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1 What is a Generalized Moment-Angle Complex?

Let K be a field, Z means integers. [m] = {1, . . . ,m}, K ⊂ 2[m] is an abstract simplicial complex (in which
∅ ∈ K), with the facets FK , which is the set of all the maximal simplexes in K (a simplex is maximal if it
is not included in other simplexes). (X,A) = {(Xi, Ai)|i = 1, . . . ,m} means m pairs of topological spaces.
Consider K as a category K, whose objects are simplexes, and morphisms are inclusions in K. We can define
the functor D from K to T , the category of topological spaces:

∀σ ∈ K, D(σ) =

m∏
i=1

Yi ⊂
m∏
i=1

Xi, Yj =

{
Xj j ∈ σ

Aj j ∈ [m] \ σ,

and D maps inclusion to inclusion in the obvious way. A generalized moment-angle complex is defined to be

ZK,[m](X,A) = colimD = tσ∈KD(σ)
/
∼,

where ∼ is the equivalence induced by the inclusions.
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2 The Main Problem and the Clue

The Classical Mayer-Vietoris Argument 

Suppose a space is covered by two open 

subsets:                     

then we have a chain equivalence

+1

-1

and we can use                 on them because they are free. when

chain equivalence

3 A Double Complex Arises

Definition 1. Suppose B = {Bi}i is a finite covering by (not necessarily open) subsets of a topological space
X , namely X =

∪
iBi.

•A singular simplex is B-small, if there exists an index i, such that its image lies in Bi. SB
∗ (X ;Z) means

the subgroup of S∗(X ;Z) generated by all the B-small singular simplexes.

•We say that B is a double complex cover for X , if the chain inclusion i] : S
B
∗ (X ;Z) → S∗(X ;Z) induces a

chain equivalence.

By a slight modification of the proof in [1], we can prove the following lemma with the fact that every subcomplex
(in a CW complex) has an open neighborhood, of which the subcomplex is a deformation retract (a proof
could be found in [3]).

Lemma 1. If X is a CW complex, of which B is a cover by subcomplexes, then B is a double complex
cover for X.

Immediately, we have (here GFK (DFK , resp.) means the image of FK under the functor G (D, resp.))

◦GFK is a double complex cover for colimG;

◦DFK is a double complex cover for colimD, provided that (X,A) are CW pairs.

The following proposition is the main tool for our computation (details can be found in [1]).

Proposition 1. Suppose B is a (finite) double complex cover for X. Then there is a double complex
C∗(B, S∗) with differential operator D and a product structure, such that there is a ring isomorphism

HD(C
t(B, S∗);Z) = Ht(X ;Z),

where Ct(B, S∗) =
⊕

p+q=t
⊕

i0<···<ip S
q(Bi0...ip;Z) =

⊕
p+q=t S

q(B
∣∣
p;Z) (B

∣∣
p =

∐
i0<···<ip Bi0...ip),

D = δp + (−1)pd (d is the usual differential operator in the singular cochain).
And we have a spectral sequence associated to the double complex, with

E
p,q
2 = H

p
δ (B;Hq),

where H
p
δ (B;Hq) means the p-th cohomology of the following chain complex

Hq(B
∣∣
0;Z)

δ0→ Hq(B
∣∣
1;Z)

δ1→ · · ·
δp−1→ Hq(B

∣∣
p;Z)

δp→ . . . .

More explicitly, choose cq ∈ Sq(B
∣∣
p;Z) (c

q
∣∣
i0...ip

∈ Sq(Bi0...ip;Z), the following S∗i means corresponding

inclusions in X after the action of the S∗- functor),

(
δpc

q)∣∣
i0...ip+1

=

p+1∑
t=0

(−1)t(S∗i)cq
∣∣
i0...ît...ip+1

.

At last, the E
∗,∗
∞ -terms converge to HD(C

∗(B, S∗)) in the following sense (they are all short exact
sequences as rings, in which F

∗,∗
∞ are something appearing in the spectral sequence):

0 → F
1,t−1
∞ → HD(C

t(B, S∗)) → E
0,t
∞ → 0, 0 → F

2,t−2
∞ → F

1,t−1
∞ → E

1,t−1
∞ → 0, . . .

and end with 0 → 0 → F
t,0
∞ → E

t,0
∞ → 0.

Corollary 1. Suppose DFK is a double complex cover for colimD. With all the coefficients in K, we
have the following isomorphism between K-modules:

Ht(colimD;K) =
⊕
p+q=t

E
p,q
∞ .

