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Schubert varieties and Bott-Samelson resolutions

Let X ∈ Smk and V be a vector bundle on X endowed with a full flag of subbundles V• = (V1 ⊂ ··· ⊂ Vn−1 ⊂ V ). Let us consider
π : F`(V )→ X, the full flag bundle associated to V , and the universal full flag of quotient bundles (π∗V � Qn−1 � . . .� Q1).
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Definition

As a set the Schubert variety associated to ω ∈ Sn is defined as

Ωω := {x ∈ F`(V ) | rank(π∗Vi(x)→ Qj(x)) ≤ rω(i, j) ∀i, j}

where the function rω is given by rω(i, j) := |{k ≤ j | ω(k) ≤ i}| .

Remark.

1. For the Schubert variety associated to ω0 =

Å
1 2 . . . n
n n− 1 . . . 1

ã
we have Ωω0 ' X. As a consequence

Ωω0
∈ Smk.

2. In general a Schubert variety Ωω needs not to be a smooth scheme.

Definition

Let I be the l-tuple (i1, i2, . . . , il) with ik ∈ {1, . . . , n − 1}. The Bott-Samelson resolutions rI : RI → F`(V ) are
defined recursively:

• if l = 0, then I = ∅, R∅ := X and r∅ = i : X → F`(V ) is the embedding associated to V•;

• if l > 0, then I = (I ′, j) and by the inductive hypothesis rI′ : RI′ → F`(V ) has already been defined. One then
considers the following fiber diagram

RI′ ×Yj
F`(V )

pr2 //

pr1

��

F`(V )

ϕj

��
RI′

rI′ // F`(V )
ϕj // Yj

and sets RI := RI′ ×Yj
F`(V ) and rI := pr2. Here Yj denotes the bundle of partial flags with only the j-th

level missing.

Double Schubert and Grothendieck polynomials

Definition (Lascoux-Schützenberger [5])

Fix n ∈ N. For each i ∈ {1, . . . , n− 1} the divided difference operators ∂i and the isobaric divided difference operators
πi on Z[x,y] are defined by

i) ∂iP =
P − σi(P )

xi − xi+1
; ii) πiP =

(1− xi+1)P − (1− xi)σi(P )

xi − xi+1
,

where σi is the operator exchanging xi and xi+1 and 1 represents the identity operator.
For ω ∈ Sn the double Schubert polynomial Sω and the double Grothendieck polynomial Gω are defined as
follows:

• if ω = ω0 then

i) Sω0
:=

∏
i+j≤k

(xi − yj) ; ii) Gω0
:=

∏
i+j≤k

(xi + yj − xiyj) ;

• if ω 6= ω0 then there exists an elementary transposition si = (i i+ 1) such that l(ω) < l(ωsi): one then sets

i) Sω := ∂iSωsi ; ii) Gω := πiGωsi .

The link between Schubert varieties, Bott-Samelson resolution and double Schubert and Grothendieck polynomials is
illustrated by the following two theorems:

Theorem 1.(Fulton [2])

Let ω ∈ Sn and let the l-tuple I = (i1, . . . , il) correspond to a minimal length decomposition of ω0ω, i.e. ω0ω = sI :=
si1 · · · sil with minimal l. Then in the Chow ring CH∗(F`(V )) one has

[Ωω]CH∗ = Sω(c1(M1), . . . , c1(Mn), c1(L1), . . . , c1(Ln)) = rI∗[RI ]CH∗ .

Theorem 2.(Fulton-Lascoux [3])

Let ω ∈ Sn and let the l-tuple I = (i1, . . . , il) correspond to a minimal length decomposition of ω0ω. Then in the
Grothendieck ring of vector bundles K0(F`(V )) one has

[OΩω
]K0 = Gω(c1(M1), . . . , c1(Mn), c1(L∨1 ), . . . , c1(L∨n)) = rI∗[RI ]K0 .

Since the Chow ring CH∗ and the graded Grothendieck ring of vector bundles K0[β, β−1] := K0⊗ZZ[β, β−1] are both examples
of oriented cohomology theories one may ask the following

Question:
Is there an analogue of theorems 1 and 2 for other oriented cohomology theories and in particular for algebraic cobor-
dism?

The proof for both theorems is essentially divided into three parts:

1. compute the fundamental class of Ωω0 in CH∗(F`(V )) (respectively K0(F`(V )));

2. find an explicit expression for the operators ϕ∗jϕj∗ on CH∗(F`(V )) (respectively K0(F`(V ))) hence obtaining a description
of the classes rI∗[RI ];

3. show that for I of minimal length these classes coincide with the fundamental class of the corresponding Schubert variety.

Algebraic cobordism and oriented cohomology theories

Definition

An oriented cohomology theory on Smk is given by

1. An additive functor A∗ : Smop
k → R∗;

2. For each projective morphism f : Y → X in Smk of relative codimension d, a homomorphism of graded A∗(X)-
modules:

f∗ : A∗(Y )→ A∗+d(X) .

