

Owu — Au+ Vp = Fy (@) + Fp (@, D), t>0, v €RY,
div u = Gaiy (@). t>0, zeRY,

(Vu+ (V)" —pI) - v, = H, (@) + Hy (i, p). t>0, € ORY, (6.1)
u(0,x) = up(x), r € RY,
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where v,, = (0,0,---,0,—1)T denotes the outer normal and we set
t
F (i) =div (J(Dﬁ)*l (J(Di)™) Vi — va) = 122 ( / Di ds) D4, (6.2)
0
t
—(J(D ) Vp=1,"" </ D ds) VP, (6.3)
0
t
()~ = 1) Vi) =t (Hgi;1 ( / Dii ds) Dﬂ)
0
=div (ngl ( Du ds) ) (6.4)

Gle —tr

Hy(@) =~ ((J(p@) )" Va+ (V) J(D@) ™) (J(D@) ™ = 1)Tvn
~ (@)™ =T Va+ (Vo) (J(D@) " - 1))v,
=112 (/t Du ds) Di vy, (6.5)
H,(a,p) =p(J(Da)~" — I)Tz/n =1t (/Ot Di ds> P Un (6.6)

We define the map

by
(@,p) = (u,p) = ®[a,p]
and prove that @ is contraction on X.
First we show that a priori estimate of ®[u,p] in L'(Ry; B_1+"/p(R” )). Let (u,p) solve (6.1). Applying

Theorem 2.1 to the equation (6.1), we have by (2.2), Propositions 5.5-5.7 to the nonlinear terms (6.2)—(6.6)
that

T - —
+:B,1 *(RY)) LI(R+;B R1))
\Y% = )
Jr|| p||L1(R+~B 1+p(Rn)) ||p|xn OH 1/2 1/2p(R B P(Rn 1) JrHp|x"'_0||L1(R+;prfl(Rn,A))
<C ( o F,(@ n F,(,p n
<Cwpm ||u0||32,1(R+)+H (u)HLl(]R B 1+ (Ri))_'_“ :U(u p)“ 1(R+B +p(]R )
G (i O(~A)" VG .
+||v d (U)HLI(]R+ 1+p(]R +|| t( ) v d ()HLI(]R+7 p(Rn))
+ || Hy (2 1_1 n + || Hy (0 n_1
e s L L UG B ;(Rn,l))
FIH@p) yox ryn + | Hy (i, p 1 )
” ;D( p)”FEl 21p(R+;B’pi+p(]R”’l)) H p( p)HLl(R+;Bpp,l ;’(Rn—l))
2n—2
u o + DQU k+1 n
<Ol g+ DS IDEE oy
2n—1
TR o201 L (aa n 4| D% s )
Z || ||L1 +7Bp 1+p(Ri)) || ‘ HLI(R+7 p1+ (Ri)) || HLI(R+7 +P(Rn))

k
a D% a )
kZ( s B ey TP, )

% (Ivp + Blen=oll 53— + 1B net )
H p”Ll(ﬂhv 2P ey IPle.=ol RO ) 7 O||L1<R+;Bp,i’ (R"~1))
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2n—1

ol 0% ' (67)
+ ( U Cign + D —14n ) ) .
Z lries, " @) Pli s, )7 )
By (6.7), it holds that
2n—1
ot gl < (ol e o, + D0 5. (63)
By T (@) k=1
Therefore if we choose the initial data small enough
1 1
_i4n < —M< =
HUOHBNJF’)(RT;) =30 < 1
then we obtain from (6.8) that
[@[a, plllx < M.