As another consequence, we have the following (compare [1, Theorem 15.8])

H∗(colimG;Z) = H∗
δ (GFK ;H0) = H∗

δ (GFK ;Z),

because in this case the double complex has only one row!
To be a bit more general, for a partition L|M |N = [m], which means L ∪M ∪N = [m] where L, M , N are
disjoint subsets (maybe empty), if we define (will be used later)

FK

∣∣L
M = {σ ∩M

∣∣σ ∈ FK, L ⊂ σ},

then we have
H∗(colimGFK

∣∣L
M ;Z) = H∗

δ (GFK

∣∣L
M ;Z).

-1

-1

+1

+1

+1

-1
0

Generally this method to compute cohomology is not as useful as the

usual one, because the number of these      -modules is too large to

handle efficiently. (we can try to consider the case of the mobius strip)          
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4 Globalize the “local coefficients” H∗ and An Explicit For-

mula for E2-Terms

Generally, we cannot use a “global” notation to unite the “local coefficients”. But now the structure of the
colimD is so special that we have a canonical way to do this.
Suppose the j-th inclusion ij : Aj → Xj, i

∗
j : H

∗(Xj) → H∗(Aj),⊕
αj

K{αj} = ker(i∗j),
⊕
γj

K{γj} = coker(i∗j),
⊕
ξj

K{ξj} = im(i∗j),

We fix a basis of cohomology (a vector space over K) for all Xj and Aj, α, γ, ξ runs all the possible (different)
elements of this basis. Note that now H∗(Xj) = ker(i∗j)⊕ im(i∗j), H

∗(Aj) = coker(i∗j)⊕ im(i∗j). Then we define
the Total Cohomology Coefficient Module, which is a free K-module generated by all the possible elements of
the basis, by

H∗ =
⊕

αL,γM,ξN
L|M |N=[m]

K{αL ⊗K γM ⊗K ξN},

in which the sum is over all the possible partitions.

The secrets behind the computation of the     -terms :

boxes are changing, but colors inside these boxes 

are not changed after the differentiation.

1

2

3

4

5

12

13

14

15

23

24

25

34

35

45

123

124

125

134

135

145

234

235

245

345

1234

1235

1245

1345

2345

12345

This is a big simplex, in which the number of vertexes is equal to the number of the elements in  the cover, because now we do not have empty sets from the

intersection.  Modules in the                       (and the arrows associated) is something we will really compute in this chain complex.     

In the general computation, different coloring would not infulence each other: they are zero, or they will 

be still different.  So we can compute the cohomology for different coloring independently, the final cohomology 

will be the direct sum of the cohomology of each coloring.

is the free       -module genereted by  

on                                        , 

means 

The coloring
The coloring            may happen after the  differentiation        ,  but  

will never happen in our real computation, because will be

fewer after more intersection.

Before the computation, we choose all the non-zero coloring: no and no .

a particular

Generally, for , we define 

to mean the modules  with the arrows associated such that and  

to mean the modules with the arrows associated such that (but 

, but do have 

no
no may exixts);

no

Relative cohomology: ignore all the 

cohomology information from the

gray lines, only the information from

the brown lines is preserved.

By the argument of 

the long exact sequence 

Relative cohomology

is a simplex with vertexes .

is a subcomplex in , since if exists on some module, then all the modules  

whose arrows connecting to it from the left in                       must also have            . 

.

;no

to mean the modules  with the arrows associated such that 

Theorem 1 (L. Cai, 2011, see [2] for more details).We have the following formula to compute the E2-terms
(p, q ≥ 0):

E
p,q
2 = Hp(DFK ;Hq) = H̃p−1(colimGFK

∣∣L
M ;K).

5 E2 = E∞: A Miracle, and The Final Result

Theorem 2 (L. Cai, 2011, see [2] for details). If DFK is a double complex cover for colimD, then we have
(with coefficients in K)

E
p,q
2 = E

p,q
∞ .

Consequently the final result can be expressed as (t, p ≥ 0)

Ht(colimD;K) =
⊕

L|M |N=[m],αL,γM,ξN
p+|αL|+|γM |+|ξN |=t

H̃p−1(colimGFK

∣∣L
M ;K)⊗K K{αL ⊗K γM ⊗K ξN},

where | ∗ | means the cohomology degree of ∗. We stress that this is an isomorphism between K-modules.

In Example 1, we haveH1(S1;K) = K{γ}, H0(S1;K) = H0(D2;K) = K{ξ}. Now we have no α-elements, so

colimGFK

∣∣L
M is the full subcomplex ofK restricting inM , and the nontrivial terms from H̃p−1(colimGFK

∣∣L
M )

would be when M = ∅ or M = {1, 2, 3}. Then we get

H∗(S5;K) = H̃−1(∅;K)⊗K K{ξ1,2,3}
⊕

H̃1(S1;K)⊗K K{γ1,2,3}.

For more examples and the relation between the previous results, like Tor, please see [2]. Thank you.
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