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1 Coxeter groups and Poincaré polynomials

LetW be a Coxeter group with finite reflection set S. By definition, W is the group
generated by S subject to the relations stmst = e where mst ∈ {1, 2, 3, . . . ,∞} and

mst = 1⇔ s = t.

If ` and ≤ denote the length function and Bruhat order on W, then for any w ∈ W
we define the Poincaré polynomial

Pw(q) :=
∑
x≤w

q`(x).

If W is crystallographic (i.e. mst ∈ {1, 2, 3, 4, 6,∞}), then W is the Weyl group
of some Kac-Moody group G. Each element w ∈ W indexes a Schubert variety
Xw ⊆ G/B. Topologically we have

Pw(q) =
∑
i≥0

dimH
i
2(Xw,C) qi.

Question 1. When is Pw(q) a palindromic polynomial?

A degree ` polynomial
∑

i ai q
i is palindromic if ai = a`−i ∀ i. For crystallographic

W, Xw is rationally smooth if and only if Pw(q) is palindromic [4]. If W is a sim-
ply laced Weyl group of finite type, then rationally smooth can be replaced by
smooth.

For finite Weyl groups, the answer to Question 1 is well understood. In partic-
ular, palindromic Poincaré polynomials can be characterized using permutation
pattern-avoidance in classical types and using root system avoidance in all types
[1, 3, 5]. The characterization using permutation pattern avoidance has been ex-
tended to the affine type A case as well [2].

Combinatorial answers to Question 1 for general Coxeter groups are unknown.
We introduce a family of Coxeter groups (mostly) outside the finite and affine
cases for which it is possible to determine if Pw(q) is palindromic by calculating a
few of its coefficients.

2 Triangle group avoidance

A triangle group is a Coxeter group with |S| = 3. If S = {r, s, t}, then a triangle
group is completely characterized by the triple (mrs,mrt,mst). We will denote a
triangle group by its corresponding triple.
Definition 1. A Coxeter group W contains the triangle (a, b, c) if there exists a
subset {r, s, t} ⊆ S such that (a, b, c) = (mrs,mrt,mst).

If S contains no such subset, then W avoids the triangle (a, b, c).

Definition 2. A polynomial
∑̀
i=0

ai q
i is k-palindromic if ai = a`−i ∀ i ≤ k.

Consider the set of triangle groups: HQ := {(2, b, c) | b, c ≥ 3 and b <∞}.
Theorem 1. (R-Slofstra) Suppose W avoids all triangles in the set HQ .

For any w ∈ W, if Pw(q) is 4-palindromic, then Pw(q) is palindromic.

Furthermore, suppose W avoids triangles (3, 3, c) where 3 < c < ∞. Then every
2-palindromic Pw(q) is palindromic.

3 Parabolic factorizations

Theorem 1 follows from a factorization theorem of Poincaré polynomials given
that W avoids triangles in HQ and that Pw(q) is 2-palindromic. For any subset
J ⊆ S we define the parabolic subgroup WJ ⊆ W generated by J. Let W J de-
note the set of minimal length representatives of the cosets WJ\W.

For any subset J there is a unique parabolic factorization w = uv where
u ∈ WJ , v ∈ W J and `(w) = `(u) + `(v). Let [e, w] denote the set of elements
less than or equal to w.

The following proposition is due to Billey and Postnikov in [3, Theorem 6.4].
Proposition 1. For any parabolic factorization w = uv, we have that u is maximal
in WJ ∩ [e, w] if and only if

Pw(q) = Pu(q) · P J
v (q)

where P J
v (q) :=

∑
x∈[e,v]∩W J

q`(x). We call any such factorization BP.

Theorem 2. (R-Slofstra) Suppose that W avoids all triangle groups in HQ. Let
w ∈ W be 2-palindromic and fix a parabolic factorization w = uv such that

|S ∩ [e, w]| = |S ∩ [e, u]| + 1.

Then w = uv is a BP-factorization where |S ∩ [e, v]| ≤ 3.

Moreover, if S ∩ [e, v] = {r, s, t}, then 3 ≤ mrs ≤ ∞, 3 ≤ mst <∞ with one of the
following:

1. v = tr stst . . .︸ ︷︷ ︸
mst−1

where {r, s, t} generates the triangle (3,mrs,mst).

