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Definition. The set of points {µ1, . . . , µs} ⊂ Qn is called saturated if

Z>0(µ1, . . . , µs) = Z(µ1, . . . , µs) ∩Q>0(µ1, . . . , µs),

where Z>0(µ1, . . . , µs) = {n1µ1 + n2µ2 + . . .+ nsµs | ni ∈ Z, ni > 0}.

Definition. The set of points {µ1, . . . , µs} ⊂ Qn is called hereditarily normal if each of
its subset is saturated.

Let us give some examples of hereditarily normal sets of points.

Example 1 (B. Sturmfels [9, 10]). Let e1, . . . , en be the standard basis of Zn. The set

{ei − ej | 1 6 i, j 6 n}

is hereditarily normal.

Example 2 (H. Ohsugi, T. Hibi [7] & A. Simis, W. Vasconcelos, R. Villarreal [8]). To
a finite graph Γ with n vertices, we can associate the following finite collection M(Γ) of
vectors in the lattice Zn:

M(Γ) = {ei + ej | (ij) is an edge of Γ},

where e1, e2, . . . , en is the standard basis of Zn. The saturation property for this set is
equivalent to the fact that for two arbitrary minimal odd cycles C and C′ in Γ, either
C and C′ have a common vertex or there exists an edge of Γ joining a vertex of C with
a vertex of C′.

Definition. A realizable matroid is a set of subsets in an n-element set with the fol-
lowing property: there exist n vectors in Ck such that for every subset presented in our
list, and only for them, the corresponding vectors are linearly independent. A base of a
matroid is any maximal (with respect to inclusion) subset from our list. An incidence
vector for a set from our list is a vector of length n of 0s and 1s encoding which elements
of the initial set appear in this subset.

Example 3 (N. White [11]). The set of incidence vectors of the bases of a realizable
matroid is saturated. Geometrically it means that that for every point y in the affine
cone over the classical Grassmannian Gr(k, n) the closure Ty is normal.

Let us pass to the geometric meaning of hereditary normality. Let T be an algebraic
torus and let V be a rational T -module. We denote by Λ = Λ(T ) the character lattice
of T . With respect to the T -action, the module V can be diagonalized:

V =
⊕

µ∈Λ

Vµ, where Vµ = {v ∈ V | tv = µ(t)v ∀ t ∈ T }.

We denote by M(V ) = {µ ∈ Λ |Vµ 6= 0} the set of weights of V . Each nonzero vector v
in V has its weight decomposition v = vµ1

+ · · · + vµs
, vµi

∈ Vµi
, vµi

6= 0. Denote by
M(v) the set {µ1, . . . , µs}. We may generate a semigroup Z>0(µ1, . . . , µs) with these
weights. We may also consider a sublattice Z(µ1, . . . , µs) and a rational polyhedral cone
Q>0(µ1, . . . , µs) in the space ΛQ := Λ⊗Z Q.

Lemma 1 ([3, I, §1, Lemma 1]). The closure Tv of the T -orbit of a vector v is normal
if and only if the set M(v) is saturated.

The closure of every T -orbit is normal if and only if the set M(V ) is hereditarily
normal.

J. Morand [6] classified all semisimple affine algebraic groups such that all T -orbit
closures in the adjoint module are normal.

For projective T -actions, a combinatorial criterion can also be formulated. Let X(v)
be the closure of the T -orbit T 〈v〉 of a point 〈v〉 ∈ P(V ) in the projectivisation of a
rational T -module V . Let P (v) be the convex hull of M(v) in ΛQ. Then X(v) is normal
if and only if the set {µ−µ0 | µ ∈ M(v)} is saturated for every vertex µ0 of the polytope
P (v). This and other criteria are given by J.B. Carrell and A. Kurth [2].

Let G be a connected simply connected semisimple algebraic group and T be a max-
imal torus in G. We have solved the following problem.

Find all pairs (G, V ) of a group G as stated above and of a simple
rational G-module V such that for each vector v ∈ V the closure
of its T -orbit is a normal affine algebraic variety.

Theorem 1 (K, I. Bogdanov [1], [4], [5]). For the following types of simple algebraic
groups and the corresponding modules, and for their dual modules, the closures of all
maximal torus orbits are normal. In all other cases, the module contains a maximal
torus orbit with nonnormal closure.

