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Abstract

An upper bound for the Gromov width of generalized Grassmannian mani-
folds with respect to the Kirillov-Kostant-Souriau symplectic form is found by
computing certain Gromov-Witten invariants. The approach presented here
is closely related to the one used by Gromov in its celebrated Non-Squeezing
theorem.

The Gromov width of symplectic manifolds

Let M be a smooth manifold. A symplectic form on M is a di�e-
rential 2-form ! which is closed and nondegenerate. The pair (M;!)
is called a symplectic manifold.

Theorem (Darboux's theorem). Let (M;!) be a symplectic ma-

nifold. For any point of the manifold there are local coordinates

(x1; � � � ; xn; y1; � � � ; yn) de�ned on a neighborhood U of the point

such that

!jU =

n∑
i=1

dxi ^ dyi :

A fundamental question in symplectic topology is: how far can U be
extendeded symplectically? A way of measuring the \symplectic" size
of a manifold is through the Gromov width of a symplectic manifold:

Gwidth(M;!) := supf�r2 : 9 a symplectic embedding B2n(r) ,! Mg

Motivation:

Theorem (Gromov's Non-squeezing Theorem). If � : B2n(r) ,!
B2(�) � R2n�2 is a symplectic embedding, then r � �: Thus,

Gwidth(B2(�)� R2n�2) = ��2:

r

λ

Pseudoholomorphic theory

Let J be a compatible almost-complex structure of (M;!); i.e.,
J : TM ! TM; J2 = �I; and the formula

g(u; v) := !(u; Jv)

de�nes a Riemannian metric. A map � : CP1 ! M is J-holomorphic
if

J � d� = d� � jst

where jst denotes the standard almost complex structure of CP1:
Let A 2 H2(M;Z): The moduli space of genus zero simple
J-holomorphic curves of degree A is

MA;J = f� : CP1 ! M : J�d� = d��jst; ��[CP
1] = A;� simpleg:

A J-holomorphic curve � : CP1 ! M is simple if it can not be written
as � � f where f : CP1 ! CP

1 is of the form f : z ! zk ; k 2 Z:

� For \generic" J;MA;J is a smooth oriented manifold of dimension
equal to dimM + 2c1(A):

�The moduli space MA;J is not always compact, because of the
\bubbling phenomenon".

�We say that a homology class A 2 H2(M;Z) is !-indecomposable
if there do not exist homology classes A1; A2 2 H2(M;Z) such
that A = A1 + A2 and 0 < !(A1); !(A2): If A 2 H2(M;Z) is
!-indecomposable, the moduli space MA;J is compact and thus
we can associate to it a fundamental class [MA;J]:

Let A 2 H2(M;Z):The moduli space of genus zero J-holomorphic
curves of degree A with k-marked points isMA;J;k =MA;J�PSL(2;C)

(CP1)k :

We have an evaluation map

evJ :MA;J;k ! Mk :

Theorem. Let (M;!) be a 2n-dimensional compact symplectic ma-

nifold and A 2 H2(M;Z)nf0g a second homology class. Suppose

that for a dense subset of smooth !-compatible almost complex

structures J, the evaluation map

evJ :MA;J;1 ! M

is onto. Then for any symplectic embedding � : B2n(r) ! M; we
have �r2 � !(A): In particular

Gwidth(M;!) � !(A):

Idea of the proof:

r
r

ρ 0
0

r

The area of a holomorphic curve

passing through the origin and 

bounded by a ball of radius r is 

bounded from below by πr
2

s

u

Let J be an almost complex structure compatible

with a symplectic embedding ρ. If u is a J-holomorphic

curve passing through the origin, we have that

πr ≤ area s ≤ area u =ω(A)2

M

Proving that the evaluation map, for a generic almost complex struc-
ture J, is onto is not an easy task. However, one approach is to prove
that certain Gromov-Witten invariant with one of the constrains being
a point is di�erent from zero:

Find X1; � � � ; Xr � M such that

GW J
A;r+1([pt]; [X1]; � � � ; [Xr ]) 6= 0

where the Gromov-Witten invariant GW J
A;r+1([pt]; [X1]; � � � ; [Xr ])

counts the number of J-holomorphic curves in the class A passing
through pt; X1; � � � ; Xr :

�De�ning the Gromov Witten invariant in the symplectic category
requires big machinary such as virtual fundamental classes and poly-
fold theory. However under simple conditions the Gromov-Witten
invariant can be de�ned more easily. That is the case when the
homology class A 2 H2(M;Z) is !-indecomposable.

