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Schubert varieties and Bott-Samelson resolutions

Let X € Smy and V be a vector bundle on X endowed with a full flag of subbundles Vg = (V; C -+ C V,,_1 C V). Let us consider
7 FUV) — X, the full flag bundle associated to V', and the universal full flag of quotient bundles (7*V — Q,—1 — ... = Q).
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[ Definition

As a set the Schubert variety associated to w € S, is defined as

Q= {z € FUV) | rank(7"V;(z) = Q;(x)) < ru(4,7) Vi, j}

where the function r,, is given by 7, (i,7) := |[{k < j | w(k) <i}|.

Remark.

. . 1 2
1. For the Schubert variety associated to wg = ( ) we have Q,, ~ X. As a consequence

n n—1 ... 1
QWOESmk.

2. In general a Schubert variety {2, needs not to be a smooth scheme.

[ Definition

Let I be the I-tuple (41,12, ...
defined recursively:

,i) with i € {1,...,n — 1}. The Bott-Samelson resolutions r; : Ry — F{(V) are

e if[=0,then I =0, Ry := X and ry =i : X — FL(V) is the embedding associated to Vs;

e if [ > 0, then I = (I',j) and by the inductive hypothesis r; : Ry — F€(V) has already been defined. One then
considers the following fiber diagram

Ry xy, FUV) rre FU(V)
Ry T FUV) sy

and sets Ry := Ry xy, F{(V) and ry := pry. Here Y; denotes the bundle of partial flags with only the j-th
level missing.

Double Schubert and Grothendieck polynomials

Definition (Lascoux-Schiitzenberger [5])

Fix n € N. For each ¢ € {1,...,n — 1} the divided difference operators 9; and the isobaric divided difference operators
m; on Z[x,y] are defined by

P—O’i(P)

Li — Tit1

. Z’L) P = (1 - xH_l)P - (1 - IL)O'L(P)
7 ' Li — Tit1 7

i) ;P =

where o; is the operator exchanging z; and x;,1 and 1 represents the identity operator.
For w € S,, the double Schubert polynomial &, and the double Grothendieck polynomial &, are defined as
follows:

e if w = wp then

i) Gupi= [[ @i—wy) 5 i) &= [] (@i+y—ziyy);

i+j<k i<k
o if w = wp then there exists an elementary transposition s; = (i ¢ + 1) such that I(w) < l(ws;): one then sets

i) 6, := 0,6y, ; ) S, =mB,,, .

The link between Schubert varieties, Bott-Samelson resolution and double Schubert and Grothendieck polynomials is
illustrated by the following two theorems:

Theorem 1.(Fulton [2])

Let w € S, and let the I-tuple I = (i1,...,7;) correspond to a minimal length decomposition of wyw, i.e. wow = sy :=
Siy - -+ 84, with minimal . Then in the Chow ring CH*(F¢(V')) one has

[Qw]CH* = GW(Cl(Ml), ey Cl(ﬂfn), Cl(Ll), e ,Cl(Ln)) = 7'1*[RI]CH* .

Theorem 2.(Fulton-Lascouz [3])

Let w € S,, and let the I-tuple I = (41,...,%;) correspond to a minimal length decomposition of wow. Then in the
Grothendieck ring of vector bundles K°(F¢(V)) one has

[OQM}KO = Qﬁw(cl(JWl),. .. ,Cl(Mn),Cl(L\l/),. . ,Cl(LX)) = ’I’]*[RI]KO .

Since the Chow ring CH* and the graded Grothendieck ring of vector bundles K°[3, 371] := K°®zZ[3, ~!] are both examples
of oriented cohomology theories one may ask the following

Question:
Is there an analogue of theorems 1 and 2 for other oriented cohomology theories and in particular for algebraic cobor-
dism?

The proof for both theorems is essentially divided into three parts:
1. compute the fundamental class of Q, in CH*(F{(V)) (respectively K°(FL(V)));

2. find an explicit expression for the operators @}p;. on CH*(FL(V)) (respectively K°(F£(V))) hence obtaining a description
of the classes ry.[R;];

3. show that for I of minimal length these classes coincide with the fundamental class of the corresponding Schubert variety.

