
HIGH-DIMENSIONAL ELLIPSOIDS
CONVERGE TO GAUSSIAN SPACES

DAISUKE KAZUKAWA AND TAKASHI SHIOYA

Abstract. We prove the convergence of (solid) ellipsoids to a Gaussian space
in Gromov’s concentration/weak topology as the dimension diverges to infinity.
This gives the first discovered example of an irreducible nontrivial convergent
sequence in the concentration topology, where ‘irreducible nontrivial’ roughly
means to be not constructed from Lévy families nor box convergent sequences.

1. Introduction

The study of convergence of metric measure spaces is one of central topics in
geometric analysis on metric measure spaces. We refer to [10, 11, 16, 25, 26] for
some celebrated works on it. This study originates in that of Gromov-Hausdorff
convergence/collapsing of Riemannian manifolds, which has widely been devel-
oped and applied to solutions to many significant problems in geometry and
topology. As the starting point of geometric analytic study in the collapsing
theory, Fukaya [6] introduced the concept of measured Gromov-Hausdorff con-
vergence to study the Laplacian of collapsing Riemannian manifolds. There, he
discovered that not only the metric structure but also the measure structure plays
an important role in the collapsing phenomena. After that, Cheeger-Colding [3–5]
established the theory of Ricci limit spaces, which is nowadays widely applied in
the Riemannian and Kähler geometry.

Meanwhile, Gromov [11, Chapter 31
2+

] (see also [27]) has developed a new con-
vergence theory of metric measure spaces based on the concentration of measure
phenomenon due to Lévy and V. Milman [14,15, 17]. In Gromov’s theory, he in-
troduced two fundamental concepts of distance functions, the observable distance
function dconc and the box distance function □, on the set, say X , of isomor-
phism classes of metric measure spaces. The box distance function is nearly a
metrization of measured Gromov-Hausdorff convergence (precisely the isomor-
phism classes are little different), while the observable distance function induces
a very characteristic topology, called the concentration topology, which is effective
in capturing the high-dimensional aspects of spaces. The concentration topology
is weaker than the box topology and in particular, a measured Gromov-Hausdorff
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convergence implies a convergence in the concentration topology. He also intro-
duced a natural compactification, say Π, of X , with respect to the concentration
topology, where the topology on Π is called the weak topology. The concentration
topology is useful to investigate the dimension-free properties (see [7]).

The study of the concentration and weak topologies has been growing rapidly
in recent years (see [7, 12, 13, 18, 20–24, 27–29]). However, it is not easy to prove
the convergence of a given sequence of metric measure spaces, and there are only
a few nontrivial examples of convergent sequences of metric measure spaces in
the concentration and weak topologies, where ‘nontrivial’ means neither to be
a Lévy family (i.e., convergent to a one-point space), to infinitely dissipate (see
Subsection 2.6 for dissipation), nor to be box convergent. One way to construct a
nontrivial convergent sequence is to take the disjoint union or the product (more
generally the fibration) of trivial sequences and to perform little surgery on it
(and also to repeat these procedures). We call a sequence obtained in this way a
reducible sequence. An irreducible sequence is a sequence that is not reducible.
In this paper, any sequence of (solid) ellipsoids has a subsequence converging to
an infinite-dimensional Gaussian space in the concentration/weak topology. This
provides a new family of nontrivial weak convergent sequences and especially
contains the first discovered example of an irreducible nontrivial sequence that is
convergent in the concentration topology.

Let us state our main results precisely. A solid ellipsoid and an ellipsoid are
respectively written as

En{αi} := {x ∈ Rn |
n∑
i=1

x2i
α2
i

≤ 1 }, Sn−1
{αi} := {x ∈ Rn |

n∑
i=1

x2i
α2
i

= 1 },

where {αi}, i = 1, 2, . . . , n, is a finite sequence of positive real numbers. See
Section 3 for the definition of their metric-measure structures. Denote by En

{αi}

either En{αi} or S
n−1
{αi}. Let us give a sequence {En(j)

{αij}i}j of (solid) ellipsoids, where
{αij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , is a double sequence of positive real num-
bers. Our problem is to determine under what condition it will converge in the
concentration/weak topology and to describe its limit.

In the case where the dimension n(j) is bounded for all j, the problem is easy to
solve. In fact, in this case the sequence has a Hausdorff-convergent subsequence
in a Euclidean space, which is also box convergent, if αij is bounded for all i and
j; the sequence has an infinitely dissipating subsequence if αij is unbounded.

We set aij := αij/
√
n(j)− 1. If n(j) and supi aij both diverge to infinity

as j → ∞, then it is also easy to prove that {En(j)
{αij}} infinitely dissipates (see

Proposition 3.3).
For the reasons we have mentioned above, we assume

(A0) n(j) diverges to infinity as j → ∞ and aij is bounded for all i and j.

We further consider the following three conditions.

(A1) n(j) is monotone nondecreasing in j.
(A2) aij is monotone nonincreasing in i for each j.
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(A3) aij converges to a real number, say ai, as j → ∞ for each i.

Note that (A2) and (A3) together imply that ai is monotone nonincreasing in i.
Any sequence of (solid) ellipsoids with (A0) contains a subsequence {Ej} such

that each Ej is isomorphic to E
n(j)

{
√
n(j)−1 aij}i

for some sequence {aij} satisfying

(A0)–(A3). In fact, we have a subsequence for which the dimensions satisfy (A1).
Then, exchanging the axes of coordinate provides (A2). A diagonal argument
proves to have a subsequence satisfying (A3). (To be more precise, there is
a subsequence {a1k1j} of {a1j} convergent to a real number a1. Then, taking
subsequences iteratively, we see that aikij converges to a real number ai as j → ∞
for each i, where {ai+1,ki+1,j

}j is a subsequence of {aikij}j. Replacing {aij} to
{aikjj} yields (A3).) Thus, our problem becomes to investigate the convergence

of {En(j)

{
√
n(j)−1 aij}i

}j satisfying (A0)–(A3).

One of our main theorems is stated as follows. Refer to Subsection 2.8 for the
definition of the Gaussian space Γ∞

{a2i }
.

Theorem 1.1. Let {aij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , be a sequence of positive

real numbers satisfying (A0)–(A3). Then, E
n(j)

{
√
n(j)−1 aij}i

converges weakly to the

infinite-dimensional Gaussian space Γ∞
{a2i }

as j → ∞. This convergence becomes

a convergence in the concentration topology if and only if {ai} is an l2-sequence.
Moreover, this convergence becomes an asymptotic concentration (i.e., a dconc-
Cauchy sequence) if and only if {ai} converges to zero.

Gromov presents as an exercise in [11, 31
2
.57] some special cases of this theorem.

For the case of round spheres and projective spaces, the theorem is formerly
obtained in [27, 28], for which the convergence is only weak. Also, the weak
convergence of Stiefel and flag manifolds are studied in [29].

We emphasize that convergence in the weak/concentration topology is com-
pletely different from weak convergence of measures. For instance, the Prokhorov
distance between the normalized volume measure on Sn−1(

√
n− 1) and the n-

dimensional standard Gaussian measure on Rn is bounded away from zero [29],
though they both converge to the infinite-dimensional standard Gaussian space
in Gromov’s weak topology.

As for the characterization of weak convergence of measures, we prove in Propo-
sition 4.2 that, if {aij}i l2-converges to an l2-sequence {ai} as j → ∞, then the

measure of E
n(j)

{
√
n(j)−1 aij}i

converges weakly to the Gaussian measure γ∞{a2i }
on a

Hilbert space, and consequently, the weak convergence in Theorem 1.1 becomes
the box convergence. Conversely, the l2-convergence of {aij}i is also a neces-
sary condition for the box convergence of the (solid) ellipsoids as is seen in the
following theorem.

Theorem 1.2. Let {aij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , be a sequence of pos-
itive real numbers satisfying (A0)–(A3). Then, the convergence in Theorem 1.1
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becomes a box convergence if and only if we have

∞∑
i=1

a2i < +∞ and lim
j→∞

n(j)∑
i=1

(aij − ai)
2 = 0.

Theorems 1.1 and 1.2 together provide an example of irreducible nontrivial
convergent sequence of metric measure spaces in the concentration topology, i.e.,
the sequence of the (solid) ellipsoids with an l2-sequence {ai} and with a non-l2-
convergent {aij}i as j → ∞.

The proof of the ‘only if’ part of Theorem 1.2 is highly nontrivial. If {aij}i does
not l2-converge, then it is easy to see that the measure of the (solid) ellipsoid in
the sequence does not converge weakly in the Hilbert space. However, this is not
enough to obtain the box non-convergence, because we consider the isomorphism
classes of (solid) ellipsoids for the box convergence. For the complete proof, we
need a delicate discussion using Theorem 1.1.

Let us briefly mention the outline of the proof of Theorem 1.1. For simplicity,

we set En := E
n(j)

{
√
n(j)−1 aij}i

and Γ := Γ∞
{a2i }

. For the weak convergence, it is

sufficient to show that

(1.1) the limit of En dominates Γ,
(1.2) Γ dominates the limit of En,

where, for two metric measure spaces X and Y , the space X dominates Y if there
is a 1-Lipschitz map from X to Y preserving their measures.

(1.1) easily follows from the Maxwell-Boltzmann distribution law (Proposition
3.2).

(1.2) is much harder to prove. Let us first consider the simple case where En is
the ball Bn(

√
n− 1) of radius

√
n− 1 and where Γ = Γ∞

{12}. We see that, for any

fixed 0 < θ < 1, the n-dimensional Gaussian measure γn{12} and the normalized

volume measure of Bn(θ
√
n− 1) both are very small for large n. Ignoring this

small part Bn(θ
√
n− 1), we find a measure-preserving isotropic map, say φ,

from Γn{12} \ Bn(θ
√
n− 1) to the annulus Bn(

√
n− 1) \ Bn(θ

√
n− 1), where we

normalize their measures to be probability. Estimating the Lipschitz constant of
φ, we obtain (1.2) with error. This error is estimated and we eventually obtain
the required weak convergence.

We next try to apply this discussion to solid ellipsoids. We consider the dis-
tortion of the above isotropic map φ by a linear transformation determined by
{aij}. However, the Lipschitz constant of the distorted isotropic map can be
arbitrarily large depending on {aij}. To overcome this problem, we settle the
assumptions (A0)–(A3), from which the discussion boils down to the special case
where ai = aN for all i ≥ N and aij = ai ≥ aN for all i, j and for a (large) number
N . In fact, by (A0)–(A3), the solid ellipsoid En for large n and the Gaussian
space Γ are both close to those in the above special case. In this special case, the
Gaussian measure γn{a2i }

and the normalized volume measure of En of the domain

{x ∈ Rn \ {o} | |xi|
‖x‖

< ε for any i = 1, . . . , N − 1 }
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are both almost full for large n and for any fixed ε > 0. On this domain, we
are able to estimate the Lipschitz constant of the distorted isotropic map. With
some careful error estimates, letting ε → 0+ and θ → 1−, we prove the weak
convergence of En to Γ.

Acknowledgment. The authors would like to thank an anonymous referee for care-
fully reading the manuscript and for his/her valuable comments. We would also
like to thank Professor Vladimir Pestov for his comment.

2. Preliminaries

In this section, we survey the definitions and the facts needed in this paper.
We refer to [11, Chapter 31

2+
] and [27] for more details.

2.1. Distance between measures.

Definition 2.1 (Total variation distance). The total variation distance dTV(µ, ν)
of two Borel probability measures µ and ν on a topological space X is defined by

dTV(µ, ν) := sup
A

|µ(A)− ν(A) | = sup
A

(µ(A)− ν(A)),

where A runs over all Borel subsets of X.

If µ and ν are both absolutely continuous with respect to a Borel measure ω
on X, then

(2.1) dTV(µ, ν) =
1

2

∫
X

∣∣∣∣dµdω − dν

dω

∣∣∣∣ dω
(see [30, Lemma 2.1 in Section 2.4]), where dµ

dω
is the Radon-Nikodym derivative

of µ with respect to ω.

Definition 2.2 (Prokhorov distance). The Prokhorov distance dP(µ, ν) between
two Borel probability measures µ and ν on a metric space (X, dX) is defined to
be the infimum of ε ≥ 0 satisfying

µ(Bε(A)) ≥ ν(A)− ε

for any Borel subset A ⊂ X, where Bε(A) := { x ∈ X | dX(x,A) ≤ ε }.
The Prokhorov metric is a metrization of weak convergence of Borel probability

measures on X provided that X is a separable metric space. It follows from the
definitions that dP ≤ dTV.

Definition 2.3 (Ky Fan distance). Let (X,µ) be a measure space and Y a metric
space. For two µ-measurable maps f, g : X → Y , we define the Ky Fan distance
dKF(f, g) between f and g to be the infimum of ε ≥ 0 satisfying

µ({ x ∈ X | dY (f(x), g(x)) > ε }) ≤ ε.

dKF is a pseudo-metric on the set of µ-measurable maps from X to Y . It holds
that dKF(f, g) = 0 if and only if f = g µ-a.e. We have dP(f∗µ, g∗µ) ≤ dKF(f, g)
(see [27, Lemma 1.26]), where f∗µ is the push-forward of µ by f .

Let p be a real number with p ≥ 1, and (X, dX) a complete separable metric
space.
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Definition 2.4. The p-Wasserstein distance between two Borel probability mea-
sures µ and ν on X is defined to be

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
X×X

dX(x, x
′)p dπ(x, x′)

) 1
p

(≤ +∞),

where Π(µ, ν) is the set of couplings between µ and ν, i.e., the set of Borel
probability measures π onX×X such that π(A×X) = µ(A) and π(X×A) = ν(A)
for any Borel subset A ⊂ X.

Lemma 2.5 (see [31, Theorem 7.12]). Let µ and µn, n = 1, 2, . . . , be Borel
probability measures on X. Then the following are equivalent to each other.

(1) Wp(µn, µ) → 0 as n→ ∞.
(2) µn converges weakly to µ as n→ ∞ and the p-th moment of µn converges

to that of µ:

lim
n→∞

∫
X

dX(x0, x)
p dµn(x) =

∫
X

dX(x0, x)
p dµ(x)

for some point x0 ∈ X.

It is known that dP
2 ≤ W1 (see [9, Theorem 2 in Section 3]). By Hölder’s

inequality, we have Wp ≤ Wq for any 1 ≤ p ≤ q.

2.2. mm-Isomorphism and Lipschitz order.

Definition 2.6 (mm-Space). Let (X, dX) be a complete separable metric space
and µX a Borel probability measure on X. We call the triple (X, dX , µX) an
mm-space. We sometimes say that X is an mm-space, in which case the metric
and the Borel measure of X are respectively indicated by dX and µX .

Definition 2.7 (mm-Isomorphism). Two mm-spaces X and Y are said to be
mm-isomorphic to each other if there exists an isometry f : suppµX → suppµY
with f∗µX = µY , where suppµX is the support of µX . Such an isometry f is
called an mm-isomorphism. Denote by X the set of mm-isomorphism classes of
mm-spaces.

Note that X is mm-isomorphic to (suppµX , dX , µX).
We assume that an mm-space X satisfies

X = suppµX

unless otherwise stated.

Definition 2.8 (Lipschitz order). Let X and Y be two mm-spaces. We say that
X (Lipschitz ) dominates Y and write Y ≺ X if there exists a 1-Lipschitz map
f : X → Y satisfying f∗µX = µY . We call the relation ≺ on X the Lipschitz
order.

The Lipschitz order ≺ is a partial order relation on X (see [27, Proposition
2.11]).
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2.3. Observable diameter. The observable diameter is one of the most funda-
mental invariants of an mm-space up to mm-isomorphism.

Definition 2.9 (Partial and observable diameter). Let X be an mm-space and
let κ > 0. We define the κ-partial diameter diam(X; 1 − κ) = diam(µX ; 1 − κ)
of X to be the infimum of the diameter of A, where A ⊂ X runs over all Borel
subsets with µX(A) ≥ 1−κ. Denote by Lip1(X) the set of 1-Lipschitz continuous
real-valued functions on X. We define the (κ-)observable diameter of X by

ObsDiam(X;−κ) := sup
f∈Lip1(X)

diam(f∗µX ; 1− κ),

ObsDiam(X) := inf
κ>0

max{ObsDiam(X;−κ), κ}.

It is easy to see that the (κ-)observable diameter is monotone nondecreasing
with respect to the Lipschitz order relation.

2.4. Box distance and observable distance.

Definition 2.10 (Parameter). Let I := [ 0, 1 ) and let X be an mm-space. A
map φ : I → X is called a parameter of X if φ is a Borel measurable map with
φ∗L1 = µX , where L1 denotes the one-dimensional Lebesgue measure on I.

It is known that any mm-space has a parameter (see [27, Lemma 4.2]).

Definition 2.11 (Box distance). We define the box distance □(X,Y ) between
two mm-spaces X and Y to be the infimum of ε ≥ 0 satisfying that there exist
parameters φ : I → X, ψ : I → Y , and a Borel subset Ĩ ⊂ I such that

L1(Ĩ) ≥ 1− ε and |φ∗dX(s, t)− ψ∗dY (s, t) | ≤ ε

for any s, t ∈ Ĩ, where φ∗dX(s, t) := dX(φ(s), φ(t)) for s, t ∈ I.

The box metric □ is a complete separable metric on X (see [27, Theorem 4.14
and Proposition 4.25]).

Definition 2.12 (ε-mm-isomorphism). Let ε be a nonnegative real number. A
map f : X → Y between two mm-spaces X and Y is called an ε-mm-isomorphism
if there exists a Borel subset X̃ ⊂ X such that

(i) µX(X̃) ≥ 1− ε,
(ii) | dX(x, x′)− dY (f(x), f(x

′)) | ≤ ε for any x, x′ ∈ X̃,
(iii) dP(f∗µX , µY ) ≤ ε.

We call the set X̃ a nonexceptional domain of f .

Lemma 2.13 (see [27, Lemma 4.22]). Let X and Y be two mm-spaces and let
ε ≥ 0.

(1) If there exists an ε-mm-isomorphism from X to Y , then □(X,Y ) ≤ 3ε.
(2) If □(X,Y ) ≤ ε, then there exists a 3ε-mm-isomorphism from X to Y .

Definition 2.14 (Observable distance). For any parameter φ of X, we set

φ∗Lip1(X) := { f ◦ φ | f ∈ Lip1(X) }.
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Define the observable distance dconc(X,Y ) between two mm-spaces X and Y by

dconc(X,Y ) := inf
φ,ψ

dH(φ
∗Lip1(X), ψ∗Lip1(Y )),

where φ : I → X and ψ : I → Y run over all parameters of X and Y , respectively,
and where dH is the Hausdorff metric with respect to the Ky Fan metric for the
one-dimensional Lebesgue measure on I.

dconc is a metric on X (see [27, Theorem 5.13]) and

dconc ≤ □
holds (see [27, Proposition 5.5]).