Moreover, for all (u1,p1), (u2,p2) € X, we know that the difference

w = U; — U, q=p1—PpP2
satisfy the same estimate (6.7):
Ovw Cin + |D?*w _i4n + Vg —1+2
196000, 7 ey P ey 19 7
+ q ’n_O 1_ .1 _ n + q n:O n—1
” o H F2 %P (Ry;B, HP(]R H = HLl(RJr,Bpf (Rn=1))
2n—2 k
<C ( O -1+3 D*u; 1 )
<Camy 3 I tul”Ll(RﬁBP,i*p(m)) PR 5,2 e
x (|0 D?
(H tw||L1(R+, p1+p(R")) + || w||L1(R+, p1+p(R " ||quL1(]R+7 1+ (Rn))
+ — 11 _ n + = n— )
H(ﬂzn OH % 21”(R+'B 1+p(]R Hq':z:n OHLI(]RJH fl(R" 1))
Therefore if we choose
2n—2 E 2n—2 1
C (1o D?u; ) S0 MR,
220 kz_l | tuZ”Ll(R B, p(R")) I ulHLl(R+;BP;+”(R1)) - 1; T2

then it holds that
1
12w, dlllx < 5 li(w, @)l
which shows the map
P: X > X

is contraction. By the fixed point theorem of Banach-Cacciopolli, there exists a unique fixed point (u,p) of
the map ® in X.
We finally confirm that the boundary equation in (6.1) is fulfilled. Let the difference between the solution
and the date as
wW=1u—u.

The sharp trace estimate Proposition 4.3 ensure that

V&, — 11 B + V|, — n_1

H |xn OH 21>1 21 (RJr;Bp 1+P(]R H |:cn O||L1(R+7 r ;(R"’l))
< _ Aw n ) :
,c(uatwny(ﬂh; 1 ))+|| Ol 578 (6.9)

and the right hand side of (6.9) converges to 0 as the iterative process. Then the unique fixed point (u,p)

satisfies (6.1) with the all right members changed into (u,p) and it is a time global strong solution of (1.5)

This completes the proof of Theorem 1.1. d
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7. APPENDIX

7.1. The optimal boundary trace. The proof of Proposition 4.3 is based on the following trace estimate
(cf. [38]).

Theorem 7.1 (Sharp boundary derivative trace [48]). For 1 < p < oo and —1+1/p < s, there exists a
constant C' > 0 such that for any function f = f(t,2',n) with f € Cy(Ry; B (R%)) N WHH(Ry; Bs ((RT)),
D*f e Ll(RJﬂB‘; (R7%)), it holds for all 9y = (0y,,0y) with 1 <L <n —1 that

ns€up+(||5£f ) J?)H %7%(R+;B;11(Rn71)) + Hazf(~, ~,U)"LI(R+;B;,+117%(R7171)))

< C<||atf||L1(]R+;BS‘1(]Ri)) + ||D2fHL1(]R+;B§Y1(]Ri)))' (7.1)

Proof of Theorem 7.1. For 1 < p < co and —1+1/p < s, assume f € Cy(Ry; B3 (R%))NWHL(Ry; B 1 (RL)),
D*f e Ll(RJr7 Bé 1(R%)). Then by the definition (1.14), for any ¢ > 0, there ex1sts f e Cy(R; B A(R™)N
WhH(R,; B, (R”)) N L' (Ry; BSH(R™)) such that

Il ey :32 ey s, ey) SISy ims  @npaita @y s, @n)) +6
”DQfHLl(R_*_;B;l(]R")) <ID*Fll 11 g, B, &y TE

We then extend ]?into t < 0 as an even extension. For simplicity, we denote fas f in the following. It
directly follows that
Ouf € L*(R; B3 (R™). (7.2)
Then
[90f Gl 35

<||9. Ty 1
(i o) <10

R (g )

<[>0z S 2 1 6y 5 007 g

‘ez ko ) Li(R)
5 (3—35)k , .
+ HZ2 2'2 272" |y, & 9 (j/)a@f(t, 7] | P .
JEZ k<2j
=I+1I. (7.3)
From (7.2) and 1/p < s+ 1, one can approximate Jd;f by a function satisfying
lim def(t,2’,n) =0, aa. (z/,n) e R" xR, (7.4)

and using the assumption (7.4) and noting wk = [p ¥r(t)dt =0,
Vi (t) & def(t,2',m) 2/ Vi(s) Ocf(t — 5,2, m)ds
R
= / as(‘/ ¢k(7”)d7")5£f(t - Saxlvn)ds

