# Upper bounds for the Gromov width of Grassmannian manifolds

Alexander Caviedes Castro University of Toronto Department of Mathematics

#### Abstract

An upper bound for the Gromov width of generalized Grassmannian manifolds with respect to the Kirillov-Kostant-Souriau symplectic form is found by computing certain Gromov-Witten invariants. The approach presented here is closely related to the one used by Gromov in its celebrated Non-Squeezing theorem.

### The Gromov width of symplectic manifolds

Let *M* be a smooth manifold. A **symplectic form** on *M* is a differential 2-form  $\omega$  which is closed and nondegenerate. The pair  $(M, \omega)$ is called a **symplectic manifold**.

**Theorem** (Darboux's theorem). Let  $(M, \omega)$  be a symplectic manifold. For any point of the manifold there are local coordinates  $(x_1, \cdots, x_n, y_1, \cdots, y_n)$  defined on a neighborhood U of the point such that

$$\omega|_U = \sum_{i=1}^n dx_i \wedge dy_i.$$

A fundamental question in symplectic topology is: how far can U be extendeded symplectically? A way of measuring the "symplectic" size of a manifold is through the **Gromov width** of a symplectic manifold:

Gwidth( $M, \omega$ ) := sup{ $\pi r^2$  :  $\exists$  a symplectic embedding  $B_{2n}(r) \hookrightarrow M$ }

Motivation:

**Theorem (Gromov's Non-squeezing Theorem).** If  $\rho : B_{2n}(r) \hookrightarrow$  $B_2(\lambda) \times \mathbb{R}^{2n-2}$  is a symplectic embedding, then  $r \leq \lambda$ . Thus, Gwidth $(B^2(\lambda) \times \mathbb{R}^{2n-2}) = \pi \lambda^2$ .



### Pseudoholomorphic theory

Let J be a compatible almost-complex structure of  $(M, \omega)$ , i.e., J:  $TM \rightarrow TM$ ,  $J^2 = -I$ , and the formula

$$g(u, v) := \omega(u, Jv)$$

defines a Riemannian metric. A map  $\mu : \mathbb{CP}^1 \to M$  is *J*-holomorphic

$$J \circ d\mu = d\mu \circ j_{st}$$

where  $j_{st}$  denotes the standard almost complex structure of  $\mathbb{CP}^1$ . Let  $A \in H_2(M, \mathbb{Z})$ . The moduli space of genus zero simple **J-holomorphic curves of degree** A is

$$\mathcal{M}_{A,J} = \{ \mu : \mathbb{CP}^1 \to M : J \circ d\mu = d\mu \circ j_{st}, \mu_*[\mathbb{CP}^1] = A, \mu \text{ simple} \}.$$

A J-holomorphic curve  $\mu : \mathbb{CP}^1 \to M$  is simple if it can not be written as  $\nu \circ f$  where  $f : \mathbb{CP}^1 \to \mathbb{CP}^1$  is of the form  $f : z \to z^k$ ,  $k \in \mathbb{Z}$ .

• For "generic" J,  $\mathcal{M}_{A,J}$  is a smooth oriented manifold of dimension equal to dim  $M + 2c_1(A)$ .

- The moduli space  $\mathcal{M}_{A \ I}$  is not always compact, because of the "bubbling phenomenon".
- We say that a homology class  $A \in H_2(M, \mathbb{Z})$  is  $\omega$ -indecomposable if there do not exist homology classes  $A_1, A_2 \in H_2(M, \mathbb{Z})$  such that  $A = A_1 + A_2$  and  $0 < \omega(A_1), \omega(A_2)$ . If  $A \in H_2(M, \mathbb{Z})$  is  $\omega$ -indecomposable, the moduli space  $\mathcal{M}_{A,J}$  is compact and thus we can associate to it a fundamental class  $[\mathcal{M}_{A,J}]$ .

Let  $A \in H_2(M, \mathbb{Z})$ . The moduli space of genus zero J-holomorphic curves of degree A with k-marked points is  $\mathcal{M}_{A,J,k} = \mathcal{M}_{A,J} \times_{PSL(2,\mathbb{C})}$  $(\mathbb{CP}^1)^k$ .