Generalized partial ag manifolds

Let (G;B;N; S) be a Tits system where G is a connected semisimple
complex Lie group, B is a Borel subgroup of G, T a maximal torus
of G, N the normalizer of T and S a set of simple reections of the
Weyl group W := N=T:

Any subgroup P satisfying B � P � G is called a standard parabolic
subgroup of G: Any parabolic subgroup is of the form PY where
Y � S and P � G is the group generated by B and Y:

A generalized partial ag manifold is a quotient of the form
G=PY : We say that G=PY is a Grassmannian manifold if PY is
a maximal parabolic subgroup. In that case, there exists � 2 S such
that Y = Snf�g:

Generalized partial ag manifolds can be identi�ed with coadjoint or-
bits of compact Lie groups. In other words, let K; t be compact
forms of G and T respectively, with G acting on t by the coadjoint
action. Then there exists � 2 t� such that O� = K � � �= G=PY :
Coadjoint orbits O� are endowed with the Kostant-Kirillov-Souriau
symplectic form denoted by !�

KKS
. Under these identi�cations, the

Kostan-Kirillov-Souriau symplectic form is compatible with the stan-
dard complex structure Js of G=PY thus de�ning a K�ahler structure.

The (co)homology of a generalized partial ag manifold can be com-
puted by means of its CW-decomposition given by the Bruhat de-
composition. We have that

G=PY =
⊔

w2W 0

Y

BwPY =PY

where W 0
Y
are the elements of minimal length in the cosets W=WY

and WY � W is the group generated by Y � W: For w 2 W 0
Y
; we

call Cw = BwPY =PY a Bruhat cell. It is isomorphic to an a�ne

space Cl(w); and its closure Xw = Cw is a Schubert variety.

Theorem.The set of fundamental classes [Xw ] of the Schubert va-

rieties Xw ; w 2 W 0
Y
; are a basis of H�(G=PY ;Z):

Theorem (Duality theorem). Let w0 and wY
0 denote the largest

element of W and WY respectively. Let B� be the Borel sub-

group of G containing T and opposite to B: For w 2 W 0
Y
; let

Xw := B�wPY =PY : Then [Xw ] = [X
w0ww Y

0

] and

Xw t Xw = fwPY =PY g:

Moduli space of lines for Grassmannians

Let G=PSnf�g be a Grassmannian manifold where � 2 S is a simple

reection. The second homology group H2(G=PSnf�g;Z) is cyclic.

Let A 2 H2(G=PSnf�g;Z) be the standard generator.

An element of MA;Js;0(G=PSnf�g; !
�
KKS

) is called a line of the

Grassmannian manifold G=PSnf�g. The group G acts on

MA;Js;0(G=PSnf�g; !
�
KKS

) and MA;Js;1(G=PSnf�g; !
�
KKS

) tran-
sitively if � is a simple reection coming from a \long" simple root.
We have that

MA;Js;0(G=PSnf�g; !KKS)
�= G=PSnN(�);

MA;Js;1(G=PSnf�g; !KKS)
�= G=PSn(N(�)

⊔
f�g)

where N(�) denotes the set of simple reections which are adjacent
in the corresponding Dynkin diagram to �. We have the following
commutative diagrams:

MA;Js;1(G=PSnf�g)
�= G=PSn(N(�)

⊔
f�g) G=PSnf�g

MA;Js;0(G=PSnf�g)
�= G=PSnN(�)

-
ev

?

f

Grassmannian manifoldIncidence manifold

Moduli space of lines

Here f denotes the forgetful map.

If X � G=PSnf�g; then X̂ := f (ev�1(X)) � G=PSnN(�) corres-

ponds to the set of all lines in G=PSnf�g incident to X.

In order to avoid ambiguities, we denote the Schubert varieties in
G=PSnN(�) as Zw for w 2 W 0

SnN(�)
and the Schubert varieties in

G=PSnf�g by Xw for w 2 W 0
Snf�g

:

Theorem. Let e 2 G=PSnf�g be the class of the identity in the

quotient G=PSnf�g: There exists w 2 W 0
Snf�g

and ŵ 2 W 0
SnN(�)

such that X̂w = Zŵ and ê = Zŵ : In particular

GW Js
A;2([e]; [Xw ]) = 1

Corollary.

Gwidth(G=PY ; !
�
KKS) � !�

KKS(A) =
2(�; �)

(�;�)
:

Example 1. For the Grassmannian manifold G(k; n) = fV k � C
ng

the moduli space of lines is given by the ag manifold

F l(k � 1; k + 1; n) = fV k�1 � V k+1 � C
ng:

For the Grassmannian manifold G(k; n); we can prove that under

generic assumptions there is just one line passing through one arbitrary

point and X = fV k 2 G(k; n) : C � V k � Cn�1g �= G(k � 1; n �
2): This is illustrated in the next �gure for k = 2; n = 4:


