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Summary of results

1.We give a new Pieri rule for k-Schur functions.
2.We introduce a new combinatorial structure called ABC’s
3.We prove that the weight generating function of ABC’s are
representatives for the cohomology classes of the affine Grassmannian.
4.We conjecture a statistic on ABC’s for the k-Schur expansion for
Hall-Littlewood polynomials (and prove for k large).

Inspiration

Pieri rule for Schur functions

h� sμ =
∑

λ=μ+hor �-strip

sλ

Gives rise to tableaux

hμ1hμ2 · · · hμ�
s∅ =

∑
λ

(# tableaux) sλ

Duality 〈hμ, mλ〉 = 〈sμ, sλ〉 = δλμ gives Schur weight generating function

sλ =
∑

μ

(# tableaux) mμ =
∑

tableau T

xT

Tableaux are central to counting problems including:
Computing intersections of Schubert varieties in the Grassmannian

sλ sμ =
∑

(# yamanouchi tableaux) sν

Computing Hall-Littlewood polynomials in terms of Schur functions

Hμ[X; t] =
∑

tableauT

tcharge(T)sshape(T)

We use this approach to study related highlights in k-Schur theory:
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λ sk
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∑ (

Gromov-Witten invariants/WZW fusion) sk
ν

Hμ =
∑

(some positive polynomial) sk
λ{

Sk
λ

}
= cohomology classes for the affine Grassmannian

Pieri rule for k-Schur functions

Original rule uses weak order on affine Weyl group Ã

Weak Cover: ρ � γ when ρ ⊂ γ are k + 1-cores
deg(γ) = deg(ρ) + 1 where deg(γ) =# cells of γ with hook-length � k.
γ/ρ has less than 2 cells in each row and column.

Weak �-Strip: The skew shape ν/λ is a weak �-strip if ν/λ is a horizontal
strip and there is a weak saturated chain of cores

λ = γ0
� γ1

� · · · � γ� = ν .

Example: When k = 3, the skews (4, 1, 1)/(2, 1) and (3, 2, 1)/(2, 1) are weak 2-strips given

� � and � �

k-Pieri Rule for k-Schurs For k + 1-core λ and 0 < � � k,

h� s(k)
λ =

∑
ν/λ is a weak �−strip

s(k)
ν .

Example:
h2 s3

2,1 = s3
4,1,1 + s3

3,2,1 .

Pieri rule for dual k-Schur functions

Rule uses strong order on affine Weyl group Ã

Strong Cover: ρ �B γ when ρ ⊆ γ are k+1-cores with deg(γ) = deg(ρ) + 1.
Strong �-Strip: A strong �-strip from k + 1-core λ to k + 1-core γ is a strong
saturated chain

λ = γ0
�B γ1

�B . . . �B γ� = γ

together with a content vector c = (c1 < c2 < · · · < c�) where ci is the content
of the head of a ribbon in γi/γi−1.
Example: When k = 3, the strong 3-strips from (3) to (5, 2, 1) are

c = (−1, 3, 4) �B

•
�B

•
�B

•

c = (−1, 0, 4) �B

•
�B

•
�B

•

k-Pieri Rule for dual k-Schurs: For 0 < � � k and k + 1-core λ,

h�S
(k)
λ =

∑
γ

dγS
(k)
γ ,

where dγ is the number of strong �-strips from λ to γ.
Note by the previous example, d(5,2,1) = 2 when k = 3.

New Pieri rule for k-Schur functions

This Pieri rule for k-Schur functions uses strong rather than weak order

Theorem: For any 0 � � � k and k + 1-core λ,

h� s(k)
λ =

∑
(k+λ1,λ)/ν is a bottom strong k−�-strip

s(k)
ν ,

where γ/ν is a bottom strong �-strip if it is a horizontal strip and there is a
strong �-strip from ν to γ whose content vector (c1, . . . , c�) satisfies c1 � ν1.
Example: The skew shape (9, 4, 2)/(4, 3) of 6-cores is a bottom strong 4-strip since

c = (4, 5, 7, 8) �B • �B • �B • �B • .

