Schubert calculus via root datum and sliding laws

Alexander Yong University of Illinois at Urbana-Champaign

Based on joint work with:

- Dominic Searles (University of Illinois at Urbana-Champaign)
- Hugh Thomas (University of New Brunswick)
 MSJ-SI 2012 Schubert calculus, July 23, 2012

G/P= a generalized flag variety; Schubert classes { σ_{λ} }. **Problem:** Give nonnegative combinatorial rules for

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \sum_{\nu} C^{\nu}_{\lambda,\mu}(G/P) \sigma_{\nu} \in H^{\star}(G/P)$$

(and generalizations to other cohomology theories). Some frameworks for this problem:

- Schubert polynomials (as analogues of Schur polynomials);
- Quadratic algebras and Dunkl operators;
- Degeneration (checkers, Mondrian tableaux, puzzles);

(4月) (4日) (4日)

Roots: $\Phi = \Phi^+ \cup \Phi^-$

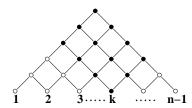
Simple roots associated to $P: \Delta_P = \{\beta(P)_1, \dots, \beta(P)_k\}$ Schubert varieties $X_{\lambda} \subset G/P \leftrightarrow \lambda W_P \in W/W_P$ $w(\lambda) =$ minimal length coset representative of λW_P Inversions of $w(\lambda) \subseteq$ $\Lambda_{G/P} = \{\alpha \in \Phi^+ : \alpha \text{ is a linear combination of } \beta(P)_i \text{'s}\}$ Definition: Call these subsets " λ " of $\Lambda_{G/P}$ (root-theoretic) Young diagrams

Naïve theme/question: What efficacy is there in using root-theoretic Young diagrams to study our problem?

イロト イポト イヨト イヨト 二日

Root theoretic Young diagrams (cont.)

Example (Grassmannians): $G/P = Gr_4(\mathbb{C}^7)$



This situation is especially graphical:

- $\Lambda_{G/P}$ is a planar poset
- λ is a lower order ideal
- Bruhat order is just containment of shapes

[Schützenberger '77]'s sliding law in algebraic combinatorics:

$$\begin{array}{c}
\bullet a \\
b
\end{array} \mapsto \begin{cases}
a \bullet \\
b
\end{cases} \quad \text{if } a < b \\
\hline
b a \\
\bullet
\end{cases} \quad \text{if } b < a
\end{cases}$$

Merely one consequence is:

Theorem: [Schützenberger '77] $C^{\nu}_{\lambda,\mu}(\operatorname{Gr}_{k}(\mathbb{C}^{n})) = \#T \in \operatorname{SYT}(\nu/\lambda)$ that rectify to $T_{\mu} = \underbrace{1 \ 2 \ 3}_{4 \ 5}$.

Perhaps more importantly, jdt unifies (or gets used in) a variety of important tableau algorithms.

イロト イポト イヨト イヨト 二日

Theorem: [Thomas-Y. '09] Let G/P be a cominuscule space. Then Schützenberger's rule holds *mutatis mutandis*, replacing standard tableaux with linear extensions of root theoretic Young tableaux, and jeu de taquin by an extension of [R. Proctor '04].

Some tests of the theme we try to address:

- (1) Can we replace H^* by H_T, K, K_T ?
- (2) Can we go beyond the (co)minuscule setting?

伺い イヨト イヨト

K-theoretic structure constants: $[\mathcal{O}_{X_{\lambda}}] \cdot [\mathcal{O}_{X_{\mu}}] = \sum_{\nu} \mathcal{K}_{\lambda,\mu}^{\nu} [\mathcal{O}_{X_{\nu}}].$ Additional *K*-jdt rule: $\bullet a \mapsto a \bullet$ Not mysterious: $C_{(1),(1)}^{(2,\overline{1})}(\operatorname{Gr}_1(\overline{\mathbb{C}^2})) = -1$ since $\textcircled{\bullet 1}_1 \mapsto \overbrace{1}^{1 \bullet}$ **Theorem:** [Thomas-Y. '09] Suppose $T = \frac{12}{13}$ is an increasing tableaux of shape ν/λ . If it K-rectifies to $T_{\mu} = \frac{1}{3}$ under some order, it rectifies to T_{μ} under any order. **Theorem:** [Thomas-Y. '09] $(-1)^{|\lambda|+|\mu|+|\nu|} \mathcal{K}^{\nu}_{\lambda,\mu}(\operatorname{Gr}_{k}(\mathbb{C}^{n})) =$

increasing tableaux of shape ν/λ that K-rectify to T_{μ} .