2.5. Pyramid.

Definition 2.15 (Pyramid). A subset P ⊂ X is called a pyramid if it satisfies
the following (i)–(iii).

(i) If X ∈ P and if Y ≺ X, then Y ∈ P .
(ii) For any two mm-spaces X,X ′ ∈ P , there exists an mm-space Y ∈ P such

that X ≺ Y and X ′ ≺ Y .
(iii) P is nonempty and box closed.

We denote the set of pyramids by Π. Note that Gromov’s definition of a pyramid
is by (i) and (ii) only. (iii) is added in [27] for the Hausdorff property of Π.

For an mm-space X we define

PX := { X ′ ∈ X | X ′ ≺ X },
which is a pyramid (where the closedness of PX follows from [27, Theorem 4.35]).
We call PX the pyramid associated with X.

We observe that X ≺ Y if and only if PX ⊂ PY . It is trivial that X is a
pyramid.

We have a metric, denoted by ρ, on Π, for which we omit to state the definition
(see [27, Definition 6.21] for the detail). We say that a sequence of pyramids
converges weakly to a pyramid if it converges with respect to ρ. We have the
following.

(1) The map ι : X 3 X 7→ PX ∈ Π is a 1-Lipschitz topological embedding
map with respect to dconc and ρ (see [27, Theorem 6.23]).

(2) Π is ρ-compact (see [27, Theorem 6.22]).
(3) ι(X ) is ρ-dense in Π (see [27, Lemma 7.14]).

In particular, (Π, ρ) is a compactification of (X , dconc). We say that a sequence
of mm-spaces converges weakly to a pyramid if the associated pyramid converges
weakly. Note that we identify X with PX in Section 1.

For an mm-space X, a pyramid P , and t > 0, we define

tX := (X, t dX , µX) and tP := { tX | X ∈ P }.
We see P tX = tPX. It is easy to see that tP is continuous in t with respect to
ρ.

From [27, Theorem 6.25, Propositions 5.5 and 4.12] we have the following.
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Proposition 2.16. For any two Borel probability measures µ and ν on a complete
separable metric space X, we have

ρ(P(X,µ),P(X, ν)) ≤ dconc((X,µ), (X, ν)) ≤ □((X,µ), (X, ν))

≤ 2 dP(µ, ν) ≤ 2 dTV(µ, ν).

2.6. Dissipation. Dissipation is the opposite notion to concentration. We omit
to state the definition of the infinite dissipation (see [27, Definition 8.1] for the
definition). Instead, we state the following proposition. Let {Xn}, n = 1, 2, . . . ,
be a sequence of mm-spaces.

Proposition 2.17 (see [27, Proposition 8.5(2)]). The sequence {Xn} infinitely
dissipates if and only if PXn converges weakly to X as n→ ∞.

An easy discussion using [22, Lemma 6.6] leads to the following.

Proposition 2.18. The following are equivalent to each other.

(1) The κ-observable diameter ObsDiam(Xn;−κ) diverges to infinity as n→
∞ for any κ ∈ ( 0, 1 ).

(2) {Xn} infinitely dissipates.

2.7. Asymptotic concentration. We say that a sequence of mm-spaces asymp-
totically concentrates if it is a dconc-Cauchy sequence. It is known that any asymp-
totically concentrating sequence converges weakly to a pyramid (see [27, Proposi-
tion 7.2]). A pyramid P is said to be concentrated if {(Lip1(X)/ ∼, dKF)}X∈P is
precompact with respect to the Gromov-Hausdorff distance, where f ∼ g holds if
f − g is constant. The following is derived from [27, Corollary 7.24 and Theorem
7.25].

Theorem 2.19. Let P be a pyramid. The following are equivalent to each other.

(1) P is concentrated.
(2) There exists a sequence of mm-spaces asymptotically concentrating to P.
(3) If a sequence of mm-spaces converges weakly to P, then it asymptotically

concentrates.

2.8. Gaussian space. Let {ai}, i = 1, 2, . . . , n, be a finite sequence of nonnega-
tive real numbers. The product

γn{a2i }
:=

n⊗
i=1

γ1a2i

of the one-dimensional centered Gaussian measure γ1
a2i

of variance a2i is an n-

dimensional centered Gaussian measure on Rn, where we agree that γ102 is the
Dirac measure at 0, and γn{a2i }

is possibly degenerate. We call the mm-space

Γn{a2i }
:= (Rn, ‖ · ‖, γn{a2i }) the n-dimensional Gaussian space with variance {a2i }.

Note that, for any Gaussian measure γ on Rn, the mm-space (Rn, ‖ · ‖, γ) is
mm-isomorphic to Γn{a2i }

, where a2i are the eigenvalues of the covariance matrix of
γ.
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We now take an infinite sequence {ai}, i = 1, 2, . . . , of nonnegative real num-
bers. For 1 ≤ k ≤ n, we denote by πnk : Rn → Rk the natural projection, i.e.,

πnk (x1, x2, . . . , xn) := (x1, x2, . . . , xk), (x1, x2, . . . , xn) ∈ Rn.

Since the projection πnn−1 : Γ
n
{a2i }

→ Γn−1
{a2i }

is 1-Lipschitz continuous and measure-

preserving for any n ≥ 2, the Gaussian space Γn{a2i }
is monotone nondecreasing in

n with respect to the Lipschitz order, so that, as n→ ∞, the associated pyramid
PΓn{a2i }

converges weakly to the □-closure of
⋃∞
n=1PΓn{a2i }

, denoted by PΓ∞
{a2i }

. We

call PΓ∞
{a2i }

the virtual Gaussian space with variance {a2i }. We remark that the

infinite product measure

γ∞{a2i }
:=

∞⊗
i=1

γ1a2i

is a Borel probability measure on R∞ with respect to the product topology, but
is not necessarily Borel with respect to the l2-norm. Only in the case where

(2.2)
∞∑
i=1

a2i < +∞,

the measure γ∞{a2i }
is a Borel measure with respect to the l2-norm ‖ · ‖ which is

supported in the separable Hilbert space H := { x ∈ R∞ | ‖x‖ < +∞ } (see
[1, §2.3]), and consequently, Γ∞

{a2i }
= (H, ‖ · ‖, γ∞{a2i }) is an mm-space. In the case

of (2.2), the variance of γ∞{a2i }
satisfies∫

H

‖x‖2 dγ∞{a2i }(x) =
∞∑
i=1

a2i .

3. Weak convergence of ellipsoids

In this section we prove Theorem 1.1. We also prove the convergence of Gauss-
ian spaces as a corollary to the theorem.

Let {αi}, i = 1, 2, . . . , n, be a sequence of positive real numbers. The n-
dimensional solid ellipsoid En and the (n−1)-dimensional ellipsoid Sn−1 (defined
in Section 1) are respectively obtained as the image of the closed unit ball Bn(1)
and the unit sphere Sn−1(1) in Rn by the linear isomorphism Ln{αi} : Rn → Rn

defined by

Ln{αi}(x) := (α1x1, . . . , αnxn), x = (x1, . . . , xn) ∈ Rn.

We assume that the n-dimensional solid ellipsoid En{αi} is equipped with the re-
striction of the Euclidean distance function and with the normalized Lebesgue

measure ϵn{αi} := L̃n|En
{αi}

, where µ̃ := µ(X)−1µ is the normalization of a finite

measure µ on a space X and Ln the n-dimensional Lebesgue measure on Rn. The
(n−1)-dimensional ellipsoid Sn−1

{αi} is assumed to be equipped with the restriction of

the Euclidean distance function and with the push-forward σn−1
{αi} := (Ln{αi})∗σ

n−1

of the normalized volume measure σn−1 on the unit sphere Sn−1(1) in Rn.
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Throughout this paper, let (En
{αi}, e

n
{αi}) be either

(En{αi}, ϵ
n
{αi}) or (Sn−1

{αi}, σ
n−1
{αi})

for any n ≥ 2 and {αi}. The measure en{αi} is sometimes considered as a Borel
measure on Rn, supported on En

{αi}.

Lemma 3.1. Let {αi} and {βi}, i = 1, 2, . . . , n, be two sequences of positive real
numbers. If αi ≤ βi for all i = 1, 2, . . . , n, then En

{αi} is dominated by En
{βi}.

Proof. The map Ln{αi/βi} : En
{βi} → En

{αi} is 1-Lipschitz continuous and preserves
their measures. □
Proposition 3.2 (Maxwell-Boltzmann distribution law). Let k be a positive in-
teger and let {aij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , be a sequence of positive real
numbers such that, as j → ∞, n(j) is divergent to infinity and aij converges to a

nonnegative real number ai for each i with 1 ≤ i ≤ k. Then, (π
n(j)
k )∗e

n

{
√
n(j)−1 aij}i

converges weakly to γk{a2i }
as j → ∞, where πnk is defined in Subsection 2.8.

Proof. In the following we write n(j) as n. The ordinary Maxwell-Boltzmann
distribution law (see [27, Proposition 2.1]) states that (πnk )∗σ

n−1
{
√
n−1} converges

weakly to γk{12} as j → ∞. In the same way of proof, we see that (πnk )∗ϵ
n
{
√
n−1}

converges weakly to γk{12} as j → ∞, namely

(3.1) (πnk )∗e
n
{
√
n−1} → γk{12} weakly as j → ∞.

