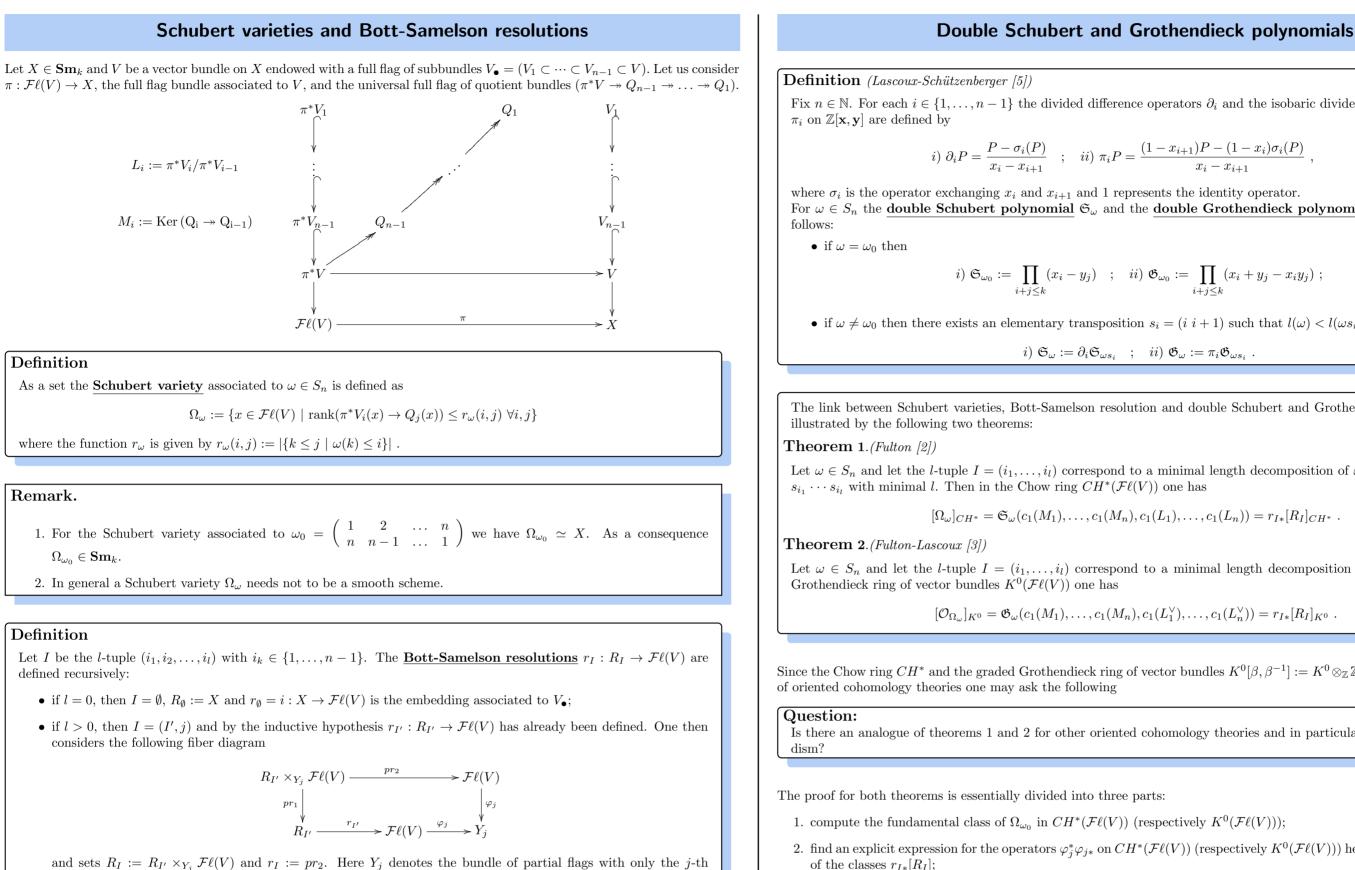
Thom-Porteous formulas in algebraic cobordism

Thomas Hudson

advisor : Prof. Marc Levine



level missing.

