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Abstract

An upper bound for the Gromov width of generalized Grassmannian mani-
folds with respect to the Kirillov-Kostant-Souriau symplectic form is found by
computing certain Gromov-Witten invariants. The approach presented here
is closely related to the one used by Gromov in its celebrated Non-Squeezing
theorem.

T he Gromov width of symplectic manifolds

Let M be a smooth manifold. A symplectic form on M is a diffe-
rential 2-form w which is closed and nondegenerate. The pair (M, w)
Is called a symplectic manifold.

Theorem (Darboux’s theorem). Let (M, w) be a symplectic ma-
nifold. For any point of the manifold there are local coordinates
(X1, ,Xn Y1, - . Yn) defined on a neighborhood U of the point
such that

n
wly = Z dx; \ dy;.
=1

A fundamental question in symplectic topology Is: how far can U be
extendeded symplectically? A way of measuring the “symplectic” size
of a manifold is through the Gromov width of a symplectic manifold:

Gwidth(M, w) := sup{mr? : 3 a symplectic embedding Bo,(r) < M}

Motivation:

Theorem (Gromov’s Non-squeezing Theorem). I[fp : By,(r) —
Bo(\) x R?"=2 js a symplectic embedding, then r < A. Thus,
Gwidth(B2(\) x R?1=2) = )2,
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Pseudoholomorphic theory

Let J be a compatible almost-complex structure of (M, w), i.e.,
J: TM — TM, J? = —1, and the formula

g(u,v) :=w(u, Jv)

defines a Riemannian metric. Amap & : CP! — Mis J-holomorphic
I

Jodu=duojst
where Jjs¢ denotes the standard almost complex structure of CPlL.

Let A € Hy(M,Z). The moduli space of genus zero simple
J-holomorphic curves of degree A is

Mp j=1u: CP! — M : Jodu = duojst, us[CP] = A, u simple}.

A J-holomorphic curve W : CP! — M issimple if it can not be written
as v o f where f : CP! — CP! is of the form f : z = z¥, k € Z.

e For “generic” J, M is a smooth oriented manifold of dimension
equal to dim M + 2¢1(A).

e The moduli space M, ; Is not always compact, because of the
“bubbling phenomenon” .

e \We say that a homology class A € Hy>(M, Z) is w-indecomposable
if there do not exist homology classes A1, Ay € Hy(M, Z) such
that A= A1+ Ay and 0 < w(A7),w(Ar). If A€ Hy(M,Z) is
w-indecomposable, the moduli space M 4 ; is compact and thus
we can associate to it a fundamental class [M 4 J].

Let A € Hy(M, Z). The moduli space of genus zero J-holomorphic
curves of degree A with k-marked pointsis M4 ;= Ma X ps;(2.0)

(CPHk,
We have an evaluation map

EVy. MA,J,k — Mk.

Theorem. Let (M, w) be a 2n-dimensional compact symplectic ma-
nifold and A € Hy(M, Z)\{0} a second homology class. Suppose
that for a dense subset of smooth w-compatible almost complex
structures J, the evaluation map

evy. MA,J,l — M

is onto. Then for any symplectic embedding p : Bo,(r) — M, we
have mr? < w(A). In particular

Gwidth(M, w) < w(A).

|dea of the proof:

Let J be an almost complex structure compatible

with a symplectic embedding p. If u is a J-holomorphic
curve passing through the origin, we have that

Tr’<s area s < area u =w(A)

The area of a holomorphic curve
passing through the origin and
bounded by a ball of radius r is
bounded from below by 1rr?

Proving that the evaluation map, for a generic almost complex struc-
ture J, 1Is onto 1s not an easy task. However, one approach iIs to prove
that certain Gromov-Witten invariant with one of the constrains being
a point Is different from zero:

Find X, -+, X, C M such that
GWa r1([pt] X, [X/]) # 0

where the Gromov-Witten invariant GWAJ ropUptl [Xals e X))
counts the number of J-holomorphic curves in the class A passing
through pt, X1, -+, X;.

e Defining the Gromov Witten invariant in the symplectic category
requires big machinary such as virtual fundamental classes and poly-
fold theory. However under simple conditions the Gromov-Witten
iInvariant can be defined more easily. That I1s the case when the
homology class A € Hy(M, Z) is w-indecomposable.

Generalized partial flag manifolds

Let (G, B, N, S) be a Tits system where G is a connected semisimple
complex Lie group, B Is a Borel subgroup of G, T a maximal torus
of G, N the normalizer of T and S a set of simple reflections of the

Weyl group W := N/T.

