Hessenberg varieties

A *Hessenberg variety* $X_{\mathfrak{h}}$ is the collection of complete flags $V_1 \subset V_2 \subset \cdots \subset V_n$ which satisfy $\mathsf{X}.V_i \subset V_{\mathfrak{h}(i)}$

for X a $n \times n$ regular semisimple matrix and a non-decreasing function

$$\mathfrak{h}: \{1, \cdots, n\} \longrightarrow \{1, \cdots, n\}$$

such that $\mathfrak{h}(i) \geq i$.

The *Young subgroup* of $X_{\mathfrak{h}}$ is the group $\mathfrak{S}_{\lambda_{\mathfrak{h}}} := \langle (ij) \in S_n \mid i < j \text{ and } \mathfrak{h}(i) \geq j \rangle.$

GKM Theory

The (torus) equivariant cohomology of X_{h} has the presentation [4]

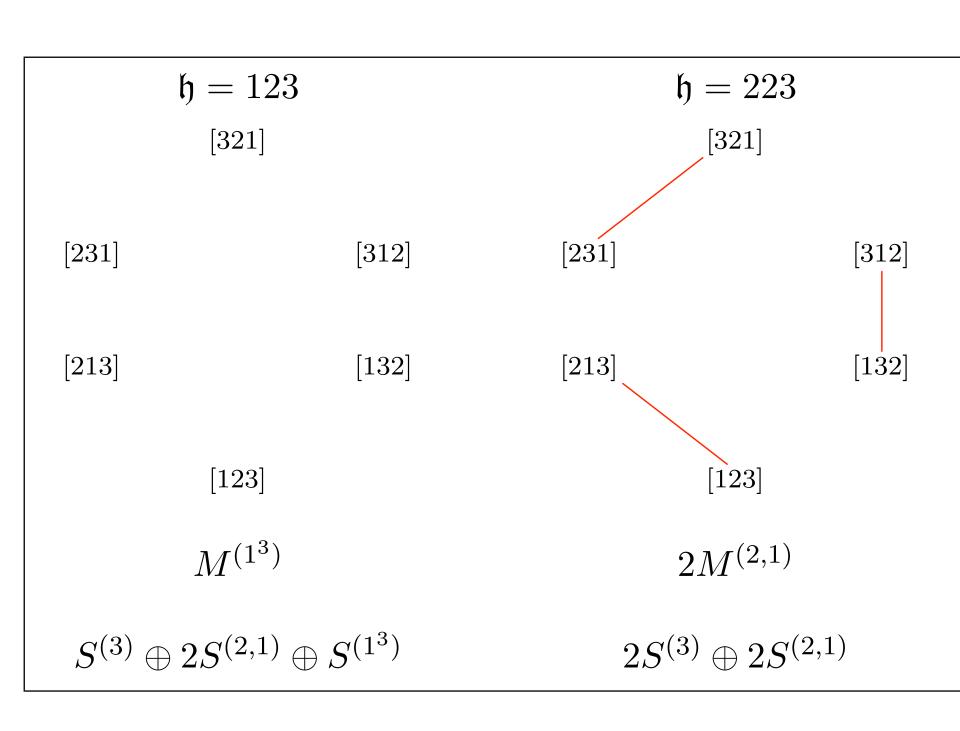
$$H_T^*(\mathsf{X}_{\mathfrak{h}}) := \left\{ \begin{aligned} \mathcal{P} : \mathfrak{S}_n &\longmapsto \mathbb{C}[t_1, \cdots, t_n] &| \\ u = v(ij) \text{ with } i < j \text{ and } \mathfrak{h}(i) \geq j \\ \text{then } \mathcal{P}_u - \mathcal{P}_v \in \langle t_{v(i)} - t_{v(j)} \rangle \end{aligned} \right\}.$$

• \mathfrak{S}_n acts on $H^*_T(X_{\mathfrak{h}})$ (and hence $H^*(X_{\mathfrak{h}})$) under the rule

$$w \cdot \mathcal{P}(u) = w * \mathcal{P}(w^{-1}u)$$

where w* is the action of \mathfrak{S}_n on $\mathbb{C}[t_1, \cdots, t_n]$.

- *Question 1:* Can we identify these representations?
- Question 2: Are they permutation representations?