([ worr)ausa=saton] ™+ [ (" ontnar)oousc - st ms
7/8;11/)k(s)333gf(t7s,x',n)ds
R
= a;1¢k(t) (’;) ataﬁf(tv $/7 77), (75)

where we set

0 Mp(s) = — /00 Yy (r)dr. (7.6)
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Then 8; *oy(t) = Q’k(ﬁt_lwo)k(t). Hence from (7.4) and (7.5) and using the Hausdorff-Young inequality,
it follows for 0y = 0, (i.e., £ = n) that

r<c|Y2 Y o )k/| ORI PR W ERbI =Y
JEZL

k>2j Li(R)
. 2k
coxm Y ra| [ E / |
_Cjez k>2j R <2k(t —5))? I¢: () Knf (5, 777)HLP(R7L71) ’ L}(R)

<0228J Yot >’“‘

k>2j
gCZ?J

Z 2*(§+E )k

JEZ k>25

L1(R) HH Z ™ o) 2 @) ata”f(t’x/’n)||m(w—l)

Li (R)

_ ' , ,
Z q)Tn (:c:kn) ¢j (:’) anCJH(’?) j;) <j+2(77) : 8tf(tvx ’TI)HLP(R"_l)HL}(RJr)

Im—j|<1 ’ ( o

SCZQSj 22 (5+35)k

JEZ k>2j
X /]R |87)Cj+1 (i) Cia(n — §)|H lmzj:qq)’”(mig) & (:/) atf(t’x/’OHLﬂD(W*)df’ LE(R+)
<03 2| 3 2 R0, )
JEZ k>2j
X HHE(;n) ?; (;‘/)8tf(t,l‘/,77)HLp(R"*1) e L@y
<O\ 21 x5 Dy, yn,, < OIS e+ 7

JEZL

For the second term of (7.3), we use the Minkowski inequality to see

1<y 2% ZQ%—%)’“lekl@)H@ &y 0l | oy ||y

JEZ  k<2j ;(R)
<oy Y
JEZ  k<2j

X D, * ( x (s x ¢ x Opf(t,a, e
HH Z m @) CJ+1(77) o §]+2(77) o oy @) nf( TI)||Lp(R, 1)

Li(Ry)

<C 25+177] (I) 1 ] ] t; /7 7 n—
- yze; H|ng:<1 oy DnGier () G2l % @y T Moy L}(Ry)
<c|| 326+ 099,60 @l®i 2 F G D |y,
JEZ o o
<C ZQSH)J? 23”@ * f(t,2z',n ||Lp(Rn) IR
= t( +)
§C||D2f||L1(R+%B§,1(R")) < C||D2f||L1(R+,BS NETS IR (78

where we used 1 < p and & = Ce.
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The estimate for the spatial trace term is shown along the following way:

Hanf('v’777)||Ll(R+7.s+l P(Rn 1))
o DRl E O] e
R DO D oL ARSI N
JEL meZ ¢ (R+)
<C 23J2 177)] q) 3 1 j j ta /7
>~ ng% Hmze:z :k’ ) 77(]-1-1(77) (z) <j+2(77) (:) ¢)J (:/) f( € 77)HLp(Rn—1) LI(Ry)
<C 22 5+2)j 9— 2J||(I> * ft,z',n ||L1,(Rn .
jez i (Ry)
<CID* fl g gy 5, oy < 0||D2f||L1<R+;B;,1<m>>+5- (7.9)

Since € = C'e > 0 is arbitrary small, we conclude our result. -
The other cases 1 < ¢ < n — 1 can be shown similar way by changing 0,(; into ¢; and ¢; into 0z¢; * ¢;.
This completes the proof of Theorem 7.1.
(|

Proof of Proposition 4.3. The proof of the trace estimate (4.16) is almost the same line of (7.1) in Theorem
7.1 except the regularity. Hence we show an outlined proof. For 1 < p < oo and -1+ 1/p < s < 1/p,
assume V(—A)~'f € Cy(R; Bs 1 (R})) N nwt 1(R+, s1(R%)) and Vf € L' (Ry; Bb 1(R%)). We employ the
similar argument and use the extended element f assomated with f as above. We regard f as the extended
element f. From f € L2(R; BSH(R")) like in (7.2), we may assume that

