Natural Bases for the Cohomology of Regular Nilpotent Hessenberg Varieties Elizabeth Drellich University of Massachusetts, Amherst

Schubert Classes and Billey's Formula

The set of Schubert classes $\{\sigma_w\}$ form a basis for the equivariant cohomology of the flag variety. An equivariant cohomology class in $H^*_T(GL_n(\mathbb{C})/B)$ can be thought of as a collection of n! elements of $\mathbb{C}[t_1, \ldots, t_n]$ each of which corresponds to an element $v \in S_n$. Billey identified these elements by giving an explicit formula for the localizations $\sigma_w(v)$ of the equivariant Schubert class σ_w at each permutation flag vB.

Billey's Formula. Fix a reduced word for $v = s_{b_1} s_{b_2} \cdots s_{b_{\ell(v)}}$ and let

$$\mathbf{r}(\mathbf{i}, v) = s_{b_1} s_{b_2} \cdots s_{b_{i-1}} (t_{b_i} - t_{b_i+1}).$$

Built from these terms, which are polynomials of degree 1, Billey's formula

$$\sigma_w(v) = \sum_{w=s_{b_{j_1}}s_{b_{j_2}}\cdots s_{b_{j_{\ell(w)}}}} \prod_{i=1}^{\ell(w)} \mathbf{r}(\mathbf{j_i}, v)$$

gives the localization of σ_w at the permutation flag vB. This is a polynomial of degree $\ell(w)$ in n variables with non-negative integer coefficients.

2 Hessenberg Varieties

We work with a subvariety $\mathcal{X}_{\mathcal{H}}$ of the full flag variety GL_n/B called a **regular nilpotent Hessenberg variety**. The variety $\mathcal{X}_{\mathcal{H}}$ is determined by a shape \mathcal{H} which is a subspace of $n \times n$ matrices containing the upper triangular matrices and which has a staircase boundary. Explicitly the matrix basis units $E_{(i,i)} \in \mathcal{H}$ for all i, and if $E_{(i,j)} \in \mathcal{H}$ then so are $E_{(k,j)}$ for k < i and $E_{(i,l)}$ for l > j. Given such a shape \mathcal{H}

• the variety $\mathcal{X}_{\mathcal{H}} = \{gB \in GL_n/B : g^{-1}Xg \in \mathcal{H}\}$ where X is the regular nilpotent $n \times n$ matrix (since X is fixed, it is suppressed in the notation),

• the set of coset representatives is $V_{\mathcal{H}} = \{v \in S_n : v^{-1}Xv \in \mathcal{H}\}.$ *Example.* In A_3 we have

$$X = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{H} = \begin{bmatrix} * & * & * & * \\ \hline 0 & * & * & * \\ 0 & * & * & * \\ 0 & 0 & 0 & * \end{bmatrix}, \quad \text{and} \quad V_{\mathcal{H}} = \{1, s_{\mathcal{H}}\}$$

Remark. The subvariety $\mathcal{X}_{\mathcal{H}}$ is not T-fixed, rather it is acted on by a one dimensional sub-torus S.

Main Conjecture

Harada and Tymoczko conjectured that a basis for the equivariant cohomology $H^*_S(\mathcal{X}_H)$ can be obtained by taking the equivariant Schubert classes σ_w for $w \in W_{\mathcal{H}} = \{w \in \mathcal{H}\}$ localized at the points $v \in V_{\mathcal{H}}$.

The conjecture has been proven for certain shapes \mathcal{H} including

Springer Variety	Peterson Variety	Modified Peter
[* * * * *]	$\left[* * * * * \right]$	[* * >
$\overline{0} * * * *$	* * * * *	* * >
0 0 * * *	$\overline{0} * * * *$	* * >
0 0 0 * *	0 0 * * *	0 0
0000*	$0 \ 0 \ 0 * *$	
	L J Harada-Tymoczko	L Bayegar

The conjecture is trivially true for the Springer variety. The modified Peterson variety contains the Peterson variety and allows non-zero entries in (3, 1).