Nicholas Teff University of Iowa

Unifying Conjecture [3]

Fix the function \mathfrak{h} and let $inc(\mathfrak{h})$ be the incomparibility graph of \mathfrak{h} as a semi-order. Then

 $\operatorname{ch} H^*(\mathsf{X}_{\mathfrak{h}}) = \omega X_{\operatorname{inc}(\mathfrak{h})}$ where ch is the Frobenius characteristic and ω is the involution $e_{\lambda} \longmapsto h_{\lambda}$.

Theorem

We say $X_{\mathfrak{h}}$ is *parabolic* if for every $(ij) \in S_{\mathfrak{h}}$, then i < j and $h(i) \geq j$.

Parabolic Hessenberg varieties [4]

Let $X_{\mathfrak{h}}$ be a parabolic Hessenberg variety. Then $H_T^*(\mathsf{X}_{\mathfrak{h}}) \cong |\mathfrak{S}_{\mathfrak{h}}| M^{\lambda_{\mathfrak{h}}}$ as a $\mathbb{C}[t_1, \cdots, t_n][\mathfrak{S}_n]$ -module.

Further, as a $\mathbb{C}[\mathfrak{S}_n]$ -module we have

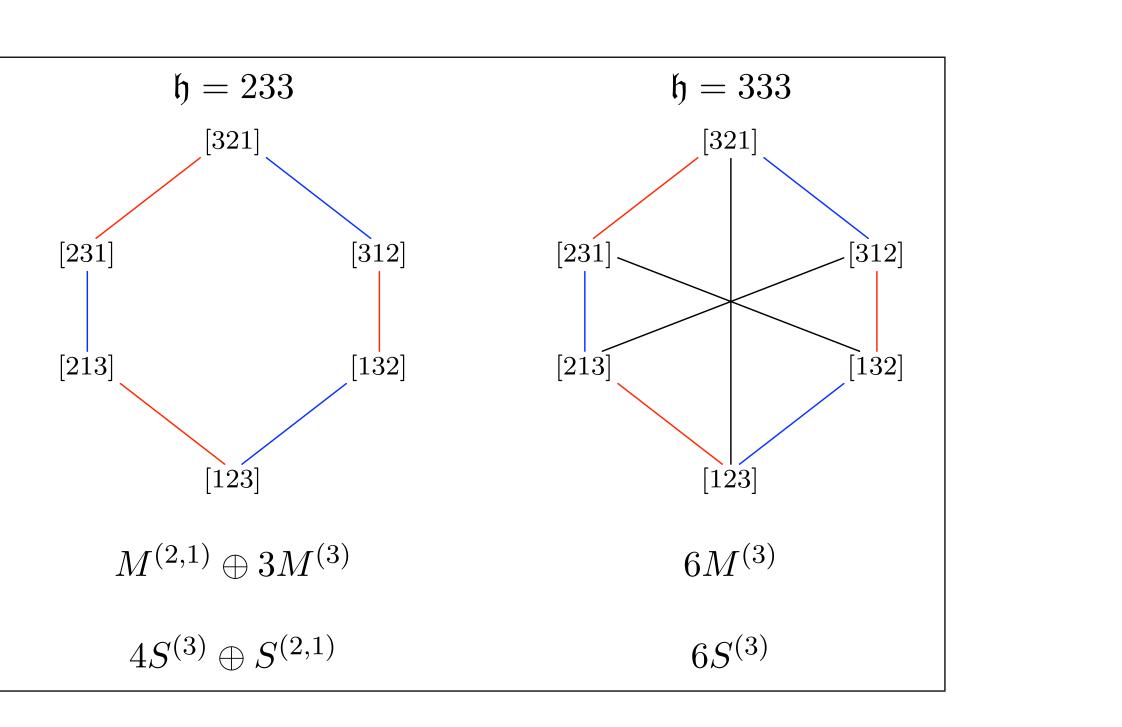
 $H^*(\mathsf{X}_{\mathfrak{h}}) \cong |\mathfrak{S}_{\mathfrak{h}}| M^{\lambda_{\mathfrak{h}}}$

and under the Frobenius characteristic we get

 $\operatorname{ch} H^*(\mathsf{X}_{\mathfrak{h}}) = |\mathfrak{S}_{\mathfrak{h}}| h_{\lambda_{\mathfrak{h}}}.$

Lastly, this decomposition confirms the "unifying conjecture"

$$\operatorname{ch} H^*(\mathsf{X}_{\mathfrak{h}}) = \omega X_{\operatorname{inc}(\mathfrak{h})}.$$