Since

(Ln{aij})
−1((πnk )

−1(A)) = (Ln{aij})
−1(A× Rn−k)

= (Lk{aij})
−1(A)× Rn−k = (πnk )

−1((Lk{aij})
−1(A))

for any Borel set A ⊂ Rk, we have

(3.2) (πnk )∗e
n
{
√
n−1 aij} = (πnk )∗(L

n
{aij})∗e

n
{
√
n−1} = (Lk{aij})∗(π

n
k )∗e

n
{
√
n−1}.

Let f : Rk → R be any continuous function with compact support. By the
uniform continuity of f , we observe that f ◦Lk{aij} converges uniformly to f ◦Lk{ai}
as j → ∞ and hence, by (3.1),∫

Rk

f d(Lk{aij})∗(π
n
k )∗e

n
{
√
n−1} =

∫
Rk

f ◦ Lk{aij} d(π
n
k )∗e

n
{
√
n−1}

j→∞−→
∫
Rk

f ◦ Lk{ai} dγ
k
{12} =

∫
Rk

f d(Lk{ai})∗γ
k
{12},

which implies that (3.2) converges weakly to (Lk{ai})∗γ
k
{12} = γk{a2i }

. This completes

the proof. □
Proposition 3.3. Let {aij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , be a sequence of posi-
tive real numbers, where {n(j)}, j = 1, 2, . . . , is a sequence of positive integers di-

vergent to infinity. If supi aij diverges to infinity as j → ∞, then {En(j)

{
√
n(j)−1 aij}i

}
infinitely dissipates.
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Proof. Assume that supi aij diverges to infinity as j → ∞. Exchanging the coor-
dinates, we assume that a1j diverges to infinity as j → ∞. We take any positive
real number a and fix it. Let âij := min{aij, a}. Note that â1j = a for all

sufficiently large j. By Lemma 3.1, the 1-Lipschitz continuity of π
n(j)
1 , and the

Maxwell-Boltzmann distribution law (Proposition 3.2), we have

lim inf
j→∞

ObsDiam(E
n(j)

{
√
n(j)−1 aij}i

;−κ)

≥ lim inf
j→∞

ObsDiam(E
n(j)

{
√
n(j)−1 âij}i

;−κ)

≥ lim
j→∞

diam((π
n(j)
1 )∗e

n(j)

{
√
n(j)−1 âij}i

; 1− κ)

= diam(γ1a2 ; 1− κ),

which diverges to infinity as a→ ∞. Proposition 2.18 leads us to the dissipation

property for {En(j)

{
√
n(j)−1 aij}i

}. □

Let {ai}, i = 1, 2, . . . , n, be a sequence of positive real numbers and let L :=
Ln{ai}. We remark that

ϵn{
√
n−1 ai} = L∗ϵ

n√
n−1, σn−1

{
√
n−1 ai}

= L∗σ
n√
n−1, and γn{a2i }

= L∗γ
n
{12},

where ϵn√
n−1

:= ϵn{
√
n−1} and σn√

n−1
:= σn{

√
n−1}. Let us construct a transport map

from γn{a2i }
to ϵn{

√
n−1 ai}

. For r ≥ 0 we determine a real number R = R(r) in such

a way that 0 ≤ R ≤
√
n− 1 and γn{12}(Br(o)) = ϵn√

n−1
(BR(o)). It holds that

R = (n− 1)
1
2

(
1

In−1

∫ r

0

tn−1e−
t2

2 dt

) 1
n

, Im :=

∫ ∞

0

tme−
t2

2 dt.

Note that R is strictly monotone increasing in r. Define an isotropic map φ̄ :
Rn → En√

n−1
by

φ̄(x) :=
R(‖x‖)
‖x‖

x, x ∈ Rn.

We remark that

(3.3) φ̄∗γ
n
{12} = ϵn√n−1.

Let r := r(x) := ‖L−1(x)‖. We define

φE := L ◦ φ̄ ◦ L−1 : Rn → En{√n−1 ai}.

The map φE is a transport map from γn{a2i }
to ϵn{

√
n−1 ai}

, i.e.,

(3.4) φE
∗γ

n
{a2i }

= ϵn{
√
n−1 ai}.

It holds that φE(x) = R
r
x if x 6= o. We denote by φS : Rn \ {o} → Sn−1

{
√
n−1 ai}

the

central projection with center o, i.e.,

φS(x) :=

√
n− 1

r
x, x ∈ Rn \ {o},
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which is a transport map from γn{a2i }
to σn−1

{
√
n−1 ai}

, i.e.,

(3.5) φS
∗ γ

n
{a2i }

= σn−1
{
√
n−1 ai}

.

For an integer N with 1 ≤ N ≤ n and for ε > 0, we define

Dn
N,ε := {x ∈ Rn \ {o} | |xj|

‖x‖
< ε for any j = 1, . . . , N − 1 }.

For 0 < θ < 1, let

F n
θ := {x ∈ Rn | ‖L−1(x)‖ ≥ θ

√
n }.

Note that

(3.6) L−1(F n
θ ) = {x ∈ Rn | ‖x‖ ≥ θ

√
n }.

Lemma 3.4. We assume that

(i) ai ≥ a for any i = 1, 2, . . . , n,
(ii) ai = a for any i with N ≤ i ≤ n and for a positive integer N with N ≤ n.

Then, there exists a universal positive real number C such that, for any two real
numbers θ and ε with 0 < θ < 1 and 0 < ε ≤ 1/N , the operator norms of the
differentials of φE and φS satisfy

‖dφE
x‖ ≤

√
1 + CNε

θ
and ‖dφS

x‖ ≤
√
1 + CNε

θ

for any x ∈ Dn
N,ε ∩ F n

θ .

Proof. Let x ∈ Dn
N,ε ∩ F n

θ be any point. We first estimate ‖dφE
x‖. Take any unit

vector v ∈ Rn. We see that

‖dφE
x(v)‖2 =

n∑
j=1

(
∂

∂r

(
R

r

)
∂r

∂xj
〈x, v〉+ R

r
vj

)2

=
1

r2

(
∂

∂r

(
R

r

))2

〈x, v〉2
n∑
j=1

x2j
a4j

+ 2
R

r2
∂

∂r

(
R

r

)
〈x, v〉

n∑
j=1

vjxj
a2j

+
R2

r2
.

It follows from (i), (ii), and x ∈ Dn
N,ε that

a2r2

‖x‖2
= 1 +

N−1∑
j=1

(
a2

a2j
− 1

)
x2j

‖x‖2
= 1 +O(Nε2)

and so

ar

‖x‖
= 1 +O(Nε2),

‖x‖
ar

= 1 +O(Nε2).
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We also have

a4

‖x‖2
n∑
j=1

x2j
a4j

= 1 +
N−1∑
j=1

(
a4

a4j
− 1

)
x2j
‖x‖2

= 1 +O(Nε2),

a2

‖x‖

n∑
j=1

vjxj
a2j

=
n∑
j=1

vjxj
‖x‖

+
N−1∑
j=1

(
a2

a2j
− 1

)
vjxj
‖x‖

=
〈x, v〉
‖x‖

+O(Nε).

By these formulas, setting t := 〈x, v〉/‖x‖ and g := r ∂
∂r

(
R
r

)
, we have

‖dφE
x(v)‖2 = t2g2(1 +O(Nε2)) +

2t2Rg

r
(1 +O(Nε2))(3.7)

+
2tRg

r
O(Nε) +

R2

r2
.

We are going to estimate g. Letting f(r) :=
∫ r
0
tn−1e−

t2

2 dt, we have

∂R

∂r
=

√
n− 1n−1I

− 1
n

n−1f(r)
1
n
−1rn−1e−

r2

2 ≤ n− 1
2f(r)−1rn−1e−

r2

2 ,

which together with f(r) ≥ e−
r2

2

∫ r
0
tn−1dt = rne−

r2

2 /n and r ≥ θ
√
n yields

0 ≤ ∂R

∂r
≤

√
n

r
≤ 1

θ
.

Since R ≤
√
n− 1 and r ≥ θ

√
n, we have 0 ≤ R/r < 1/θ. Therefore,

|g| =
∣∣∣∣∂R∂r − R

r

∣∣∣∣ ≤ 1

θ
.

Thus, (3.7) is reduced to

‖dφE
x(v)‖2 = t2g2 +

2t2Rg

r
+
R2

r2
+O(θ−2Nε)

= t2
(
∂R

∂r

)2

+ (1− t2)
R2

r2
+O(θ−2Nε) ≤ θ−2 +O(θ−2Nε).

This completes the required estimate of ‖dφE
x(v)‖.

If we replace R with
√
n− 1, then φE becomes φS and the above formulas are

all true also for φS . This completes the proof. □

We now give an infinite sequence {ai}, i = 1, 2, . . . , of positive real numbers
and a positive real number a. Consider the following two conditions.

(a1) ai ≥ a for any i.
(a2) ai = a for any i ≥ N and for a positive integer N .
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Lemma 3.5. If we assume (a2), then, for any real numbers 0 < θ < 1 and ε > 0,
we have

lim
n→∞

en{
√
n−1 ai}(D

n
N,ε) = 1,(1)

lim
n→∞

γn{a2i }
(Dn

N,ε ∩ F n
θ ) = 1,(2)

lim
n→∞

ϵn{
√
n−1 ai}(D

n
N,ε ∩ φE(F n

θ )) = 1.(3)

Proof. The injectivity of φE and (3.4) imply ϵn{
√
n−1 ai}

(φE(F n
θ )) = γn{a2i }

(F n
θ ).