We have an evaluation map

$$ev_J: \mathcal{M}_{A,J,k} \to M^k.$$

**Theorem.** Let  $(M, \omega)$  be a 2n-dimensional compact symplectic manifold and  $A \in H_2(M, \mathbb{Z}) \setminus \{0\}$  a second homology class. Suppose that for a dense subset of smooth  $\omega$ -compatible almost complex structures J, the evaluation map

$$ev_J: \mathcal{M}_{\mathcal{A},J,1} \to M$$

is onto. Then for any symplectic embedding  $\rho$  :  $B_{2n}(r) \rightarrow M$ , we have  $\pi r^2 \leq \omega(A)$ . In particular

$$\operatorname{Gwidth}(M, \omega) \leq \omega(A)$$

Idea of the proof:

The area of a holomorphic curv passing through the origin and

bounded by a ball of radius r is bounded from below by  $\pi r^2$ 

Let J be an almost complex structure compatible with a symplectic embedding  $\rho$ . If u is a J-holomorphic curve passing through the origin, we have that  $\pi r^2 \le area \le area u = \omega(A)$ 

Proving that the evaluation map, for a generic almost complex structure J, is onto is not an easy task. However, one approach is to prove that certain Gromov-Witten invariant with one of the constrains being a point is different from zero:

Find  $X_1, \dots, X_r \subset M$  such that

$$GW^{J}_{A,r+1}([pt], [X_1], \cdots, [X_r]) \neq 0$$

where the Gromov-Witten invariant  $GW^J_{A,r+1}([pt], [X_1], \cdots, [X_r])$ counts the number of J-holomorphic curves in the class A passing through  $pt, X_1, \cdots, X_r$ .

• Defining the Gromov Witten invariant in the symplectic category requires big machinary such as virtual fundamental classes and polyfold theory. However under simple conditions the Gromov-Witten invariant can be defined more easily. That is the case when the homology class  $A \in H_2(M, \mathbb{Z})$  is  $\omega$ -indecomposable.

The (co)homology of a generalized partial flag manifold can be computed by means of its CW-decomposition given by the Bruhat decomposition. We have that

## Moduli space of lines for Grassmannians



#### Generalized partial flag manifolds

Let (G, B, N, S) be a Tits system where G is a connected semisimple complex Lie group, B is a Borel subgroup of G, T a maximal torus of G, N the normalizer of T and S a set of simple reflections of the Weyl group W := N/T.

Any subgroup P satisfying  $B \subset P \subset G$  is called a standard parabolic subgroup of G. Any parabolic subgroup is of the form  $P_Y$  where  $Y \subset S$  and  $P \subset G$  is the group generated by B and Y.

A generalized partial flag manifold is a quotient of the form  $G/P_Y$ . We say that  $G/P_Y$  is a **Grassmannian** manifold if  $P_Y$  is a maximal parabolic subgroup. In that case, there exists  $\alpha \in S$  such that  $Y = S \setminus \{\alpha\}$ .

Generalized partial flag manifolds can be identified with coadjoint orbits of compact Lie groups. In other words, let K, t be compact forms of G and T respectively, with G acting on  $\mathfrak{t}$  by the coadjoint action. Then there exists  $\lambda \in \mathfrak{t}^*$  such that  $\mathcal{O}_{\lambda} = K \cdot \lambda \cong G/P_Y$ . Coadjoint orbits  $\mathcal{O}_{\lambda}$  are endowed with the Kostant-Kirillov-Souriau symplectic form denoted by  $\omega_{KKS}^{\lambda}$ . Under these identifications, the Kostan-Kirillov-Souriau symplectic form is compatible with the standard complex structure  $J_s$  of  $G/P_Y$  thus defining a Kähler structure.

$$G/P_Y = \bigsqcup_{w \in W_Y'} BwP_Y/P_Y$$

where  $W'_{Y}$  are the elements of minimal length in the cosets  $W/W_{Y}$ and  $W_Y \subset W$  is the group generated by  $Y \subset W$ . For  $w \in W'_Y$ , we call  $C_W = B_W P_Y / P_Y$  a Bruhat cell. It is isomorphic to an affine space  $\mathbb{C}^{I(w)}$ , and its closure  $X_w = \overline{C_w}$  is a Schubert variety.

**Theorem.** The set of fundamental classes  $[X_w]$  of the Schubert varieties  $X_W$ ,  $w \in W'_Y$ , are a basis of  $H^*(G/P_Y, \mathbb{Z})$ .