Root system Highest weight
An, n > 1 π1

An, n > 1 π1 + πn ( [6, 9, 10])
A1 3π1

A1 4π1

A2 2π1

A3 π2

A4 π2

A5 π2

A5 π3

Bn, n > 2 π1

B2 π2

B2 2π2

B3 π3

Root system Highest weight
B4 π4

Cn, n > 3 π1

C3 π2

C4 π2

Dn, n > 4 π1

D4 π2

D4 π3

D4 π4

D5 π4

D6 π5

D6 π6

F4 π4

G2 π1

The proof of the theorem consists of several steps:

0. Guess the answer
1. Show non-saturated subsets of weights for all the modules not listed in Thm. 1
2. Prove hereditary normality for the sets of weights of all the modules from Thm. 1

1. Negative cases

Unexpectedly, this property almost never holds for the fundamental representations
of SL(n). It is one of the most difficult negative cases.

Example 4. Non-saturated subsets for the fundamental representations π2 of SL(7)
and SL(8) can be encoded with the following pictures:

e1

e2 e3

e4 e5 e6 e7 e1

e2

e3

e4

e5

e6

e7e8

The answers for (SL(n), πk) and (SL(n), πn−k) are the same due to the fact that
combinatorially the sets M(V ) coincide. We also use the following lemma.

Lemma 2. A non-saturated subset in M(V ) for a pair (SL(n), πk) can be transformed
into a non-saturated subset for the pair SL(n+ k), πk.

Now we use Euclid’s algorithm and reduce any pair (SL(n), πk) which is not men-
tioned in the theorem, to a ”negative” one.

To deal with the other cases, we use the following simple lemma.

Lemma 3. If the set of weights of the representation with the highest weight λ is a
subset in the set of weights of the representation with the highest weight µ and we know
a non-saturated subset for λ, then we can use it as a non-saturated subset for µ.

2. Positive cases

Let us describe some methods used to prove hereditary normality.

Definition. Assume that the set of vectors M ⊂ Qn has rank d, d 6 n, and let
L = 〈v | v ∈ M〉 be the linear span of vectors from M . The set M is called unimod-
ular if for any linearly independent vectors v1, . . . , vd ∈ M the d-dimensional volume
vold(v1, v2, . . . , vd) has the same absolute value.

Lemma 4 ([9, Theorem 3.5]). Any unimodular set is hereditarily normal.

Example 5. For the representation V (λ) of SL(6) with the highest weight λ = π3, the
corresponding set M(λ) = {(ε1, . . . , ε6) | εi = ±1,

∑
εi = 0} (up to dilatation). It is

unimodular, hence hereditarily normal.

Definition. More generally, we say that a subset M ⊂ Qn of rank d is almost unimod-
ular if we can choose a subset {v1, v2, . . . , vd} ⊆ M such that

vold(v1, v2, . . . , vd) = m,

and for any other vector w ∈ M and each i the value

vold(v1, v2, . . . , v̂i, . . . , vd, w)

is divisible by m, i.e. equals km for some k ∈ Z.
In other words, M is almost unimodular if and only if the lattice Z(M) has a basis

consisting of elements of M .

Almost unimodular sets are used to prove that certain sets of vectors are hereditarily
normal. We argue by contradiction supposing that in the given set M , there exists a
non-saturated subset (v1, . . . , vr) with vector v0 being a ”hole”. Then, using almost
unimodularity of M , we analyze coefficients of the corresponding Q>0-combination for
v0. If we take a ”minimal” v0, then there is a finite number of possible values for its co-
efficients. Then, using this data and additional information about the weight lattice, we
show that (v1, . . . , vr) is not a non-saturated subset. This implies that M is hereditarily
normal.

Example 6. For the representation V (λ) of SO(9) with the highest weight λ = π4 (the
root system B4), the set of weights is

M(V ) = {(±1,±1,±1,±1)}

up to dilatation. The values of all nonzero determinants in M(V ) equal ±8 and ±16,
hence it is almost unimodular, and we managed to prove that it is hereditarily normal.

Example 7. For the representation V (λ) of Spin(10) with the highest weight λ = π5

(the root system D5), the set of weights is

M(V ) = {(±1,±1,±1,±1,±1) | even number of minuses}

up to dilatation. Here the nonzero determinants can attain values 16, 32, or 48, and via
some thorough analysis we proved that this set is also hereditarily normal.
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