/ _ / n—1
tllinoof(t,x ,m) =0, aa (2,n) eR"" xR, (7.10)
we have like (7.5) that
Urlt) 0. on) =07 a0) ¢ DL (1' ) (.11)

with (7.6). Then it follows
Il g <[22 X A e g 6 sl s

F2 % (Ry;B , (RP-1) et (t) L}(R)
sj (3—25)k .
+ H 22 2 272 H'(/}k (1‘) (b] f(t7 ’77)HLP(]R"*1) Li(R)
JEL k<2j
=1 +II. (7.12)
Hence from (7.10) and (7.11) and using the Hausdorff-Young inequality
_ sj (l—ip)k -1 ) /
I _HZ2 22 202 Hat 1/% (’1‘:) (bj (j/)atf(tvx ’n)HLP(]R"*I) L%(]R)
JEZ k>2j
<oy w3 s
JEZ k>2j
q) ] 8 t7 /7
|m§J:|<1 ™ iy 9y G & G2 0) g ST Doy e
s—1)j /
<CHZ? ||<I) /* )8tf(t7x7n)||LP(R:l1)’L1(R )
JEZ N o A
<CH 29|V (=A)"'D; « O,f(t,, § ’
- Jze; [vE=ae; (arm) St n)HLp(Rw’m) L}(Ry)
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SC”atv(*A)ilfHLl(]RJr;B;yl(]R")) < OHatv(fA)71f||L1(]R+;B;‘1(Ri))JrCE' (7.13)

For the second term of (7.12), we use the Minkowski inequality to see

Ir<cy 29 %" 23—k

JEZ  k<2j

X Fo : * (; * s % t,:E/, o1
HHmze:Z m oy S D) 3 G2 () @5 xS D oo Mz @)

SCH o(s+1-1); [ . O « b« f(tal, N
j% H m;<1 (') CJ+1(77) o Cj+2(77) m oy () f( 77)”“,(]R 1)

gC” 3 26Hi|| v 1E;

jez

Li(Ry)

+Ce.  (7.14)

!
) VIt ’77)HLP<R:/W>‘ Ry:By , (R))

r <95l

Ly (Ry

Combining the estimates (7.12), (7.13), (7.14), we obtain the first part of the left hand side of (4.16).
The estimate for the spatial direction (4.17) is slightly simpler. For 1 < p < oo, Vf € L}(Ry; B, 1 (R} )) and
noting (2.37), we obtain that

T —

YRyiB,; P (R"1)

<C| 3 26t/ &5 > Bulalsn) ooy TG o @nsy

ez meZ ) Li(Ry)

s+1-1);
<C|[ > 2699 G 4l o (my

|¢j (:,)Cj+2(77) * (}Tj(xlrn) * f(t%n)“mmz, )’

= (m) (x',m) /WL (Ry)
<C|| Y 26D (! ) x [t n ‘ < OVl my8s, Ry ) TOE
=~ jgz || ]( 7]) (&) f( 77)HLP(R1/,7,) L%(R.;_) = || fHL (RJr,Bp,l(RJr))

For almost every ¢t € R} and n € R,

[ .

SCZ2(S+171/p)jH¢J’ * § : (I)m("n) * f(t, 'a77)HLP(]R"71)

, (') (z",m)

JEZ meEZ

(s+1=2)d ||~ , , A D (. )

SO]EZ; il @pllés 5 Gaal) o BiCom) e St o,
S(j§ :2(5+1)j|‘7¢j(3:’,77) x f(tv'v')HLp(Rn -

jez (z',m) z!,n

After taking supremum in 1 > 0 and integrate it over R, we obtain that

su R Ls+1— =+
H 7]>IS Hf( 77)‘ prtl 117(Rn—1) Ll(R+)
<CH 2(+13 1B (2 t, -, . ‘
- Z [®;6asm) w7t 77)“”“‘%/,0 L} (R+)
JEZL
SCva“Ll(R+;B;)1(Ri))+CE‘ (7.15)
The estimate (4.17) follows immediately from (7.15). This completes the proof of Proposition 4.3. U