Lemma [27, Lemma 7.41] tells us that γn{a2i }
(F n

θ ) = γn{12}(L
−1(F n

θ )) tends to 1

as n → ∞. Since ϵn√
n−1

, σn−1√
n−1

, and γn{12} are rotationally symmetric, and since

L−1(Dn
N,ε) is scale-invariant, we see that

ϵn√n−1(L
−1(Dn

N,ε)) = σn−1√
n−1

(L−1(Dn
N,ε)) = γn{12}(L

−1(Dn
N,ε)),

so that

ϵn{
√
n−1 ai}(D

n
N,ε) = σn−1

{
√
n−1 ai}

(Dn
N,ε) = γn{a2i }

(Dn
N,ε).

The Maxwell-Boltzmann distribution law (Proposition 3.2) leads us that σn−1
{
√
n−1 ai}

(Dn
N,ε)

converges to 1 as n→ ∞, where we note that (a2) implies (A3) and that (A0) is
satisfied clearly. This completes the proof. □

Lemma 3.6. Assume (a1) and (a2). If a subsequence of {PEn
{
√
n−1 ai}

}n con-

verges weakly to a pyramid P∞ as n→ ∞, then

P∞ ⊂ PΓ∞
{a2i }

.

Proof. Take any real number ε with 0 < ε < 1/N and fix it. Let θ := 1/
√
1 + CNε,

where C is the constant in Lemma 3.4. Note that θ satisfies 0 < θ < 1 and tends
to 1 as ε→ 0+.

We first prove the lemma for (En
{
√
n−1 ai}

, en{
√
n−1 ai}

) = (En{√n−1 ai}
, ϵn{

√
n−1 ai}

).

By Lemma 3.4, the map φE is θ−2-Lipschitz continuous on Dn
N,ε∩F n

θ . We remark

that φE is injective and satisfies (φE)−1(Dn
N,ε) = Dn

N,ε. For any Borel subset
A ⊂ Rn, we see from (3.4) that

φE
∗ (

˜γn{a2i }
|Dn

N,ε∩F
n
θ
)(A) =

γn{a2i }
(Dn

N,ε ∩ F n
θ ∩ (φE)−1(A))

γn{a2i }
(Dn

N,ε ∩ F n
θ )

=
γn{a2i }

((φE)−1(Dn
N,ε ∩ φE(F n

θ ) ∩ A))
γn{a2i }

((φE)−1(Dn
N,ε ∩ φE(F n

θ )))
=
ϵn{

√
n−1 ai}

(Dn
N,ε ∩ φE(F n

θ ) ∩ A)
ϵn{

√
n−1 ai}

(Dn
N,ε ∩ φE(F n

θ ))

= ˜ϵn{
√
n−1 ai}

|Dn
N,ε∩φE(Fn

θ )(A).

Thus, the θ2-scale change θ2Xn of the mm-space

Xn := (Rn, ‖ · ‖, ˜ϵn{
√
n−1 ai}

|Dn
N,ε∩φE(Fn

θ ))
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is dominated by Yn := (Rn, ‖ · ‖, ˜γn{a2i }
|Dn

N,ε∩F
n
θ
) and so θ2PXn = Pθ2Xn ⊂ PYn

for any n. Combining Lemma 3.5 with Proposition 2.16, we see that, as n→ ∞,

ρ(θ2PXn,PEn{√n−1 ai}) ≤ 2 dTV( ˜ϵn{
√
n−1 ai}

|Dn
N,ε∩φE(Fn

θ ), ϵ
n
{
√
n−1 ai}) → 0,

ρ(PYn,PΓn{a2i }
) ≤ 2 dTV( ˜γn{a2i }

|Dn
N,ε∩F

n
θ
, γn{a2i }

) → 0.

Therefore, θ2P∞ is contained in PΓ∞
{a2i }

. As ε → 0+, we have θ → 1 and

θ2P∞ → P∞. This completes the proof in the case where (En
{
√
n−1 ai}

, en{
√
n−1 ai}

) =

(En{√n−1 ai}
, ϵn{

√
n−1 ai}

).

We prove the lemma for (En
{
√
n−1 ai}

, en{
√
n−1 ai}

) = (Sn−1
{
√
n−1 ai}

, σn−1
{
√
n−1 ai}

). For

any Borel subset A ⊂ Sn−1
{
√
n−1 ai}

, we have

φS
∗ (

˜γn{a2i }
|Dn

N,ε∩F
n
θ
)(A) =

γn{a2i }
(Dn

N,ε ∩ F n
θ ∩ (φS)−1(A))

γn{a2i }
(Dn

N,ε ∩ F n
θ )

=
γn{12}(L

−1(Dn
N,ε) ∩ L−1(F n

θ ) ∩ L−1((φS)−1(A)))

γn{12}(L
−1(Dn

N,ε) ∩ L−1(F n
θ ))

.

Here, L−1(Dn
N,ε) is scale-invariant, i.e., a cone and L−1((φS)−1(A)) is a cone

generated by L−1(A). Thus, by (3.6) and the rotational symmetry of γn{12}, the

above is equal to

σn−1√
n−1

(L−1(Dn
N,ε) ∩ L−1(A))

σn−1√
n−1

(L−1(Dn
N,ε))

=
σn−1
{
√
n−1 ai}

(Dn
N,ε ∩ A)

σn−1
{
√
n−1 ai}

(Dn
N,ε)

= ˜σn−1
{
√
n−1 ai}

|Dn
N,ε

(A).

Since φS is θ−2-Lipschitz continuous on Dn
N,ε ∩ F n

θ , the θ
2-scale change θ2X ′

n of
the mm-space

X ′
n := (Rn, ‖ · ‖, ˜σn−1

{
√
n−1 ai}

|Dn
N,ε

)

is dominated by Yn := (Rn, ‖ · ‖, ˜γn{a2i }
|Dn

N,ε∩F
n
θ
). The rest of the proof is exactly

in the same way as before. This completes the proof. □
Lemma 3.7. If we assume (a2), then PEn

{
√
n−1 ai}

converges weakly to PΓ∞
{a2i }

as
n→ ∞.

Proof. Assume (a2) and suppose that PEn
{
√
n−1 ai}

does not converge weakly to

PΓ∞
{a2i }

as n → ∞. Then, there is a subsequence {n(j)} of {n} such that

PEn(j)

{
√
n(j)−1 ai}

converges weakly to a pyramid P∞ different from PΓ∞
{a2i }

.

The Maxwell-Boltzmann distribution law tells us that the push-forward mea-

sure νkn(j) := (π
n(j)
k )∗e

n(j)

{
√
n(j)−1 ai}

converges weakly to γk{a2i }
as j → ∞ for any

k, so that (Rk, ‖ · ‖, νkn(j)) box converges to Γk{a2i }
. Since E

n(j)

{
√
n(j)−1 ai}

dominates

(Rk, ‖ · ‖, νkn(j)), the limit pyramid P∞ contains Γk{a2i }
for any k. This proves

(3.8) P∞ ⊃ PΓ∞
{a2i }

.
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Let âi := max{ai, a}. It follows from ai ≤ âi that E
n
{
√
n−1 ai}

is dominated

by En
{
√
n−1 âi}

, which implies PEn
{
√
n−1 ai}

⊂ PEn
{
√
n−1 âi}

for any n. By applying

Lemma 3.6, the limit of any weakly convergent sequence of {PEn
{
√
n−1 âi}

}n is

contained in PΓ∞
{â2i }

. Therefore, P∞ is contained in PΓ∞
{â2i }

. Denote by l the

number of i’s with ai < a. For any k ≥ N , we consider the projection from
Γk+l{a2i }

to Γk{â2i }
dropping the axes xi with ai < a, which is 1-Lipschitz continuous

and preserves their measures. This shows that Γk+l{a2i }
dominates Γk{â2i }

, and so

PΓ∞
{a2i }

⊃ PΓ∞
{â2i }

. We thus obtain

(3.9) P∞ ⊂ PΓ∞
{a2i }

.

Combining (3.8) and (3.9) yields P∞ = PΓ∞
{a2i }

, which is a contradiction. This

completes the proof. □

Lemma 3.8. Let {aij} satisfy (A0)–(A3). If PEn(j)

{
√
n(j)−1 aij}i

converges weakly

to a pyramid P∞ as j → ∞, then

P∞ ⊃ PΓ∞
{a2i }

.

Proof. Note that the sequence {ai} is monotone nonincreasing. Put i0 := sup{ i |
ai > 0 } (≤ ∞). We see ai0 > 0 if i0 <∞. The Maxwell-Boltzmann distribution

law proves that νkn(j) := (π
n(j)
k )∗e

n(j)

{
√
n(j)−1 aij}i

converges weakly to γk{a2i }
as j →

∞ for each finite k with 1 ≤ k ≤ i0. The ellipsoid E
n(j)

{
√
n(j)−1 aij}i

dominates

(Rk, ‖ · ‖, νkn(j)), which converges to Γk{a2i }
, so that Γk{a2i }

belongs to P∞. Since

Γk{a2i }
for any k ≥ i0 is mm-isomorphic to Γi0{a2i }

provided i0 < ∞, we obtain the

lemma. □
Lemma 3.9. Let {aij} satisfy (A0)–(A3). If PEn(j)

{
√
n(j)−1 aij}i

converges weakly

to a pyramid P∞ as j → ∞, then

P∞ ⊂ PΓ∞
{a2i }

.