Any subgroup P satisfying B C P C G is called a standard parabolic
subgroup of G. Any parabolic subgroup is of the form R, where
Y C S and P C G is the group generated by B and Y.

A generalized partial flag manifold 1s a quotient of the form
G/Py. We say that G/P, is a Grassmannian manifold if R/ is
a maximal parabolic subgroup. In that case, there exists o € S such
that Y = S\{a}.

Generalized partial flag manifolds can be identified with coadjoint or-
bits of compact Lie groups. In other words, let K, t be compact
forms of G and T respectively, with G acting on t by the coadjoint
action. Then there exists A € t* such that Oy = K- X = G/Py.
Coadjoint orbits Oy are endowed with the Kostant-Kirillov-Souriau
symplectic form denoted by wi‘ﬂ(s. Under these identifications, the
Kostan-Kirillov-Souriau symplectic form is compatible with the stan-

dard complex structure Js of G/Py thus defining a Kahler structure.

The (co)homology of a generalized partial flag manifold can be com-
puted by means of 1ts CW-decomposition given by the Bruhat de-
composition. We have that

G/Py= || BwR//R,
weWy,

where W{/ are the elements of minimal length in the cosets W/Wy
and WA, C W 1s the group generated by Y C W. For w &€ W{/, we
call Cw = BwPy /Py a Bruhat cell. It is isomorphic to an affine
space (C/(W), and its closure X,, = Cy is a Schubert variety.

Theorem. The set of fundamental classes X\, of the Schubert va-
rieties Xw, w € W,,, are a basis of H*(G /Py, Z).

Theorem (Duality theorem). Let wy and Wa/ denote the largest
element of W and Wy respectively. Let B~ be the Borel sub-
group of G containing T and opposite to B. For w €& W{/, let
XYW =B wPy/PRy,. Then [X"] = [X and

Wowwg/]

XW Fh XW = {W:Dy/Py}.

Moduli space of lines for Grassmannians

Let G/Ps\ o) be a Grassmannian manifold where o € S is a simple
reflection. The second homology group HQ(G/PS\{Q}, 7)) is cyclic.
Let A € Ha(G/Ps\{q}. Z) be the standard generator.

An element of MA,JS,O(G/PS\{a}'Wi\(Ks) Is called a line of the
Grassmannian manifold G /Ps\ 14y. The group G acts on

Ma 1.0(G/Ps\1a1. Wiics) and My . 1(G/Ps\ 1q1, W) tran-
sitively If o I1s a simple reflection coming from a “long” simple root.

We have that

Ma 1,0(G/Ps\ (o} Wk kS) = G/Ps\ na):
Map 4., 1(G/Ps\ay Wk ks) = G/Ps\ ()| {ad)
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where N(a) denotes the set of simple reflections which are adjacent
In the corresponding Dynkin diagram to «. We have the following
commutative diagrams:

Ma, 1,1(G/Ps\(a}) = G/Ps\(na) | J{a}) —— G/Ps\{a}

M J.,0(G/Ps\fa1) = G/ P\ n(a)

Incidence manifold Grassmannian manifold

Moduli space of lines

Here f denotes the forgetful map.

If X C G/Ps\{q}. then X = flev }(X)) C G /Ps\N(q) COrTes-
ponds to the set of all lines in G/Pg\ ¢4 incident to X.

In order to avoid ambiguities, we denote the Schubert varieties in
G/Ps\N(a) 3 £w for w € Wé\N(a) and the Schubert varieties In

G/PS\{a} by X, for w € Wé\{a}

Theorem. Let e € G/Pg\ () be the class of the identity in the
quotient G /Ps g,y There exists w € W!S\{a} and W € Wé\N(a)

such that Xu = Z woand é =/ W In particular

GW(le], [Xuw]) = 1

Corollary.

2(a, M)
(o, )

Gwidth(G /Py, Wi ics) < Wi s(A) =

Example 1. For the Grassmannian manifold G(k, n) = {VK c C"}
the moduli space of lines is given by the flag manifold

Fitk—1,k+1;n) = {VK T cvktl ccm.

For the Grassmannian manifold G(k, n), we can prove that under
generic assumptions there is just one line passing through one arbitrary

point and X = {VK e G(k,n):CcVvkc "M =2Gk—1,n—
2). This is illustrated in the next figure for k =2,n = 4.
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