UNIVERSITÄT D_U_I_S_B_U R G

MSJ-SI 2012 Schubert calculus

International summer school and conference on Schubert calculus

Osaka City University

Offen im Denken

Definition (Lascoux-Schützenberger [5])

Fix $n \in \mathbb{N}$. For each $i \in \{1, \ldots, n-1\}$ the divided difference operators ∂_i and the isobaric divided difference operators

)
$$\partial_i P = \frac{P - \sigma_i(P)}{x_i - x_{i+1}}$$
; *ii*) $\pi_i P = \frac{(1 - x_{i+1})P - (1 - x_i)\sigma_i(P)}{x_i - x_{i+1}}$

where σ_i is the operator exchanging x_i and x_{i+1} and 1 represents the identity operator. For $\omega \in S_n$ the double Schubert polynomial \mathfrak{S}_{ω} and the double Grothendieck polynomial \mathfrak{S}_{ω} are defined as

i)
$$\mathfrak{S}_{\omega_0} := \prod_{i+j \le k} (x_i - y_j)$$
; *ii*) $\mathfrak{G}_{\omega_0} := \prod_{i+j \le k} (x_i + y_j - x_i y_j)$;

• if $\omega \neq \omega_0$ then there exists an elementary transposition $s_i = (i \ i + 1)$ such that $l(\omega) < l(\omega s_i)$: one then sets

$$i) \mathfrak{S}_{\omega} := \partial_i \mathfrak{S}_{\omega s_i} \quad ; \quad ii) \mathfrak{G}_{\omega} := \pi_i \mathfrak{G}_{\omega s_i}$$

The link between Schubert varieties, Bott-Samelson resolution and double Schubert and Grothendieck polynomials is illustrated by the following two theorems:

Let $\omega \in S_n$ and let the *l*-tuple $I = (i_1, \ldots, i_l)$ correspond to a minimal length decomposition of $\omega_0 \omega$, i.e. $\omega_0 \omega = s_I :=$ $s_{i_1} \cdots s_{i_l}$ with minimal l. Then in the Chow ring $CH^*(\mathcal{F}\ell(V))$ one has

$$[\Omega_{\omega}]_{CH^*} = \mathfrak{S}_{\omega}(c_1(M_1), \dots, c_1(M_n), c_1(L_1), \dots, c_1(L_n)) = r_{I^*}[R_I]_{CH^*}$$

Let $\omega \in S_n$ and let the *l*-tuple $I = (i_1, \ldots, i_l)$ correspond to a minimal length decomposition of $\omega_0 \omega$. Then in the Grothendieck ring of vector bundles $K^0(\mathcal{F}\ell(V))$ one has

$$[\mathcal{O}_{\Omega_{\omega}}]_{K^0} = \mathfrak{G}_{\omega}(c_1(M_1), \dots, c_1(M_n), c_1(L_1^{\vee}), \dots, c_1(L_n^{\vee})) = r_{I*}[R_I]_{K^0} .$$

Since the Chow ring CH^* and the graded Grothendieck ring of vector bundles $K^0[\beta, \beta^{-1}] := K^0 \otimes_{\mathbb{Z}} \mathbb{Z}[\beta, \beta^{-1}]$ are both examples of oriented cohomology theories one may ask the following

Is there an analogue of theorems 1 and 2 for other oriented cohomology theories and in particular for algebraic cobor-

The proof for both theorems is essentially divided into three parts:

- 1. compute the fundamental class of Ω_{ω_0} in $CH^*(\mathcal{F}\ell(V))$ (respectively $K^0(\mathcal{F}\ell(V))$);
- 2. find an explicit expression for the operators $\varphi_i^* \varphi_{j*}$ on $CH^*(\mathcal{F}\ell(V))$ (respectively $K^0(\mathcal{F}\ell(V))$) hence obtaining a description of the classes $r_{I*}[R_I]$;
- 3. show that for I of minimal length these classes coincide with the fundamental class of the corresponding Schubert variety.