7.2. Null-Lagrangian structure. According to Evans [25, section 8.1], we recall the null Lagrangian
structure for the Jacobian of a Lipschitz continuous function wu.
50



For n € N, let A be a n x n matrix whose components are denoted by {ax;} and consider its ¢ x ¢
sub-matrix Al given by

Aoyry 7 Qoyry
AT =1 ] (7.16)
Aoyry 7 Qoyry
where o, 7; € {1,2,--- ,n} with1 < o1 <o <+, <oy<nand1<m <M<, <7y <n

Lemma 7.2 (Evans [25]). Let 1 < ¢ < n and letu : R® — R" be a Lipschitz continuous function and J(Du)!
denotes the £ x { sub-matriz of the Jacobi matriz defined by (7.16) (cf. (5.2)), cof (J(Du)l)),; denotes the
(k,j)- cofactor and cof (J(Du)¥) be the cofactor matriz. Then for any x € R™ with det(J(Du)(z) # 0 it
holds that

div j (cof (J(Du)')), . = 0.

Proof of Lemma 7.2. Let P = [Pij]lgi,jge be a matrix whose (%, j)-components are p;; and its cofactor
matrix be cof (P). Then (k, j)-component of cofactor is given by

cof (P)i; = (=1)"* det P,

T, it follows

n

)
> (PT)ircof (P)rj = pricof (P);. (7.17)

=1 k=1

Let I be the £ x ¢ unit matrix and by I = PT (P!
det P 6;; = (PT (cof (P)),; =

k
Taking the partial derivative of the both side of (7.17) by pgm, the component py; is missing in cof (P);

0]
apkm

det P = cof (P)gm. (7.18)

Choose P as the sub-matrix of the Jacobian J(Du)), the relation (7.17) is now reduced into
det J( Du <055 = Zd;ﬂcof )kj, (7.19)

where d denotes the component of the Jacobi matrix J(Du) defined by (5.1). Taking divergence for j-raw
in (7.19) and noting (7.18),

14 14

ZGJ (det J(Du)ty - 5,5 = Zaj(zdszOf (Du) H)k])
j=1 Jj=1
¢ ¢ ¢ ¢ ¢
SN Gidi - cof (J(DW )iy =D 0ydii - cof (J(Du)l¥) ZZ dyi - djcot (J(Du))y;
k=1m=1 j=1k=1 j=1k=1

and thus we obtain
¢ ¢
Z dpi - Z 0jcof (J(Du
k=1 j=1

Rewrite the above as
0 = J(Du)div ;(cof (J(Du)“);)
and multiplying the both side by (J(Du)l¥)~! at the point zo with det J(Du) (x0) # 0, it follows that

div jcof (J(Du)4); = 0.
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7.3. Bilinear estimates. The following bilinear estimate is well-known:

Lemma 7.3. Letlﬁpgoo,lga_g 0. )
If s >0 then for all f € L2(R")N B _(R™) and g € L™(R™) N B: _(R™),

1,0 q1,0

1f9l

g, < C(I]

ge Nglles + 171 lglls, ), (7.20)

where
1 1 1 1 1
7:f+i:i+7
p T1 T2 q1 q2

and C' > 0 is independent of f and g.
k—3
Proof of Lemma 7.3. Let P.g = Z Qe xg = Py-x-s * g denotes the low frequency part of the

{=—c0

Littlewood—Paley decomposition of g. Then by the para-product decomposition of the product of f and g,

fog = D (oexHPeg) + D (Pf)(brx9)+ >, > (b )b xg)

kezZ kez kEZ |1—k|<2

Since
supp F (¢ * f)(Prg)) C {€ € R 2872 < [¢] < 282},
. . 1 1 1
we have by the Young inequality that for — = — 4+ —
p T 7
1/o
s, <9 S (2910501065 % Flb P21l
JEL
7 (7.22)
<Cllgll. 4 > (291165 £l )