Proof. Since {ai} is monotone nonincreasing, it converges to a nonnegative real
number, say a∞.

We first assume that a∞ > 0. We see that ai > 0 for any i. For any ε > 0
there is a number I(ε) such that

(3.10) ai ≤ (1 + ε)a∞ for any i ≥ I(ε).

Also, there is a number J(ε) such that

(3.11) aij ≤ ai + a∞ε for any i ≤ I(ε) and j ≥ J(ε).

By the monotonicity of aij in i, (3.10), and (3.11), we have

(3.12) aij ≤ aI(ε),j ≤ aI(ε) + a∞ε ≤ (1 + 2ε)a∞ for any i ≥ I(ε) and j ≥ J(ε).

It follows from (3.11) and a∞ ≤ ai that

(3.13) aij ≤ ai + a∞ε ≤ (1 + ε)ai for any i ≤ I(ε) and j ≥ J(ε).
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Let

bε,i :=

{
ai if i ≤ I(ε),

a∞ if i > I(ε).

By (3.12) and (3.13), for any i and j ≥ J(ε), we see that aij ≤ (1+ 2ε)bε,i and so

E
n(j)
{aij}i ≺ E

n(j)
{(1+2ε)bε,i} = (1 + 2ε)E

n(j)
{bε,i}. Lemma 3.7 implies that PEn(j)

{
√
n(j)−1 bε,i}

converges weakly to PΓ∞
{b2ε,i}

as j → ∞. Therefore, P∞ is contained in (1 +

2ε)PΓ∞
{b2ε,i}

for any ε > 0. Since bε,i ≤ ai, we see that P∞ is contained in (1 +

2ε)PΓ∞
{a2i }

for any ε > 0. This proves the lemma in this case.

We next assume a∞ = 0. For any ε > 0 there is a number I(ε) such that

(3.14) ai < ε for any i ≥ I(ε).

We may assume that I(ε) = i0 + 1 if i0 <∞, where i0 := sup{ i | ai > 0 }. Also,
there is a number J(ε) such that

aI(ε),j < aI(ε) + ε for any j ≥ J(ε);(3.15)

aij < (1 + ε)ai for any i < I(ε) and j ≥ J(ε).(3.16)

It follows from (3.14) and (3.15) that

(3.17) aij ≤ aI(ε),j < aI(ε) + ε < 2ε for any i ≥ I(ε) and j ≥ J(ε).

Let

bε,i :=

{
(1 + ε)ai if i < I(ε),

2ε if i ≥ I(ε).

From (3.16) and (3.17), we have aij < bε,i for any i and j ≥ J(ε), and so E
n(j)
{aij}i ≺

E
n(j)
{bε,i} for j ≥ J(ε). Lemma 3.7 implies that PEn(j)

{
√
n(j)−1 bε,i}

converges weakly to

PΓ∞
{b2ε,i}

as j → ∞. Therefore, P∞ is contained in PΓ∞
{b2ε,i}

for any ε > 0. Let k be

any number with k ≥ I(ε). The Gaussian space Γk{b2ε,i}
is mm-isomorphic to the

l2-product of Γ
I(ε)−1

{(1+ε)2a2i }
and Γ

k−I(ε)+1

{(2ε)2} . It follows from the Gaussian isoperimetry

that
ObsDiam(Γ

k−I(ε)+1

{(2ε)2} ) = inf
κ>0

max{2ε diam(γ112 ; 1− κ), κ} =: τ(ε),

which tends to zero as ε→ 0+. If τ(ε) < 1/2, then, by [27, Proposition 7.32],

ρ(PΓk{b2ε,i}
,PΓ

I(ε)−1

{(1+ε)2a2i }
) ≤ dconc(Γ

k
{b2ε,i}

,Γ
I(ε)−1

{(1+ε)2a2i }
) ≤ τ(ε).

Taking the limit as k → ∞ yields

ρ(PΓ∞
{b2ε,i}

,PΓ
I(ε)−1

{(1+ε)2a2i }
) ≤ τ(ε).

There is a sequence {ε(l)}, l = 1, 2, . . . , of positive real numbers tending to zero
such that PΓ∞

{b2
ε(l),i

} converges weakly to a pyramid P ′
∞ as l → ∞. P ′

∞ contains

P∞ and PΓ
I(ε(l))−1

{(1+ε(l))2a2i }
converges weakly to P ′

∞ as l → ∞. Since PΓ
I(ε(l))−1

{(1+ε(l))2a2i }
is

contained in PΓ∞
{(1+ε(l))2a2i }

and since PΓ∞
{(1+ε(l))2a2i }

= (1 + ε(l))PΓ∞
{a2i }

converges
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weakly to PΓ∞
{a2i }

as l → ∞, the pyramid P ′
∞ is contained in PΓ∞

{a2i }
, so that P∞

is contained in PΓ∞
{a2i }

. This completes the proof. □

Proof of Theorem 1.1. Suppose that PEn(j)

{
√
n(j)−1 aij}i

does not converge weakly

to PΓ∞
{a2i }

as j → ∞. Then, taking a subsequence of {j} we may assume that

PEn(j)

{
√
n(j)−1 aij}i

converges weakly to a pyramid P∞ different from PΓ∞
{a2i }

, which

contradicts Lemmas 3.8 and 3.9. Thus, PEn(j)

{
√
n(j)−1 aij}i

converges weakly to

PΓ∞
{a2i }

as j → ∞.

As is mentioned in Subsection 2.8, the infinite-dimensional Gaussian space
Γ∞
{a2i }

is well-defined as an mm-space if and only if {ai} is an l2-sequence, only in

which case the above sequence of (solid) ellipsoids becomes a convergent sequence
in the concentration topology.

Assume that ai converges to zero as i→ ∞. It is well-known that the Ornstein-
Uhlenbeck operator (or the drifted Laplacian) on Γ1

a2 has compact resolvent and
spectrum {ka−2 | k = 0, 1, 2 . . . } (see [19]). Thus, the same proof as in [27, Corol-
lary 7.35] yields that Γn{a2i }

asymptotically (spectrally) concentrates to PΓ∞
{a2i }

.

Conversely, we assume that ai is bounded away from zero and set a := infi ai.
Applying [27, Proposition 7.37] yields that PΓ∞

{a2} is not concentrated. Since

PΓ∞
{a2i }

contains PΓ∞
{a2}, the pyramid PΓ∞

{a2i }
is not concentrated, which implies

that E
n(j)

{
√
n(j)−1 aij}i

does not asymptotically concentrate (see Theorem 2.19).

This completes the proof of the theorem. □

Let us next consider the convergence of the Gaussian spaces.

Proposition 3.10. Let {aij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , be a sequence of

nonnegative real numbers. If supi aij diverges to infinity as j → ∞, then Γ
n(j)

{a2ij}
infinitely dissipates.

Proof. Exchanging the coordinates, we assume that a1j diverges to infinity as

j → ∞. Since Γ1
a21j

is dominated by Γ
n(j)

{a2ij}
, we have

ObsDiam(Γ
n(j)

{a2ij}
;−κ) ≥ diam(Γ1

a21j
; 1− κ) → ∞ as j → ∞.

This together with Proposition 2.18 completes the proof. □

In a similar way as in the proof of Theorem 1.1, we obtain the following.

Corollary 3.11. Let {aij} satisfy (A0)–(A3). Then, Γ
n(j)

{a2ij}
converges weakly to

PΓ∞
{a2i }

as j → ∞. This convergence becomes a convergence in the concentration

topology if and only if {ai} is an l2-sequence. Moreover, this convergence becomes
an asymptotic concentration if and only if {ai} converges to zero.
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Proof. Suppose that Γ
n(j)

{a2ij}
does not converge weakly to PΓ∞

{a2i }
as j → ∞. Then

there is a subsequence of {PΓ
n(j)

{a2ij}
}j that converges weakly to a pyramid P∞ differ-

ent from PΓ∞
{a2i }

. We write such a subsequence by the same notation {PΓ
n(j)

{a2ij}
}j.

Since Γk{a2ij}
is dominated by Γ

n(j)

{a2ij}
for k ≤ n(j) and Γk{a2ij}

converges weakly to

Γk{a2i }
as j → ∞, we see that Γk{a2i }

belongs to P∞ for any k, so that

P∞ ⊃ PΓ∞
{a2i }

.

We prove P∞ ⊂ PΓ∞
{a2i }

in the case of a∞ > 0, where a∞ := limi→∞ ai. Under

a∞ > 0, the same discussion as in the proof of Lemma 3.8 proves that there are
two numbers I(ε) and J(ε) for any ε > 0 such that (3.12) and (3.13) both hold.
We therefore see that, for any k and j ≥ J(ε), Γk{a2ij}

is dominated by (1+ε)Γk{a2i }
,

and so PΓ
n(j)

{a2ij}i
⊂ (1 + ε)PΓ∞

{a2i }
. This proves P∞ ⊂ PΓ∞

{a2i }
.

We next prove P∞ ⊂ PΓ∞
{a2i }

in the case of a∞ = 0. Let bε,i be as in Lemma 3.9.

The discussion in the proof of Lemma 3.9 yields that aij < bε,i for any i and for
every sufficiently large j, which implies P∞ ⊂ PΓ∞

{b2ε,i}
. We obtain P∞ ⊂ PΓ∞

{a2i }

in the same way as in the proof of Lemma 3.9. The weak convergence of Γ
n(j)

{a2ij}
to PΓ∞

{b2ε,i}
has been proved.