Note by the previous example that the skew shape (5, 2, 1)/(3) is not a bottom strong 3-strip.
Example: To compute h2s

(3)
2,1 instead using this new rule requires finding all ν where (5, 2, 1)/ν

is a bottom strong 1-strip:

c = (4) �B and c = (4) �B

Affine Bruhat Counter-tableaux

An affine Bruhat counter-tableau (or ABC) A of k-weight α is a skew
counter-tableau filling where, for all 1 � i � �(α) , letting λ(i) be the top i
rows of A restricted to letters larger than i,

(k + λ
(i−1)
1 , λ(i−1))/λ(i)

is a bottom strong (k − αi)-strip filled with letter i. Note, we consider empty
cells to contain ∞.
Example: An ABC of 5-weight (3, 3, 1) and inner shape (4,3) is

3 3 2 1 1
3 2 2 2 2

3 3 3 3 3 ,

since bottom strong 2-strip : �B 1 �B 1 1

bottom strong 2-strip : �B 2 2 2 �B
2

2 2 2 2

bottom strong 4-strip : �B

3

3 �B

3 3

3 3 �B

3 3

3 3 3 3 �B

3 3
3

3 3 3 3 3 ,

Applications of ABC’s

ABC’s give a new characterization for the representatives {Sk
λ}λ k+1−core of

cohomology classes of the type A affine Grassmannian.
Theorem:

S
(k)
λ =

∑
A: ABC of inner shape λ

xk-weight(A)

Example

4 1
2 2
4 3

4

2 1
3 2
4 4 3

4 4

2
3 3 2

3 3 =⇒ S
(2)
3,1,1 = 2m1,1,1,1 + m2,1,1

We give a statistic on ABC’s that characterizes Hall-Littlewood polynomials
and conjecturally gives their k-Schur expansion.

Offset: For i > 1, an i-ribbon R in an ABC A is an offset if there is an identical
ribbon in a lower row and a hook of length k separates their heads.
Example: Consider the ABCs A of 3-weight 15 and B of 3-weight 14:

A =

3 1 1
2 2 2
4 3 3
5 5 4 4

5 5 5

B =

2 1 1
4 3 2 2

3 3 3
4 4 4

A has only one offset: 5 5 in the second row from the bottom and B has no offsets.

Spin Statistic: Let A be an ABC of k-weight 1n and define

spink(A) = #offsets(A) +
∑

i

i χA(i),

where χA(i) is one when row i has a non-offset 2-ribbon which is not east of
a non-offset 2-ribbon in row i + 1, and zero otherwise.
In the previous example, spin(A) = 1 + 5 and spin(B) = 0 + 2.

Conjecture:

H1n[X; t] =
∑

k-weight(A)=1n
inner shape(A)=λ

tspink(A) s(k)
λ [X; t].

Example: The set of all ABC′s of 2-weight 14 are
⎧⎪⎪⎨
⎪⎪⎩

1
2 2

3
4 4

4 1
2 2
4 3

4

2 1
3 2
4 4 3

4 4

2 1
4 3 2

4 3
4

⎫⎪⎪⎬
⎪⎪⎭

,

which gives the expansion of H14[X, t] in terms of 2-Schur functions:

H14[X; t] = t4 s(2)

(2,2,1,1)
+ t3 s(2)

(3,1,1)
+ t2 s(2)

(3,1,1)
+ s(2)

(4,2)
.

When k = n, an ABC never has any offsets.
Theorem: Hall-Littlewood polynomials can be characterized by

H1n[X; t] =
∑

ABC of n-weight 1n

inner shape(A)=λ

t
∑

i χA(i) sλ .

Example: The set of all ABC’s of 3-weight 13 are
⎧⎨
⎩

1 1
2 2 2
3 3 3

3 1 1
2 2 2

3 3

2 1 1
3 2 2

3 3 3

2 1 1
3 3 2 2

3 3

⎫⎬
⎭

The respective values of
∑

i χA(i) are {3, 2, 1, 0}. We thus have that

H13[X; t] = t3 s(1,1,1) + (t2 + t) s(2,1) + s(3) .


