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1 Schubert Classes and Billey’s Formula
The set of Schubert classes {σw} form a basis for the equivariant cohomology
of the flag variety. An equivariant cohomology class in H∗T (GLn(C)/B) can be
thought of as a collection of n! elements of C[t1, . . . , tn] each of which corre-
sponds to an element v ∈ Sn. Billey identified these elements by giving an
explicit formula for the localizations σw(v) of the equivariant Schubert class σw
at each permutation flag vB.
Billey’s Formula. Fix a reduced word for v = sb1sb2 · · · sb`(v) and let

r(i, v) = sb1sb2 · · · sbi−1(tbi − tbi+1).
Built from these terms, which are polynomials of degree 1, Billey’s formula

σw(v) =
∑

w=sbj1
sbj2
···sbj`(w)

`(w)∏
i=1

r(ji, v)

gives the localization of σw at the permutation flag vB. This is a polynomial of
degree `(w) in n variables with non-negative integer coefficients.

2 Hessenberg Varieties
We work with a subvariety XH of the full flag variety GLn/B called a regular
nilpotent Hessenberg variety. The variety XH is determined by a shape H
which is a subspace of n×n matrices containing the upper triangular matrices
and which has a staircase boundary. Explicitly the matrix basis units E(i,i) ∈ H
for all i, and if E(i,j) ∈ H then so are E(k,j) for k < i and E(i,l) for l > j.

Given such a shape H

• the variety XH = {gB ∈ GLn/B : g−1Xg ∈ H} where X is the regular nilpo-
tent n× n matrix (since X is fixed, it is suppressed in the notation),
• the set of coset representatives is VH = {v ∈ Sn : v−1Xv ∈ H}.
Example. In A3 we have

X =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , H =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

 , and VH = {1, s2}

Remark. The subvariety XH is not T -fixed, rather it is acted on by a one dimen-
sional sub-torus S.

3 Main Conjecture
Harada and Tymoczko conjectured that a basis for the equivariant cohomol-
ogy H∗S(XH) can be obtained by taking the equivariant Schubert classes σw for
w ∈ WH = {w ∈ H} localized at the points v ∈ VH.

The conjecture has been proven for certain shapes H including

Springer Variety Peterson Variety Modified Peterson Variety
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


Harada-Tymoczko Bayegan-Harada

The conjecture is trivially true for the Springer variety. The modified Peterson
variety contains the Peterson variety and allows non-zero entries in (3, 1).

4 Computer Testing the Conjecture
In order to prove that the classes σw(v)v∈VH such that w ∈ WH give a basis of
H∗S(XH), I have been working with the matrices

AH = (σw(v))w∈WH
v∈VH

and ÃH

where σw(v) is Billey’s formula and ÃH is the image of AH under the map
ti 7→ −it. Harada and Tymoczko have shown that to prove the conjecture holds
for a shape H, it suffices to show that ÃH has linearly independent columns.

Using a program I wrote in Sage, I can compute the matrix ÃH and determine
whether det ÃH = 0. If det ÃH 6= 0 then the conjecture holds for that shape H.
Example. In A4 consider the following

H =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 , and

VH =

{
1, s3, s3s4s3, s4,

s1, s1s3, s1s3s4s3, s1s4

}

WH =

{
1, s3, s3s4, s4,

s1, s1s3, s1s3s4, s1s4

}
The program calculates

ÃH =



1 0 0 0 0 0 0 0
1 t 0 0 0 0 0 0
1 2t 2t2 2t 0 0 0 0
1 0 0 t 0 0 0 0
1 0 0 0 t 0 0 0
1 t 0 0 t t2 0 0
1 2t 2t2 2t t 2t2 2t3 2t2

1 0 0 t t 0 0 t2


which has det ÃH = 4t12 6= 0.

This implies that the conjecture is true in this case.

Using my program I verified that the conjecture holds for all regular nilpotent
Hessenberg varieties when working in types Am for m < 5.

5 The Relationship between H and H⊥
Given the regular nilpotent Hessenberg variety XH, it is natural to compare it
with XH⊥ where the shape H⊥ is obtained from flipping the shape H along its
antidiagonal.
Example.

H =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 , H⊥ =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗


Theorem (D). The coset representatives are related by

VH⊥ = w0VHw0.

The proof of this theorem gives rise to the geometric map
GLn(C)/B → GLn(C)/B

gB 7→ w0(g
>)−1w0B

which restricts to a homeomorphism between regular nilpotent Hessenberg
varieties XH and XH⊥ . Even though it is not evident from Billey’s formula, this
gives the surprising conclusion that H∗S(XH) ∼= H∗S(XH⊥).

6 Decomposable Hessenberg Varieties
A regular nilpotent Hessenberg variety XH is said to be decomposable if
H = H1 ⊕H2.
Example.

H =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 =


H1
∗ ∗ ∗
∗ ∗ ∗

0 0
0 0
0 0

H2


Theorem (D). If H = H1 ⊕ H2 then AH = AH1

⊗ AH2
and therefore has linearly

independent columns if and only if both AH1
and AH2

do as well.

The proof relies on the claims:

• If H = H1 ⊕H2 then WH = WH1
⊕WH2

and VH = VH1
⊕ VH2

.
Example.

VH1
= {1, s1}

WH1
= {1, s1}

and
VH2

= {1, s3, s3s4s3, s4}

WH2
= {1, s3, s3s4, s4}

• If w = w1 ⊕ w2 for w1 ∈ WH1
and w2 ∈ WH2

and v = v1 ⊕ v2 for v1 ∈ VH1
and

v2 ∈ VH2
then Billey’s formula has the property that σw(v) = σw1

(v1)σw2
(v2).

Example. Using
s1 ∈ WH1

s3s4 ∈ WH2

s1 ∈ VH1
s3s4s3 ∈ VH2

σs1s3s4(s1s3s4s3) = (t1 − t2)(t3 − t4)(t3 − t5) = σs1(s1)σs3s4(s3s4s3)

•These show that if H = H1 ⊕H2 then AH = AH1
⊗ AH2

.
Example.

ÃH =



1 0 0 0 0 0 0 0
1 t 0 0 0 0 0 0
1 2t 2t2 2t 0 0 0 0
1 0 0 t 0 0 0 0
1 0 0 0 t 0 0 0
1 t 0 0 t t2 0 0
1 2t 2t2 2t t 2t2 2t3 2t2

1 0 0 t t 0 0 t2


=

ÃH1
ÃH2[

1 0
1 t

]
⊗


1 0 0 0
1 t 0 0
1 2t 2t2 2t
1 0 0 t


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