The rest is identical to the proof of Theorem 1.1. This completes the proof. □

4. Box convergence of ellipsoids

The main purpose of this section is to prove Theorem 1.2.
Let us first prove the weak convergence of en{

√
n−1 aij}

if {aij} l2-converges.

Lemma 4.1. Let A be a family of sequences of positive real numbers such that
A is bounded in ℓ2. Then we have

lim
n→∞

sup
{ai}∈A

dP(ϵ
n
{
√
n−1 ai}, γ

n
{a2i }

) = 0,(1)

lim sup
n→∞

sup
{ai}∈A

W2(σ
n−1
{
√
n−1 ai}

, γn{a2i }
)2 ≤

√
2 sup
{ai}∈A

∞∑
i=k+1

a2i(2)

for any positive integer k.

Proof. We prove (1). Let r(x) := ‖L−1(x)‖ as in Section 3. Take any real number
θ with 0 < θ < 1 and fix it. Let us consider the normalization of the measures
ϵn{

√
n−1 ai}

|r−1([ θ
√
n−1,

√
n−1 ]) and γn{a2i }

|r−1([ θ
√
n−1,θ−1

√
n−1 ]), which we denote by ϵnθ

and γnθ , respectively. Set

vθ,n := ϵn√n−1({x ∈ Rn | θ
√
n− 1 ≤ ‖x‖ ≤

√
n− 1 }),

wθ,n := γn{12}({x ∈ Rn | θ
√
n− 1 ≤ ‖x‖ ≤ θ−1

√
n− 1 }).
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We remark that

vθ,n = ϵn{
√
n−1 ai}(r

−1([ θ
√
n− 1,

√
n− 1 ])),

wθ,n = γn{a2i }
(r−1([ θ

√
n− 1, θ−1

√
n− 1 ])),

lim
n→∞

vθ,n = lim
n→∞

wθ,n = 1.

It then holds that

dP(ϵ
n
{
√
n−1 ai}, ϵ

n
θ ) ≤ dTV(ϵ

n
{
√
n−1 ai}, ϵ

n
θ ) = 1− vθ,n,(4.1)

dP(γ
n
{a2i }

, γnθ ) ≤ dTV(γ
n
{a2i }

, γnθ ) = 1− wθ,n,(4.2)

where the right equality in (4.1) follows from (2.1) and

dϵnθ
dϵn{

√
n−1 ai}

=

{
1
vθ,n

on r−1([ θ
√
n− 1,

√
n− 1 ]),

0 on En{√n−1 ai}
\ r−1([ θ

√
n− 1,

√
n− 1 ]).

(4.2) is obtained in the same way.
To estimate dP(ϵ

n
θ , γ

n
θ ), we define a transport map, say ψ, from γnθ to ϵnθ in the

same manner as for φE in Section 3, which is expressed as

ψ(x) =
R̃

r
x, x ∈ r−1([ θ

√
n− 1, θ−1

√
n− 1 ]),

where R̃ is the function of variable r ∈ [ θ
√
n− 1, θ−1

√
n− 1 ] defined by

θ
√
n− 1 ≤ R̃ ≤

√
n− 1 and γnθ (Br(o)) = ϵnθ (BR̃(o)).

It holds that

R̃n = Rn + (R
n −Rn)

∫ r
r
tn−1e−

1
2
t2dt∫ r

r
tn−1e−

1
2
t2dt

,

where r := R := θ
√
n− 1, r := θ−1

√
n− 1, and R :=

√
n− 1. Looking at the

ranges of r and R̃, we have θ2 ≤ R̃/r ≤ θ−1, which implies(
R̃

r
− 1

)2

≤ max{(1− θ2)2, (θ−1 − 1)2} = (1− θ2)2

if θ is sufficiently close to 1. Then we have

W2(ϵ
n
θ , γ

n
θ )

2 ≤
∫
Rn

‖ψ(x)− x ‖2 dγnθ (x) =
∫
Rn

(
R̃

r
− 1

)2

‖x‖2 dγnθ (x)

≤ (θ2 − 1)2
∫
Rn

‖x‖2 dγnθ (x)

≤ (θ2 − 1)2

γn{a2i }
(r−1([ θ

√
n− 1, θ−1

√
n− 1 ]))

∫
Rn

‖x‖2 dγn{a2i }(x)

=
(θ2 − 1)2

wθ,n

n∑
i=1

a2i ,
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which together with (4.1) and (4.2) implies

dP(ϵ
n
{
√
n−1 ai}, γ

n
{a2i }

) ≤ 2− vθ,n − wθ,n +

(
(θ2 − 1)2

wθ,n

n∑
i=1

a2i

) 1
4

and hence

lim sup
n→∞

sup
{ai}∈A

dP(ϵ
n
{
√
n−1 ai}, γ

n
{a2i }

)

≤

(
(θ2 − 1)2 sup

{ai}∈A

∞∑
i=1

a2i

) 1
4

→ 0 as θ → 1+.

This proves (1).
We prove (2). Using the transport map φS from γn{a2i }

to σn−1
{
√
n−1 ai}

in Section

3, we have

W2(σ
n−1
{
√
n−1 ai}

, γn{a2i }
)2 ≤

∫
Rn

∥∥ z − φS(z)
∥∥2 dγn{a2i }(z)

=

∫
Sn−1(1)

n∑
i=1

a2ix
2
i dσ

n−1(x) · 1

In−1

∫ ∞

0

(r −
√
n− 1)2rn−1e−r

2/2 dr,

where Im :=
∫∞
0
tme−t

2/2 dt. We see in the proof of [27, Lemma 7.41] that

rme−r
2/2 ≤ mm/2e−m/2e−(r−

√
m)2/2 and also that Im ∼

√
π(m − 1)m/2e−(m−1)/2.

Therefore,

1

In−1

∫ ∞

0

(r −
√
n− 1)2rn−1e−r

2/2 dr ≤ 1

In−1

√
2π(n− 1)(n−1)/2e−(n−1)/2

∼
√
2e−1/2

(1− 1/(n− 1))(n−1)/2
−→

√
2 as n→ ∞.

For any ε > 0 and k with 1 ≤ k ≤ n − 1, let Sn−1
k,ε := {x ∈ Sn−1(1) | |xi| <

ε for i = 1, 2, . . . , k }. Then,∫
Sn−1(1)\Sn−1

k,ε

n∑
i=1

a2ix
2
i dσ

n−1(x) ≤ σn−1(Sn−1(1) \ Sn−1
k,ε )

n∑
i=1

a2i ,∫
Sn−1
k,ε

n∑
i=1

a2ix
2
i dσ

n−1(x) ≤ ε2
k∑
i=1

a2i +
n∑

i=k+1

a2i ,

which imply

sup
{ai}∈A

∫
Sn−1(1)

n∑
i=1

a2ix
2
i dσ

n−1(x)

≤ (σn−1(Sn−1(1) \ Sn−1
k,ε ) + ε2) sup

{ai}∈A

∞∑
i=1

a2i + sup
{ai}∈A

∞∑
i=k+1

a2i .
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Since σn−1(Sn−1(1)\Sn−1
k,ε ) tends to zero as n→ ∞, we obtain (2). This completes

the proof. □

Proposition 4.2. Let {aij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , be a sequence of
positive real numbers, where {n(j)}, j = 1, 2, . . . , is a sequence of positive integers
divergent to infinity. Let {ai}, i = 1, 2, . . . , be an l2-sequence of nonnegative real
numbers. We assume

lim
j→∞

n(j)∑
i=1

(aij − ai)
2 = 0.

Then we have

(1) ϵ
n(j)

{
√
n(j)−1 aij}i

converges weakly to γ∞{a2i }i
as j → ∞;

(2) σ
n(j)−1

{
√
n(j)−1 aij}i

converges to γ∞{a2i }i
in the 2-Wasserstein metric as j → ∞.

In particular, E
n(j)

{
√
n(j)−1 aij}i

box converges to Γ∞
{a2i }i

as j → ∞.

Proof. We first prove (2). We set aij := 0 for i ≥ n(j)+ 1. Lemma 4.1(2) implies

lim sup
j→∞

W2(σ
n(j)−1

{
√
n(j)−1 aij}i

, γ
n(j)

{a2ij}i
)2

≤
√
2 lim sup

j→∞

∞∑
i=k+1

a2ij =
√
2

∞∑
i=k+1

a2i −→ 0 as k → ∞.

Gelbrich’s formula [8] tells us that

W2(γ
n(j)

{a2ij}i
, γ∞{a2i }

)2 =
∞∑
i=1

(aij − ai)
2 −→ 0 as j → ∞.

By a triangle inequality, we obtain (2).
(1) is proved in the same way by using Lemma 4.1(1) and by remarking dP

2 ≤
W2. This completes the proof. □

Lemma 4.3. Let {bij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , be a sequence of positive
real numbers, where {n(j)}, j = 1, 2, . . . , is a sequence of positive integers diver-

gent to infinity. If
∑n(j)

i=1 b
2
ij converges to a positive real number as j → ∞, then

{en(j)
{
√
n(j)−1 bij}

} has no subsequence converging weakly to the Dirac measure δo at

the origin o in H, where we embed the (solid) ellipsoids E
n(j)

{
√
n(j)−1 bij}

⊂ Rn(j)

into the Hilbert space H naturally and consider e
n(j)

{
√
n(j)−1 bij}i

as Borel probability

measures on H.