These need to satisfy the projective bundle formula, the extended homotopy property and certain compatibil-
ities concerning the pull-back morphisms f∗ and the push-forward morphisms g∗.

Proposition (Levine-Morel [6])

Let A∗ be an oriented cohomology theory on Smk. A∗ admits a theory of Chern classes and for any line bundle L on
X ∈ Smk the class c1(L)n vanishes for n large enough. Moreover, there is a unique power series

FA(u, v) =
∑
i,j

ai,ju
ivj ∈ A∗(k)[[u, v]]

with ai,j ∈ A1−i−j(k), such that, for any X ∈ Smk and any pair of line bundles L, M on X, we have

FA(c1(L), c1(M)) = c1(L⊗M) .

In addition, the pair (A∗(k), FA) is a commutative formal group law of rank one with inverse χA ∈ A∗(k)[[u]].

Examples: • For the Chow ring CH∗ one has: FCH(u, v) = u+ v , χCH(u) = −u;
• For K0[β, β−1] one has: FK0[β,β−1](u, v) = u+ v − βuv , χK0[β,β−1](u) = −u

1−βu .

Theorem 3. (Levine-Morel [6])

Let k be a field of characteristic 0.

1. Algebraic cobordism X 7→ Ω∗(X) is an oriented cohomology theory on Smk and it is universal among such the-
ories: given an oriented cohomology theory A∗ on Smk, there exists a unique morphism of oriented cohomology
theories

ϑA∗ : Ω∗ → A∗ .

2. The canonical map
Ω∗ ⊗L∗ Z→ CH∗

induced by ϑCH∗ is an isomorphism of oriented cohomology theories.

3. The canonical map
Ω∗ ⊗L∗ Z[β, β−1]→ K0[β, β−1]

induced by ϑK0[β,β−1] is an isomorphism of oriented cohomology theories.

In [4] Hornbostel and Kiritchenko computed the classes rI∗[RI ]Ω∗ for X = Spec k. In particular they addressed the
problem associated to part 2 of the proof: describing explicitly the operators ϕ∗jϕj∗.

Proposition

Let ϕ : P(E)→ X be a P1-bundle and Aϕ : Ω∗(P(E))→ Ω∗(P(E)) be the operator obtained from

Ω∗(X)[[x1, x2]]
A−→ Ω∗(X)[[x1, x2]]

f 7−→ (1 + σ1)
f

FΩ(x1, χΩ(x2))
,

by substituting the Chern roots of E for x1, x2. Then Aϕ = ϕ∗ϕ∗.

Main results and an application to connected K-theory

In order to complete the description of the push-forward classes of Bott-Samelson resolutions rI∗[RI ]Ω∗ , one still needs to
compute the fundamental class [Ωω0

]Ω∗ .

Proposition

As an element of Ω∗(F`(V )) the fundamental class of the Schubert variety of highest codimension Ωω0 can be expressed as

[Ωω0
]Ω∗ =

∏
i+j≤n

FΩ(c1(Mi), c1(L∨j )) .

Once this is known it is finally possible to describe all remaining classes. If the operators Aϕ associated to the P1-bundle
ϕj : F`(V )→ Yj j ∈ {1, . . . , n− 1} are denoted by Aj , one has the following result:

Theorem 4.

Let I = (i1, . . . , in) be an l-tuple and let rI : RI → F`(V ) be the associated Bott-Samelson resolution. Then

rI∗[RI ]Ω∗ = Ail · · ·Ai1 [Ωω0
]Ω∗ (1)

An interesting application of this formula is represented by its specialization to connected K-theory, an oriented cohomology

theory defined as CK∗ := Ω∗ ⊗L∗ Z[β] which generalizes both CH∗ and K0[β, β−1].

Corollary.

When specialized to CK∗, (1) recovers the double β-polynomials defined by Fomin and Kirillov in [1].

rI∗[RI ]CK∗ = ϑCK∗(rI∗[RI ]Ω∗) = H(−β)
ω (c1(M1), . . . , c1(Mn), c1(L∨1 ), . . . , c1(L∨n)) .

Definition
Fix n ∈ N. For ω ∈ Sn the double β polynomial H

(β)
ω ∈ Z[β][x,y] is defined as follows:

• if ω = ω0 then H(β)
ω0

:=
∏
i+j≤k

(xi + yj + βxiyj) ;

• if ω 6= ω0 then there exists an elementary transposition si such that l(ω) < l(ωsi) and one sets

H(β)
ω := φiH

(β)
ωsi .

For each i ∈ {1, . . . , n− 1} the β-divided difference operator φi on Z[β][x,y] is defined by setting

φiP = (1 + σi)
(1 + βxi+1)P

xi − xi+1
=

(1 + βxi+1)P − (1 + βxi)σi(P )

xi − xi+1
,

where σi is the operator exchanging xi and xi+1 and 1 represents the identity operator.
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