Algebraic cobordism and oriented cohomology theories

[ Definition

An oriented cohomology theory on Sm, is given by

1. An additive functor A* : Sm;” — R*;

2. For each projective morphism f :Y — X in Smy of relative codimension d, a homomorphism of graded A*(X)-
modules:
fo i AN(Y) = AH(X) .

These need to satisfy the projective bundle formula, the extended homotopy property and certain compatibil-
ities concerning the pull-back morphisms f* and the push-forward morphisms g,.

Proposition (Levine-Morel [6])

Let A* be an oriented cohomology theory on Smy. A* admits a theory of Chern classes and for any line bundle L on
X € Smy, the class ¢; (L)™ vanishes for n large enough. Moreover, there is a unique power series

Fa(u,v) = Zai7j1fvj € A*(k)[[u,v]]
0,J
with a; ; € A*7"7J(k), such that, for any X € Smy, and any pair of line bundles L, M on X, we have
FA(Cl(L)7 Cl(]\/[)) = Cl(L ® M) .
In addition, the pair (A*(k), Fa) is a commutative formal group law of rank one with inverse x4 € A*(k)[[u]].

Examples: e For the Chow ring CH* one has: Fog(u,v) =u+v, xcr(u) = —u;
e For KY[3, 37'] one has: Fiog g—1j(u,v) = u+v— fuv , xgoiz,s-1)(u) = -

Theorem 3. (Levine-Morel [6])
Let k& be a field of characteristic 0.

1. Algebraic cobordism X — Q*(X) is an oriented cohomology theory on Smy, and it is universal among such the-
ories: given an oriented cohomology theory A* on Smy, there exists a unique morphism of oriented cohomology
theories

19,4* Q= AT

2. The canonical map
Q" Q72— CH*

induced by Yo g+ is an isomorphism of oriented cohomology theories.

3. The canonical map
O @u- Z[6, 871 = K°[8,671]

induced by ¥xog,3-1] is an isomorphism of oriented cohomology theories.

In [4] Hornbostel and Kiritchenko computed the classes ry.[Rr]o+ for X = Speck. In particular they addressed the
problem associated to part 2 of the proof: describing explicitly the operators ¢ ;..

Proposition
Let ¢ : P(E) — X be a P'-bundle and A, : Q*(P(E)) — Q*(P(E)) be the operator obtained from

O (X)[[er, 22]] 2 Q5(X)|[1, 2]

f

f e ) @)

by substituting the Chern roots of E for z1,z2. Then A, = ¢*p..

Main results and an application to connected K-theory

In order to complete the description of the push-forward classes of Bott-Samelson resolutions 77.[R;]q«, one still needs to
compute the fundamental class [, ]

Proposition

As an element of Q*(F¢(V')) the fundamental class of the Schubert variety of highest codimension €2, can be expressed as

[Quolo- = [ Faler(M;), er(L))) -
i+j<n

Once this is known it is finally possible to describe all remaining classes. If the operators A, associated to the P!-bundle
w;  FUV)—=Y; je{l,...,n—1} are denoted by A;, one has the following result:

Theorem 4.

Let I = (i1,...,4y,) be an [-tuple and let r; : Ry — F£(V) be the associated Bott-Samelson resolution. Then

rrsRrlos = Aip - Aiy [Quo- (1)

An interesting application of this formula is represented by its specialization to connected K-theory, an oriented cohomology
theory defined as CK* := Q* @« Z[f] which generalizes both CH* and K°[3, 371].

Corollary.
When specialized to CK*, (1) recovers the double S-polynomials defined by Fomin and Kirillov in [1].

rio[Rilcxs = Yok (ri[Rilar) = 95 (c1(My), ... ,e1(My), e (LY), ..., ex (L)) -

Definition
Fix n € N. For w € S, the double 3 polynomial £ ¢ Z[B][x,y] is defined as follows:

e if w = wy then ﬁﬂ,ﬁg) = H (x; + Y + 5931"!/]') ;
i+j<k

o if w # wp then there exists an elementary transposition s; such that [(w) < l(ws;) and one sets
9 = ¢l .
For each ¢ € {1,...,n — 1} the -divided difference operator ¢; on Z[S][x,y] is defined by setting

5P = (14 o (LE BT (Lt Bre)P = (Lt fao(P)
9 i+1 Z; Tit+1

where o; is the operator exchanging z; and x;4; and 1 represents the identity operator.
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