terson Variety

* * * * * * * * * * * * 0 | * *n-Harada

4 **Computer Testing the Conjecture**

In order to prove that the classes $\sigma_w(v)_{v \in V_{\mathcal{H}}}$ such that $w \in W_{\mathcal{H}}$ give a basis of $H^*_S(\mathcal{X}_H)$, I have been working with the matrices $A_{\mathcal{H}} = (\sigma_w(v))_{\substack{w \in W_{\mathcal{H}} \ v \in V_{\mathcal{H}}}}$ and $\tilde{A}_{\mathcal{H}}$

where $\sigma_w(v)$ is Billey's formula and $A_{\mathcal{H}}$ is the image of $A_{\mathcal{H}}$ under the map $t_i \mapsto -it$. Harada and Tymoczko have shown that to prove the conjecture holds for a shape \mathcal{H} , it suffices to show that $A_{\mathcal{H}}$ has linearly independent columns. Using a program I wrote in Sage, I can compute the matrix $\tilde{A}_{\mathcal{H}}$ and determine whether det $A_{\mathcal{H}} = 0$. If det $A_{\mathcal{H}} \neq 0$ then the conjecture holds for that shape \mathcal{H} . *Example.* In A_4 consider the following

$$\mathcal{H} = \begin{bmatrix} * * * * * \\ * * * * * \\ 0 & 0 \\ 0 & * * \\ 0 & 0 \\ 0 & 0 \\ * & * \end{bmatrix}, \text{ and } W_{\mathcal{H}} = \begin{cases} * & * \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ * & * \end{cases}$$

The program calculates

$$\tilde{A}_{\mathcal{H}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & t & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2t & 2t^2 & 2t & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & t & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & t & t & 0 & 0 & 0 \\ 1 & t & 0 & 0 & t & t^2 & 0 & 0 \\ 1 & 2t & 2t^2 & 2t & t & 2t^2 & 2t^3 & 2t^2 \\ 1 & 0 & 0 & t & t & 0 & 0 & t^2 \end{bmatrix}$$
which has $\det \tilde{A}_{\mathcal{H}} = 4t^{12} \neq 0$.

This implies that the conjecture is true in this case.

Using my program I verified that the conjecture holds for all regular nilpotent Hessenberg varieties when working in types A_m for m < 5.

The Relationship between \mathcal{H} and \mathcal{H}^{\perp} 5

Given the regular nilpotent Hessenberg variety $\mathcal{X}_{\mathcal{H}}$, it is natural to compare it with $\mathcal{X}_{\mathcal{H}^{\perp}}$ where the shape \mathcal{H}^{\perp} is obtained from flipping the shape \mathcal{H} along its antidiagonal.

Example.

$$\mathcal{H} = \begin{bmatrix} * & * & * & * \\ * & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{bmatrix}, \quad \mathcal{H}^{\perp} =$$

Theorem (D). The coset representatives are related by

 $V_{\mathcal{H}^{\perp}} = w_0 V_{\mathcal{H}} w_0.$

The proof of this theorem gives rise to the geometric map GL

$$\begin{aligned} L_n(\mathbb{C})/B &\to \ GL_n(\mathbb{C})/B \\ gB &\mapsto w_0(g^{\top})^{-1}w_0B \end{aligned}$$

which restricts to a homeomorphism between regular nilpotent Hessenberg varieties $\mathcal{X}_{\mathcal{H}}$ and $\mathcal{X}_{\mathcal{H}^{\perp}}$. Even though it is not evident from Billey's formula, this gives the surprising conclusion that $H^*_S(\mathcal{X}_H) \cong H^*_S(\mathcal{X}_{H^{\perp}})$.

$$\left.\begin{array}{c}1, s_{3}, s_{3}s_{4}s_{3}, s_{4},\\, s_{1}s_{3}, s_{1}s_{3}s_{4}s_{3}, s_{1}s_{4}\end{array}\right\}$$
$$\left.\begin{array}{c}1, s_{3}, s_{3}s_{4}, s_{4},\\ s_{1}, s_{1}s_{3}, s_{1}s_{3}s_{4}, s_{4},\\ s_{1}, s_{1}s_{3}, s_{1}s_{3}s_{4}, s_{1}s_{4}\end{array}\right\}$$

Decomposable Hessenberg Varieties 6

 $\mathcal{H}=\mathcal{H}_1\oplus\mathcal{H}_2.$ Example.