Algebraic cobordism and oriented cohomology theories

Definition

An oriented cohomology theory on \mathbf{Sm}_k is given by

- 1. An additive functor $A^* : \mathbf{Sm}_{\iota}^{\mathrm{op}} \to \mathbf{R}^*$;
- 2. For each projective morphism $f: Y \to X$ in \mathbf{Sm}_k of relative codimension d, a homomorphism of graded $A^*(X)$ modules:

 $f_*: A^*(Y) \to A^{*+d}(X)$.

These need to satisfy the projective bundle formula, the extended homotopy property and certain compatibilities concerning the pull-back morphisms f^* and the push-forward morphisms g_* .

Proposition (Levine-Morel [6])

Let A^* be an oriented cohomology theory on \mathbf{Sm}_k . A^* admits a theory of Chern classes and for any line bundle L on $X \in \mathbf{Sm}_k$ the class $c_1(L)^n$ vanishes for n large enough. Moreover, there is a unique power series

$$F_A(u,v) = \sum_{i,j} a_{i,j} u^i v^j \in A^*(k)[[u,v]]$$

with $a_{i,j} \in A^{1-i-j}(k)$, such that, for any $X \in \mathbf{Sm}_k$ and any pair of line bundles L, M on X, we have

 $F_A(c_1(L), c_1(M)) = c_1(L \otimes M) .$

In addition, the pair $(A^*(k), F_A)$ is a commutative formal group law of rank one with inverse $\chi_A \in A^*(k)[[u]]$.

Examples: • For the Chow ring CH^* one has: $F_{CH}(u, v) = u + v$, $\chi_{CH}(u) = -u$; • For $K^0[\beta, \beta^{-1}]$ one has: $F_{K^0[\beta, \beta^{-1}]}(u, v) = u + v - \beta uv$, $\chi_{K^0[\beta, \beta^{-1}]}(u) = \frac{-u}{1-\beta u}$.

Theorem 3. (Levine-Morel [6])

Let k be a field of characteristic 0.

1. Algebraic cobordism $X \mapsto \Omega^*(X)$ is an oriented cohomology theory on \mathbf{Sm}_k and it is universal among such theories: given an oriented cohomology theory A^* on \mathbf{Sm}_k , there exists a unique morphism of oriented cohomology theories

 $\vartheta_{A^*}: \Omega^* \to A^*$.

2. The canonical map

 $\Omega^* \otimes_{\mathbb{L}^*} \mathbb{Z} \to CH^*$

induced by ϑ_{CH^*} is an isomorphism of oriented cohomology theories.

3. The canonical map

 $\Omega^* \otimes_{\mathbb{L}^*} \mathbb{Z}[\beta, \beta^{-1}] \to K^0[\beta, \beta^{-1}]$

induced by $\vartheta_{K^0[\beta,\beta^{-1}]}$ is an isomorphism of oriented cohomology theories

In [4] Hornbostel and Kiritchenko computed the classes $r_{I*}[R_I]_{\Omega^*}$ for $X = \operatorname{Spec} k$. In particular they addressed the problem associated to part 2 of the proof: describing explicitly the operators $\varphi_i^* \varphi_{i*}$.

Proposition

Let $\varphi : \mathbb{P}(E) \to X$ be a \mathbb{P}^1 -bundle and $A_{\varphi} : \Omega^*(\mathbb{P}(E)) \to \Omega^*(\mathbb{P}(E))$ be the operator obtained from

$$\Omega^*(X)[[x_1, x_2]] \xrightarrow{A} \Omega^*(X)[[x_1, x_2]]$$
$$f \longmapsto (1 + \sigma_1) \frac{f}{F_\Omega(x_1, \chi_\Omega(x_2))}$$

by substituting the Chern roots of E for x_1, x_2 . Then $A_{\varphi} = \varphi^* \varphi_*$.

Main results and an application to connected K-theory

In order to complete the description of the push-forward classes of Bott-Samelson resolutions $r_{I*}[R_I]_{\Omega^*}$, one still needs to compute the fundamental class $[\Omega_{\omega_0}]_{\Omega^*}$.