Hessenberg varieties and Chromatic symmetric functions

$\mathfrak{h} = 123$	$\mathfrak{h}=223$	\mathfrak{h}
•1 •2 •3	•1 $$ •2 •3	• ₁
$e_{(1^3)}$	$2e_{(2,1)}$	$e_{(2,1)}$
$s_{(3)} + 2s_{(2,1)} + s_{(1^3)}$	$2s_{(2,1)} + 2s_{(1^3)}$	$s_{(2,1)}$

Figure: Chromatic symmetric functions

Chromatic symmetric functions

Let G be a finite simple graph with $V = \{1, \cdots, n\}$ and edges $E := \{i$	$j \mid i, j \in V$ }. A	Let (\mathfrak{p}, \preceq) be a poset. \mathfrak{p} , has vertices \mathfrak{p} and \mathfrak{e}
proper coloring of G is a map $\kappa : V \longrightarrow \mathbb{N}$ such that whenever $uv \in E$ then $\kappa(u) \neq \kappa(v)$.		For the function <code>ḫ</code> , we <i>semi-order</i> , by the rule
Given a proper coloring let $x_{\kappa} = x_{\kappa(1)} \cdots x_{\kappa(n)}.$		$i \prec j$
Stanley [2] defined the <i>chromatic sy</i> $function$ of G to be	mmetric	Semi-orders are the po $[3] + [1]$ -free and $[2] + [2]$
$X_G(x_1, x_2, \cdots) := \sum_{\kappa}$	$x_{\kappa}.$	symmetric function of are of principal interest
Stanley-Stembridge Conjecture		

Stanley-Stembridge conjecture [2]

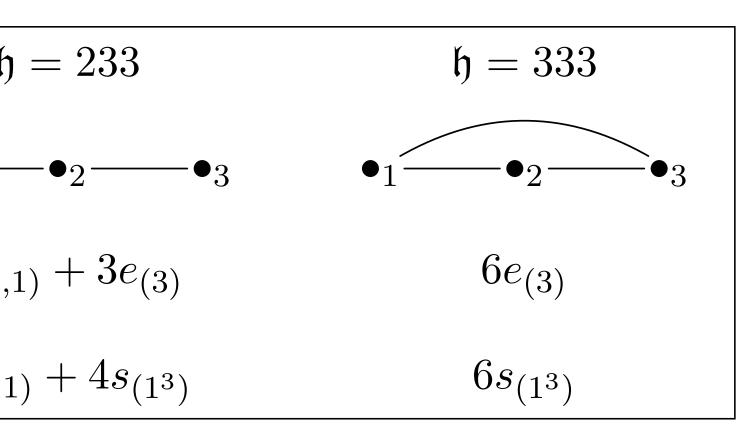
Let $inc(\mathfrak{h})$ be the incomparability graph of a semiorder. The expansion of $X_{\text{inc}(\mathfrak{h})}$ in the e_{λ} -basis has non-negitive coefficients (*e*-positive).

References

- [1] V. Gasharov, Incomparability graphs of (3 + 1)-free posets are s- positive, Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), Discrete Math. 157 (1996), no. 1-3, 193-197.
- [2] R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math. 111 (1995), no. 1, 166-194.
- [3] J. Sharesian and M. Wachs, Chromatic quasisymmetric functions and Hessenberg varieties, mathCO/1106.4287v2
- [4] N. Teff. " Representations on Hessenberg Varieties and Young's Rule "DMTCS Proceedings [Online], 0 11 Jun 2011

Let $inc(\mathfrak{h})$ be the incomparability graph of a semiorder. Then $X_{inc(\mathfrak{h})}$ is *Schur*-positive, i.e. the Frobenius characteristic of a representation of $\mathfrak{S}_n.$

Partially supported by the University of Iowa Department of Mathematics NSF VIGRE grant DMS-0602242



Incomparability graphs

 \leq) be a poset. The incomparability graph of vertices \mathfrak{p} and edges $\{ij \mid i \not\preceq j \text{ and } j \not\preceq i\}$.

function \mathfrak{h} , we can define a poset, called a order, by the rule

 $i \prec j \iff \mathfrak{h}(i) < j.$

orders are the posets which are both]-free and [2] + [2]-free. The chromatic etric function of their incomparability graphs principal interest in[1],[2], and [3].

Gasharov's theorem [1]

Acknowledgements

THE UNIVERSITY OF LOWA