The proof relies on

ullet If $\mathcal{H}=\mathcal{H}_1\oplus\mathcal{H}_2$ the Example.

the claims:
en
$$W_{\mathcal{H}} = W_{\mathcal{H}_1} \oplus W_{\mathcal{H}_2}$$
 and $V_{\mathcal{H}} = V_{\mathcal{H}_1} \oplus V_{\mathcal{H}_2}$.
 $V_{\mathcal{H}_1} = \{1, s_1\}$
 $V_{\mathcal{H}_2} = \{1, s_3, s_3 s_4 s_3, s_4\}$
and
 $W_{\mathcal{H}_1} = \{1, s_1\}$
 $V_{\mathcal{H}_2} = \{1, s_3, s_3 s_4, s_4\}$
r $w_1 \in W_{\mathcal{H}_1}$ and $w_2 \in W_{\mathcal{H}_2}$ and $v = v_1 \oplus v_2$ for $v_1 \in V_{\mathcal{H}_1}$ and
ey's formula has the property that $\sigma_w(v) = \sigma_{w_1}(v_1)\sigma_{w_2}(v_2)$.
 $s_1 \in W_{\mathcal{H}_1}$ $s_3 s_4 \in W_{\mathcal{H}_2}$
 $s_1 \in V_{\mathcal{H}_1}$ $s_3 s_4 s_3 \in V_{\mathcal{H}_2}$

ullet If $w=w_1\oplus w_2$ for $v_2 \in V_{\mathcal{H}_2}$ then Bille *Example.* Using

 $\sigma_{s_1s_3s_4}(s_1s_3s_4s_3) = (t_1 - t_2)(t_3 - t_4)(t_3 - t_5) = \sigma_{s_1}(s_1)\sigma_{s_3s_4}(s_3s_4s_3)$

• These show that if $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ then $A_{\mathcal{H}} = A_{\mathcal{H}_1} \otimes A_{\mathcal{H}_2}$. Example.

| | $\begin{bmatrix} 1 & 0 & 0 \\ 1 & t & 0 \end{bmatrix}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\widetilde{A}_{\mathcal{H}_1}$ | $\widetilde{A}_{\mathcal{H}_2}$ |
|-----------------|--|---|--|---|
| $\mathcal{H} =$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $= \begin{bmatrix} 1 & 0 \\ 1 & t \end{bmatrix} \otimes$ | $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & t & 0 & 0 \\ 1 & 2t & 2t^2 & 2t \\ 1 & 0 & 0 & t \end{bmatrix}$ |

References

- **96** (1999), no. 1, 205-224.

A regular nilpotent Hessenberg variety $\mathcal{X}_{\mathcal{H}}$ is said to be **decomposable** if

| * | * | * | * | | \mathcal{H}_1 | * * * |
|---|---|---|---|---|-----------------|-----------------|
| 0 | * | * | * | = | 0 0 | |
| 0 | * | * | * | | 0 0 | \mathcal{H}_2 |
| 0 | 0 | * | * | | 0 0 | |
| I | 1 | | - | | | |

Theorem (D). If $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ then $A_{\mathcal{H}} = A_{\mathcal{H}_1} \otimes A_{\mathcal{H}_2}$ and therefore has linearly independent columns if and only if both $A_{\mathcal{H}_1}$ and $A_{\mathcal{H}_2}$ do as well.

-S. Billey, "Kostant polynomials and the cohomology of G/B," Duke Math J.

-D. Bayegan and M. Harada, Poset Pinball, the Dimension Pair Algorithm, and Type A Regular Nilpotent Hessenberg Varieties, ISRN Geometry, vol. 2012, Article ID 254235, 34 pages, 2012. doi:10.5402/2012/254235

-M. Harada and J. Tymoczko, Poset pinball, GKM-compatible subspaces, and Hessenberg varieties, http://arxiv.org/abs/1007.2750.

-M. Harada and J. Tymoczko, A positive Monk formula in the S^1 -equivariant cohomology of type A Peterson varieties, http://arxiv.org/abs/0908.3517v1.