JEL
SCHJCHB;lo HQHTW

where C = ||F~1¢||1][¢||1. By replacing the role of f and g with that of g and f, respectively, we see that
the second term can be handled in the similar way as above. Hence there holds

1 1 1
holl e < C e, = — . 7.23
Ihallsg, < Cliflalols, - = o+ (7.23)

To deal with the third term, we should notice that
supp F(¢n * f - du+ g) C {€ € R"sJg| < 2mx(hii+2y,
so there holds
@5 % (o * f)(dr+ g)) =0 for max{k,l} <j—3.

Let r1 and ry satisfy

Sy (7.24)



then

Ihslls, :(Z(zsﬂ’ > sbj*((cék*f)@*g))Hp)”)l/a
JEZ k>j—2
(327 3 Noulhln » Sl wall) )"
jeL - k>j-2
(X (X 2l fln)) sup e gl
JEZ k>j—-2 her

(changing k' = k — j to see)
ry s ’ o\1/o ~
<O(X( X 2% 2 ¥ oy # fln) ) sup 16 % gl
E

JEZ K'>—2

’ ’y s o\ 1l/o ~
<0 3 (X (29 P Nows# 117) ") sup i gl
€

k'>—2 JEZ

. 1/o
<C(D229 g5+ £12,) " Nl
JEL
<ClIfllzs, Mgllzr=, (7.25)
where we use s > 0. The estimate (7.20) follow from (7.21), (7.22), (7.23) and (7.25).

The following bilinear estimates over the whole space R™ are obtained by Abidi-Paicu [2] (cf. [46]).

Proposition 7.4 ([2]). Let 1 < p, p1, p2, 0, A1, A2 <00, 1/p < 1/p1 + 1/p2, p1 < A2, p2 < A\ and
. 1 1 1 1 1 1 1 1
s1+sy+ninf(0,1 -———1]>0, -<—+4+—<1, -<—4+—<1
P P2 P p1 M P P2 A
(1) Ifs1++% < o and sy + 3t < 2t then there exists C' > 0 such that for all f € B;i,g and g € B;ﬁ,ow
the following estimate holds

179l
B

1 1 1
‘51*"“2_"(5*'5_5
p,o

) = ClAllsg Mgl .
(2) Ifsl+/\"—2:pﬂl and52+f—l
the following estimate holds

1£9ll

then there exists C' > 0 such that for any f € B;i’l and g € B2

_n
T p2’ p2,1

< s nso . .
(g 1) SOy Dol (7.26)
p,1

(3) In particular, if s1 = =1+ n/p, ss = n/p and =1 +n/p + n/p > inf(0,n — 2n/p) in (2), i.e.,
1 < p < 2n then there exists C > 0 such that the following estimate holds

Cen SOfN L aen
||f9||Bp,1+p < Ol -+ llal

p,1

Bp%,l' (7.27)
Since Danchin—-Mucha [20] treats the equations depending on the density, the restriction on the exponent
p in the solution space B; }+n/ P(R™) stems from the restriction on 1 < p < 2n for the above bilinear estimate
(7.27). One may improve the restriction by using the divergence free - curl free structure of nonlinear terms.
The bilinear estimates as above hold for the case when the two functions f: R” — R" and ¢ : R™ — R"
have the divergence structure condition:

[ Dzg=D.(f-g),
where D, denotes any combination of partial derivatives by « = (z1, 22, - ,x,) of the first order. A typical
case is given by the form when f and g satisfies divergence free-rotation free structure as div f = 0 and
rotg =0.
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Proposition 7.5 (Bilinear estimate under divergence structure). Let 1 < p < oo and f € B_1+"/p and
p g p 1

g e B;L/lp .