2. v = rstr stst . . .︸ ︷︷ ︸
mst−1

where {r, s, t} generates the triangle (3, 3,mst).

3. v = strstr · · · where {r, s, t} generates the triangle (3, 3, 3) and `(v) is even.

If w is 2-palindromic, then u is also 2-palindromic. Hence Theorem 2 can be
applied inductively to factor Pw(q). Define the q-integer

[k]q := 1 + q + · · · + qk−1.

Corollary 1. Suppose w = uv ∈ W satisfies the conditions in Theorem 2. Then
P J
v (q) equals one of the following polynomials.

1. [`(v) + 1]q.

2. [`(v) + 1]q + q2[`(v)− 3]q.

3. [`(v) + 1]q + q2[`(v)− 3]q + q4[`(v)− 6]q.

4.
k∑
i=0

q2i[`(v)− 4i + 1]q with k =

⌊
`(v)

4

⌋
.

Observe that all the polynomials listed are palindromic except the third which is
3-palindromic but not 4-palindromic. This third polynomial corresponds to part 2
of Theorem 2 which proves Theorem 1.
Example 1. Consider the Coxeter group W with S = {s1, s2, s3, s4} defined by
mst = 3 ∀ s, t ∈ S. Let w = s1s2s1s3s2s1s3s2s1s4. Then w is 2-palindromic with
factorization:

w = (s1)︸︷︷︸
v1

(s2s1)︸ ︷︷ ︸
v2

(s3s2s1s3s2s1)︸ ︷︷ ︸
v3

(s4)︸︷︷︸
v4

.

The corresponding Poincaré polynomial factorization is

Pw(q) = [2]q[3]q([5]q + q2[1]q)[2]q = (1 + q)(1 + q + q2)(1 + q + 2q2 + q3 + q4)(1 + q).

4 Enumeration results

One consequence of Theorem 2 is that the number of elements with palindromic
Poincaré polynomials is finite if W avoids triangles in HQ and (3, 3, 3).

We can explicitly enumerate the number of palindromic elements in uniform Cox-
eter groups. For any positive integers m,n let W (m,n) denote the Coxeter group
with |S| = n and ms,t = m ∀ s, t ∈ S. Define the generating series

Φm(q, t) :=
∑
n,k≥0

Pn,k
qktn

n!

where Pn,k denotes the number of palindromic w ∈ W (m,n) of length k.

Corollary 2. For any m ≥ 4, the series Φm(q, t) =
exp(t)

1− φm(q, t)
where

φm(q, t) =
2qt− 3qmt2 − qm+2[m− 3]qt

3

2− 2q2t([m− 2]q + qm−3)
.

Example 2. The expansion of Φ4(q, t)− 1 is:

(1+q) t+(1+2q+2q2+2q3+q4)
t2

2
+(1+3q+6q2+12q3+15q4+12q5+12q6+6q7)

t3

6
+O(t4).

The following table lists the number of palindromic elements in W (m,n).

m�n 1 2 3 4 5 6 7

4 2 8 67 893 15596 330082 8165963
5 2 10 115 2057 47356 1314292 42584795
6 2 12 175 3893 110436 3768982 150113447
7 2 14 247 6545 219956 8884312 418725119
8 2 16 331 10157 393916 18351562 997538291

References
[1] S. Billey. Pattern avoidance and rational smoothness of Schubert varieties. Adv. Math., 139(1):141–156, 1998.

[2] S. Billey and A. Crites. Rational smoothness and affine Schubert varieties of type A. In 23rd ICFPSAC, 2011,
Discrete Math. Theor. Comput. Sci. Proc., AO, pages 171–181.

[3] S. Billey and A. Postnikov. Smoothness of Schubert varieties via patterns in root subsystems. Adv. in Appl.
Math., 34(3):447–466, 2005.

[4] J. B. Carrell. The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert
varieties. In Algebraic groups and their generalizations: classical methods (Uni. Park, PA, 1991), volume 56 of
Proc. Sympos. Pure Math., pages 53–61. AMS, Providence, RI, 1994.

[5] V. Lakshmibai and B. Sandhya. Criterion for smoothness of Schubert varieties in Sl(n)/B. Proc. Indian Acad.
Sci. Math. Sci., 100(1):45–52, 1990.


