Hessenberg varieties and Chromatic symmetric functions

Hessenberg varieties

A Hessenberg variety Xy is the collection of
complete flags V; C V5, C - -+ C V,, which satisty

X.V. C W)(i)

for X a n X n regular semisimple matrix and a
non-decreasing function

[){17 ,n}%{l, ’n}
such that h(z) > 7.

The Young subgroup of Xy is the group
Sy, = ((ij) € Sn | i < jandh(z) > j).

GKM Theory

The (torus) equivariant cohomology of X; has the
presentation [4]

(P&, — Clty, - ,t,] |
Hr(Xp) =3 u=wv(ij) witht < j and h(2) > j
\ then P, — P, € <tv(i> — tv(j)> }

= G,, acts on H7(Xp) (and hence H*(Xy)) under the

rule

Vs
[ ]

w-P(u) = w* Plw )
where wx is the action of G,, on Clty,--- ,1,].

« Question 1: Can we identify these representations?

« Question 2: Are they permutation representations?
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Unifying Conjecture |3]

Fix the function h and let inc(h) be the incom-
paribilty eraph of h as a semi-order. Then

ChH*(Xb) — meC(h)

where ch i1s the Frobenius characteristic and w is
the involution ey —— h,).

Theorem

We say Xy is parabolic if for every (ij) € Sy, then
i < j and h(i) > j.

Parabolic Hessenberg varieties [4]

Let Xy be a parabolic Hessenberg variety. Then
H7(Xy) = |Gy M

as a Clty, - -+ ,1,]|6,]-module.
Further, as a C|G,,|-module we have

H*(Xp) = |&p|M™
and under the Frobenius characteristic we get
ChH*(Xh) — ‘GUVL)\[).

Lastly, this decomposition confirms the “unitying
conjecture”

ChH*(Xf)) — WXmC( )
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Figure: Hessenberg representations
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Figure: Chromatic symmetric functions

Chromatic symmetric functions

Let & be a finite simple graph with vertices
V={1,--- ,n} andedges £ :={ij | 1,5 € V}. A
proper coloring of G is a map kK : V' — N such
that whenever uv € E then x(u) # k(v).

Given a proper coloring let

L = Lg(1) " Lg(n):
Stanley [2]| defined the chromatic symmetric
function of GG to be

XG(xla L2yt " ) _ ZSE,{.

Incomparability graphs

Let (p, =) be a poset. The incomparability graph of
p, has vertices p and edges {ij | i A j andj £ i}.
For the function B, we can define a poset, called a
semi-order, by the rule

i < j <= bh(1) <J

Semi-orders are the posets which are both

3] + [1]-free and [2] 4 [2]-free. The chromatic
symmetric function of their incomparability graphs
are of principal interest in[1],[2], and [3].

Stanley-Stembridge Conjecture

Stanley-Stembridge conjecture |2}

Let inc(h) be the incomparability graph of a semi-
order. The expansion of Xj, () in the ey-basis has
non-negitive coefficients (e-positive).
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Gasharov’s theorem |1}

Let inc(h) be the incomparability graph of a semi-
order. Then Xj,p) is Schur-positive, i.e. the
Frobenius characteristic of a representation of

S,
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