Proposition

As an element of $\Omega^*(\mathcal{F}\ell(V))$ the fundamental class of the Schubert variety of highest codimension Ω_{ω_0} can be expressed as

$$[\Omega_{\omega_0}]_{\Omega^*} = \prod_{i+j \le n} F_{\Omega}(c_1(M_i), c_1(L_j^{\vee})) .$$

Once this is known it is finally possible to describe all remaining classes. If the operators A_{α} associated to the \mathbb{P}^1 -bundle $\varphi_j : \mathcal{F}\ell(V) \to Y_j \ j \in \{1, \ldots, n-1\}$ are denoted by A_j , one has the following result:

Theorem 4.

Let $I = (i_1, \ldots, i_n)$ be an *l*-tuple and let $r_I : R_I \to \mathcal{F}\ell(V)$ be the associated Bott-Samelson resolution. Then

 $r_{I*}[R_I]_{\Omega^*} = A_{i_l} \cdots A_{i_1}[\Omega_{\omega_0}]_{\Omega^*}$

(1)

An interesting application of this formula is represented by its specialization to **connected** K-theory, an oriented cohomology theory defined as $CK^* := \Omega^* \otimes_{\mathbb{L}^*} \mathbb{Z}[\beta]$ which generalizes both CH^* and $K^0[\beta, \beta^{-1}]$.

Corollary.

When specialized to CK^* , (1) recovers the double β -polynomials defined by Fomin and Kirillov in [1].

$$r_{I*}[R_I]_{CK^*} = \vartheta_{CK^*}(r_{I*}[R_I]_{\Omega^*}) = \mathfrak{H}^{(-\beta)}_{\omega}(c_1(M_1), \dots, c_1(M_n), c_1(L_1^{\vee}), \dots, c_1(L_n^{\vee})) .$$

Definition

Fix $n \in \mathbb{N}$. For $\omega \in S_n$ the **double** β **polynomial** $\mathfrak{H}^{(\beta)}_{\omega} \in \mathbb{Z}[\beta][\mathbf{x}, \mathbf{y}]$ is defined as follows:

• if
$$\omega = \omega_0$$
 then

$$\mathfrak{H}_{\omega_0}^{(\beta)} := \prod_{i+j \le k} (x_i + y_j + \beta x_i y_j) ;$$

• if $\omega \neq \omega_0$ then there exists an elementary transposition s_i such that $l(\omega) < l(\omega s_i)$ and one sets

$$\mathfrak{H}^{(eta)}_{\omega} := \phi_i \mathfrak{H}^{(eta)}_{\omega s_i}$$

For each $i \in \{1, \ldots, n-1\}$ the β -divided difference operator ϕ_i on $\mathbb{Z}[\beta][\mathbf{x}, \mathbf{y}]$ is defined by setting

$$\phi_i P = (1 + \sigma_i) \frac{(1 + \beta x_{i+1})P}{x_i - x_{i+1}} = \frac{(1 + \beta x_{i+1})P - (1 + \beta x_i)\sigma_i(P)}{x_i - x_{i+1}}$$

where σ_i is the operator exchanging x_i and x_{i+1} and 1 represents the identity operator.

References

- [1] S. FOMIN AND A. N. KIRILLOV, Grothendieck polynomials and the Yang-Baxter equation, in Formal power series and algebraic combinatorics/Séries formelles et combinatorie algébrique, DIMACS, Piscataway, NJ, sd, pp. 183-189.
- [2] W. FULTON, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., 65 (1992), pp. 381-420.
- [3] W. FULTON AND A. LASCOUX, A Pieri formula in the Grothendieck ring of a flag bundle, Duke Math. J., 76 (1994), pp. 711–729.
- [4] J. HORNBOSTEL AND V. KIRITCHENKO, Schubert calculus for algebraic cobordism, J. Reine Angew. Math., 656 (2011), pp. 59-85.
- [5] A. LASCOUX AND M.-P. SCHÜTZENBERGER, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., 294 (1982), pp. 447-450.
- [6] M. LEVINE AND F. MOREL, Algebraic cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007.

Mathematisches Institut, Universität Duisburg-Essen thomas.hudson@stud.uni-due.de