**Theorem** (Duality theorem). Let  $w_0$  and  $w_0^{\gamma}$  denote the largest element of W and  $W_Y$  respectively. Let  $B^-$  be the Borel subgroup of G containing T and opposite to B. For  $w \in W'_Y$ , let  $X^{W} := B^{-} W P_{Y} / P_{Y}$ . Then  $[X^{W}] = [X_{W_{0}WW_{0}}^{Y}]$  and

 $X_{W} \pitchfork X^{W} = \{ w P_{Y} / P_{Y} \}.$ 

Let  $G/P_{S \setminus \{\alpha\}}$  be a Grassmannian manifold where  $\alpha \in S$  is a simple reflection. The second homology group  $H_2(G/P_{S \setminus \{\alpha\}}, \mathbb{Z})$  is cyclic. Let  $A \in H_2(G/P_{S \setminus \{\alpha\}}, \mathbb{Z})$  be the standard generator.

An element of  $\mathcal{M}_{A, J_s, 0}(G/P_{S \setminus \{\alpha\}}, \omega_{KKS}^{\lambda})$  is called a line of the Grassmannian manifold  $G/P_{S \setminus \{\alpha\}}$ . The group G acts on

 $\mathcal{M}_{A, J_s, 0}(G/P_{S \setminus \{\alpha\}}, \omega_{KKS}^{\lambda})$  and  $\mathcal{M}_{A, J_s, 1}(G/P_{S \setminus \{\alpha\}}, \omega_{KKS}^{\lambda})$  transitively if  $\alpha$  is a simple reflection coming from a "long" simple root. We have that

> $\mathcal{M}_{A, J_{s}, 0}(G/P_{S \setminus \{\alpha\}}, \omega_{KKS}) \cong G/P_{S \setminus N(\alpha)},$  $\mathcal{M}_{A, J_{s}, 1}(G/P_{S \setminus \{\alpha\}}, \omega_{KKS}) \cong G/P_{S \setminus \{\alpha\}}) = G/P_{S \setminus \{\alpha\}}$

where  $N(\alpha)$  denotes the set of simple reflections which are adjacent in the corresponding Dynkin diagram to  $\alpha$ . We have the following commutative diagrams:

 $\mathcal{M}_{\mathcal{A}, \mathcal{J}_{s}, 1}($ 

 $\mathcal{M}_{\mathcal{A}_{*}}$ 



Here f denotes the forgetful map. If  $X \subset G/P_{S \setminus \{\alpha\}}$ , then  $\hat{X} := f(ev^{-1}(X)) \subset G/P_{S \setminus N(\alpha)}$  corresponds to the set of all lines in  $G/P_{S\setminus\{\alpha\}}$  incident to X.

In order to avoid ambiguities, we denote the Schubert varieties in  $G/P_{S\setminus N(\alpha)}$  as  $Z_W$  for  $w \in W'_{S\setminus N(\alpha)}$  and the Schubert varieties in  $G/P_{S\setminus\{\alpha\}}$  by  $X_W$  for  $w \in W'_{S\setminus\{\alpha\}}$ .

**Theorem.** Let  $e \in G/P_{S \setminus \{\alpha\}}$  be the class of the identity in the quotient  $G/P_{S\setminus\{\alpha\}}$ . There exists  $w \in W'_{S\setminus\{\alpha\}}$  and  $\hat{w} \in W'_{S\setminus N(\alpha)}$ such that  $\widehat{X}_{W} = Z_{\widehat{W}}$  and  $\widehat{e} = Z^{\widehat{W}}$ . In particular

#### Corollary.

Gw



$$\begin{array}{c} (G/P_{S\setminus\{\alpha\}}) \cong G/P_{S\setminus\{\alpha\}}) \xrightarrow{ev} G/P_{S\setminus\{\alpha\}} \\ f \\ \\ J_{s,0}(G/P_{S\setminus\{\alpha\}}) \cong G/P_{S\setminus N(\alpha)} \end{array}$$

Grassmannian manifold

Incidence manifold

 $GW_{A,2}^{J_s}([e], [X_w]) = 1$ 

width
$$(G/P_Y, \omega_{KKS}^{\lambda}) \le \omega_{KKS}^{\lambda}(A) = \frac{2(\alpha, \lambda)}{(\alpha, \alpha)}.$$

**Example 1.** For the Grassmannian manifold  $G(k, n) = \{V^k \subset \mathbb{C}^n\}$ the moduli space of lines is given by the flag manifold

$$I(k-1, k+1; n) = \{V^{k-1} \subset V^{k+1} \subset \mathbb{C}^n\}.$$

For the Grassmannian manifold G(k, n), we can prove that under generic assumptions there is just one line passing through one arbitrary point and  $X = \{V^k \in G(k, n) : \mathbb{C} \subset V^k \subset C^{n-1}\} \cong G(k-1, n-1)$ 2). This is illustrated in the next figure for k = 2, n = 4.