(1) If there exists F = F(x) such that f-g = D,(F -g) with f = D, F(x) in the sense of distribution, where
D, is any combination of the first differentiation in x. Then

1F - gll vz < CIFI, —1+“H9|| (7.28)

Pl Pl

(2) In particular with additional conditions div f = 0, rot g = 0 in the distribution sense, then

1f -9l ez < ClUFIL -+ llgll 2 - (7.29)

B, B, Bpl

Proof of Proposition 7.5. Here we show the case when n < p < oo since the other cases 1 < p < n are
already proved in Proposition 7.4. The second estimate is directly obtained from the first part by observing
that f, g are both vector-valued functions and satisfy div f = 0, rot ¢ = 0 in the sense of distribution. Then

div(FAg)=rotF.-g—F-(rotg),

it holds that f - g = (rot F') - g = div (F' A g) which represents the divergence form structure.
Hence we assume that there exists a function G such that g = D, G and f-g = D,(fG). Using (7.27), it
follows that

1791l ,-1+2 =D (Fg)]| vz < ClIFg]l 2
p,1

p 1 p,l
<C|IF = ||9H 55, S CIfIl -2z N9l 55,
In particular (7.28) and hence (7.29) holds. |

Proposition 7.6 (The space-time bilinear estimate). Let 1 < p < oo and 1 < p < 2n — 1. Then for

—_~—

FEB1/2 1/(2P)(R B—H‘"/P(Rn 1))ﬂLP(R+,B(n 1)/1’(Rn 1)) andGEBUQ 1/(217)(R+.B;}+”/P(Rn 1))ﬂ
L (R ;B V/P(R71)), it holds that

PO
B P(]R+; P(Rn—l))
<CHF ) ol ,—— ..
Le(Ry Bp1 (R“ 1) B2 PP(RyB,, P (R"1))
+o(lFel - +[[F@ll o GO e
Bpl P(Ry3B,, P (Rn-1)) Lr(Ry ;B ' )) L (R+7 p,1 (R ))
F)||  —— ) o )
<|| HBEI%(RJN ;1+ (R—=1Y) H HLP(RJr,B p (Rn—1))
Gt i +lGw ).
(H ()HBiT%(R*_B 1+P(Rn 1)) H H R+VBP? (Rnfl))

where the norms are defined in (5.21).

We should like to note that when p = 1, the following spaces are norm-equivalent;

L1 1 e L1 e S _ +" e
Bi (R B,, " (R"Y) ~ B}, R Ry B,, T (R™Y) ~ F121 R (R+; B, " (R™H), (7.30)
n—1 n—
L'(Ry;B, 7 (R*) = L (R+,Bp’i (R"™). (7.31)
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Proof of Proposition 7.6 . We employ the doubled Bony paraproduct decomposition in both space and
time direction:

FG <3721 I N7 ol apk H % (FG)|| o
H || p1 ”(]RJr BPT—W(R" 1) J;Z k>22J : e ||wk (T)¢J (;k,)( )HLP(]R" 1) LY (Ry)
“!‘]%2 —1+3 Jk<z2]2(2 2p)kHH¢k é‘) QS] ( G)HLP(R"*I) LO(Ry)
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The estimate for the second term of the right hand side of (7.32) is straightforward:
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For the estimate of I in (7.32), we employ the double Bony decomposition in both time and space regions:
Set P, (*) F=% i Om (*) F and Qq (*) F=3% e (*) F. Then the Bony decomposition in space
z’ = z’ t S = t

direction gives
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where h; can be decomposed by the Bony decomposition in time direction such as the following:
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The estimates for the terms h}, h? are straightforward. For instance,
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Here we need 1 < p. While the diagonal term h$ can be estimated as follows.
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There is no restriction except 1 < p.
For the second term ho, we decompose by the time direction and typical term can be estimated as follows:
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where we require the restriction 1 < p again. The other terms h% can be treated in similar manner. Space
off diagonal and time diagonal term term h3 can be dominated by
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We estimate for the third term hg of right hand side in (7.33). It can be dominated by setting 1/p =
1/r+2/p—1withr=p,
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where we used p < 2n — 1. The second term can be estimated by a very similar way:
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This case we again need the restriction 1 < p < 2n — 1.
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where we used the condition p < 2n — 1. The other terms hi and h3 can be estimated in a similar way.
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