Proof. Applying Lemma 4.1(1) yields that

lim
j→∞

dP(ϵ
n(j)

{
√
n(j)−1 bij}

, γ
n(j)

{b2ij}
) = 0.
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We prove that {γn(j){b2ij}
} have no subsequence converging weakly to δo. Suppose

that dP(γ
n(j)

{b2ij}
, δo) ≤ εj for some εj → 0 as j → ∞. Then we have

γ
n(j)

{b2ij}
(Rn \Bεj(o)) ≤ εj.

This implies∫
Rn

‖x‖2 dγn(j){b2ij}
(x) ≤ ε2j +

∫
Rn\Bεj (o)

‖x‖2 dγn(j){b2ij}
(x)

≤ ε2j + γ
n(j)

{b2ij}
(Rn \Bεj(o))

1
2

(∫
Rn

‖x‖4 dγn(j){b2ij}
(x)

) 1
2

≤ ε2j + 2c
√
εj

∫
Rn

‖x‖2 dγn(j){b2ij}
(x),

where the last inequality follows from the reverse Hölder inequality for Gaussian
measures; there is an absolute constant c > 0 such that(∫

Rn

‖x‖q dγ(x)
) 1

q

≤ c
q

p

(∫
Rn

‖x‖p dγ(x)
) 1

p

for any q ≥ p ≥ 1 and for any Gaussian measure γ on Rn (see [2, Theorem 2.4.6]).
Hence

lim
j→∞

n(j)∑
i=1

b2ij = lim
j→∞

∫
Rn

‖x‖2 dγn(j){b2ij}
(x) = 0,

which is a contradiction. Therefore {γn(j){b2ij}
} does not have a subsequence converg-

ing weakly to δo and neither does {ϵn(j)
{
√
n(j)−1 bij}

}.

We next prove the lemma for σ
n(j)−1

{
√
n(j)−1 bij}

. It holds that

∫
Sn(j)−1

{
√

n(j)−1 bij}i

‖y‖2 dσn(j)−1

{
√
n(j)−1 bij}i

(y) =

n(j)∑
i=1

b2ij

 (n(j)− 1)

∫
Sn−1(1)

x21 dσ
n(j)−1(x).

It follows from the Maxwell-Boltzmann distribution law that

lim
j→∞

(n(j)− 1)

∫
Sn−1(1)

x21 dσ
n(j)−1(x) = 1.

We therefore have

lim
j→∞

∫
Sn(j)−1

{
√

n(j)−1 bij}i

‖y‖2 dσn(j)−1

{
√
n(j)−1 bij}i

(y) = lim
j→∞

n(j)∑
i=1

b2ij > 0.

On the other hand, the reverse Hölder inequality on a sphere (see [2, Remarks
2.4.7]) yields

(1− 2c
√
εj)

∫
Sn(j)−1

{
√

n(j)−1 bij}i

‖y‖2 dσn(j)−1

{
√
n(j)−1 bij}i

(y) ≤ ε2j
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if dP(σ
n(j)−1

{
√
n(j)−1 bij}i

, δo) ≤ εj, in the same way as above. These contradict each

other. Thus {σn(j)−1

{
√
n(j)−1 bij}

} have no subsequence converging weakly to δo. This

completes the proof of the lemma. □

For the proof of Theorem 1.2, we need the following lemma, which is the special
case of Theorem 1.2 where the limit is a one-point mm-space.

Lemma 4.4. Let {aij}, i = 1, 2, . . . , n(j), j = 1, 2, . . . , be a sequence of posi-
tive real numbers, where {n(j)}, j = 1, 2, . . . , is a sequence of positive integers
divergent to infinity. We assume that

lim
j→∞

aij = 0 for any i,(i)

lim inf
j→∞

n(j)∑
i=1

a2ij > 0.(ii)

Then, there exists no box convergent subsequence of {En(j)

{
√
n(j)−1 aij}i

}.

Proof. Let {aij} be a sequence as in the assumption of the theorem. Sorting {aij}
in ascending order in i, we may assume that aij is monotone nonincreasing in i

for each j. We suppose that {En(j)

{
√
n(j)−1 aij}i

} has a box convergent subsequence,

for which we use the same notation. Then, by (i) and Theorem 1.1, the box limit

of {En(j)

{
√
n(j)−1 aij}i

} is mm-isomorphic to a one-point mm-space. We set

Aj :=

n(j)∑
i=1

a2ij

 1
2

and bij :=
aij

max{Aj, 1}
.

Since bij ≤ aij, we see that E
n(j)

{
√
n(j)−1 bij}i

is dominated by E
n(j)

{
√
n(j)−1 aij}i

, so that

E
n(j)

{
√
n(j)−1 bij}i

box converges to a one-point mm-space as j → ∞. We remark that

lim inf
j→∞

n(j)∑
i=1

b2ij > 0 and

n(j)∑
i=1

b2ij ≤ 1.

Taking a subsequence again, we assume that
∑n(j)

i=1 b
2
ij converges to a positive

real number as j → ∞. Applying Lemma 4.3 yields that {en(j)
{
√
n(j)−1 bij}

} has no

subsequence converging weakly to δo in H. Since E
n(j)

{
√
n(j)−1 bij}i

box converges

to a one-point mm-space, say ∗, as j → ∞, Lemma 2.13 implies that there is

a sequence of εj-mm-isomorphisms fj : E
n(j)

{
√
n(j)−1 bij}i

→ ∗ with εj → 0+ as

j → ∞. A nonexceptional domain of fj has e
n(j)

{
√
n(j)−1 bij}

-measure at least 1− εj

and diameter at most εj. There is a closed metric ball Bj ⊂ H of radius εj



26 DAISUKE KAZUKAWA AND TAKASHI SHIOYA

that contains the nonexceptional domain of fj. Note that e
n(j)

{
√
n(j)−1 bij}i

(Bj) ≥
1 − εj → 1 as j → ∞. If Bj were to contain the origin o of H for infinitely

many j, then a subsequence of {en(j)
{
√
n(j)−1 bij}i

} would converge weakly to δo,

which is a contradiction. Thus, all but finitely many Bj do not contain the

origin of H, and Bj do not intersect −Bj for any such Bj. Since e
n(j)

{
√
n(j)−1 bij}i

is

centrally symmetric with respect to the origin, we see that e
n(j)

{
√
n(j)−1 aij}i

(−Bj) =

e
n(j)

{
√
n(j)−1 aij}i

(Bj) ≥ 1 − εj, which is a contradiction if j is large enough. This

completes the proof. □

Lemma 4.5. Let {Xn}, n = 1, 2, . . . , be a box convergent sequence of mm-spaces
and {Yn}, n = 1, 2, . . . , a sequence of mm-spaces with Yn ≺ Xn. Then, {Yn} has
a box convergent subsequence.

Proof. The lemma follows from [27, Lemma 4.28 (1) and (3)]. □

Proof of Theorem 1.2. We assume (A0)–(A3).
The ‘if’ part follows from Proposition 4.2.

We prove the ‘only if’ part. Suppose that {En(j)

{
√
n(j)−1 aij}i

} is box convergent

and that {aij}i does not l2-converge to {ai} as j → ∞. We first prove that
{ai} is an l2-sequence. This is because, if not, then, by Theorem 1.1, the weak

limit of {En(j)

{
√
n(j)−1 aij}i

} is not an mm-space, which is a contradiction to the box

convergence. Replacing {aij}i with a subsequence with respect to the index j, we

assume that limj→∞
∑n(j)

i=1 a
2
ij exists in [ 0,+∞ ]. We prove

(4.3) lim
j→∞

n(j)∑
i=1

a2ij >
∞∑
i=1

a2i .

In fact, if the left-hand side of (4.3) is infinity, then this is clear. If not, the
Banach-Alaoglu theorem tells us the existence of an l2-weakly convergent subse-
quence of {aij}. Since {aij}i does not converge to {ai} l2-strongly as j → ∞, we
obtain (4.3).

Take a real number ε0 in such a way that

0 < ε0 < lim
j→∞

n(j)∑
i=1

a2ij −
∞∑
i=1

a2i .

Setting

aijk :=

{
akj if i ≤ k,

aij if i ≥ k + 1,
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we have

lim
j→∞

n(j)∑
i=1

a2ijk = lim
j→∞

 k∑
i=1

a2ijk +

n(j)∑
i=k+1

a2ijk

 = ka2k + lim
j→∞

n(j)∑
i=k+1

a2ij

= ka2k + lim
j→∞

n(j)∑
i=1

a2ij −
k∑
i=1

a2i > ε0.

Thus, for any positive integer k there is j(k) such that

n(j(k))∑
i=1

a2ij(k)k > ε0 and | akj(k) − ak | <
1

k
.

Letting bik := aij(k)k, we observe the following.

• bik ≤ aij(k) for any i and k.
• bik is monotone nonincreasing in i for each k.
• b1k = a1j(k)k = akj(k) < ak + 1/k → 0 as k → ∞.

•
∑n(j(k))

i=1 b2ik > ε0 > 0 for any k.

Consider Ek := E
n(j(k))

{
√
n(j(k))−1 bik}i

. It follows from Lemma 3.1 that Ek is dominated

by E
n(j(k))

{
√
n(j(k))−1 aij(k)}i

for any k and so Lemma 4.5 implies that {Ek} has a box

convergent subsequence. However, Lemma 4.4 proves that {Ek} has no box
convergent subsequence, which is a contradiction. This completes the proof. □
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