・ロト ・ 同ト ・ ヨト ・ ヨト

K-theory of Grassmannians (cont)

Some Schubert calculus applications:

- (Quiver formulas): The Hecke insertion algorithm of [Buch-Kresch-Shimozono-Tamvakis-Y., '08] has jdt version, just as Robinson-Schensted does, classically.
- (2) (Direct sum map): $\operatorname{Gr}_{k_1}(\mathbb{C}^{n_1}) \times \operatorname{Gr}_{k_2}(\mathbb{C}^{n_2}) \mapsto \operatorname{Gr}_{k_1+k_2}(\mathbb{C}^{n_1+n_2}) : (V,W) \mapsto V \oplus W$ pulls back:

$$[\mathcal{O}_{X_{\nu}}] \mapsto \sum_{\lambda,\mu} \widehat{K}^{\nu}_{\lambda,\mu}[\mathcal{O}_{X_{\lambda}}] \otimes [\mathcal{O}_{X_{\mu}}]$$

New formulas [Thomas-Y., '10] with full confluence.

- (3) (Extensions to OG(n, 2n + 1)): [Buch-Ravikumar '10] combined with [Clifford-Thomas-Y., '10];
- (4) (All minuscule): conj. [Thomas-Y., '09]; fixed in E₇ and much more [Buch-Samuels, '12+].

Some non-Schubert calculus applications

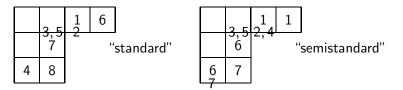
- (1) (Longest strictly increasing subsequence problem in random words): [Thomas-Y.,'11] extends the problem of [Ulam '50] and analysis of [Schensted '61].
- (2) (Cyclic sieving phenomenon): [Pechenik, '12+] uses Kjdt to give a new instance of this phenomenon of [Reiner-Stanton-White, '04].

向下 イヨト イヨト

T-equivariant cohomology of Grassmannians

Equiv. structure coeffs: $\sigma_{\lambda}^{T} \cdot \sigma_{\mu}^{T} = \sum_{\nu} E_{\lambda,\mu}^{\nu} \sigma_{\nu}^{T} \in H_{T}(\operatorname{Gr}_{k}(\mathbb{C}^{n}))$ where $H_{T}(\operatorname{Gr}_{k}(\mathbb{C}^{n}))$ is a module over $H_{T}(pt) = \mathbb{Z}[t_{1}, \ldots, t_{n}]$

Idea: Introduce edge labeled tableaux $\{1, 2, \dots, \ell\}$:



(cf. [Biedenharn-Louck '89], [Macdonald '92], [Goulden-Greene '94])"Standard" Ejdt:

$$\underbrace{\bullet}_{a} b \mapsto \boxed{a \ b} (\text{if } a < b) \quad \text{and} \quad \underbrace{b}_{a} \bullet (\text{if } a > b)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Not mysterious:
$$E_{(1),(1)}^{(1)}(Gr_1(\mathbb{C}^2)) = (t_1 - t_2)\sigma_{(1)}^T$$
 because

Assign boxes of $\Lambda_{G/P} = k \times (n-k)$ weights $t_i - t_{i+1}$ via $\begin{vmatrix} 3 & 4 & 5 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{vmatrix}$

Theorem: [Thomas-Y., '08-'12] $E_{\lambda,\mu}^{\nu}(\operatorname{Gr}_{k}(\mathbb{C}^{n})) = \sum_{T} \operatorname{wt}(T)$ where T rectifies to T_{μ} under column order. The $\operatorname{wt}(T)$ is a product of weights for edge labels.

・ 同 ト ・ ヨ ト ・ ヨ ト

This rule is positive in the sense of [Graham '01].

Problem: Develop a form of Ejdt that is more "flexible".

T-equivariant cohomology of Grassmannians (cont)

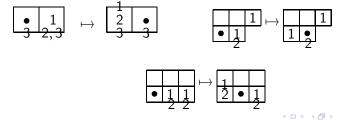
Our solution: [Thomas-Y., '12] Use the semistandard edge labeled tableaux and the following rules:

(1) "vertical swap": $\mathfrak{b} \leq \mathfrak{r}$ (or there is no \mathfrak{r}): $| \begin{array}{c} \bullet & \mathfrak{r} \\ \mathfrak{b} \\ \end{array} | \mapsto$

 $\begin{array}{c|c}\bullet & \mathfrak{r} \\ \bullet & \bullet \end{array} \mapsto \begin{array}{c} \mathfrak{b} & \mathfrak{r} \\ \bullet & \bullet \end{array}$

(II) "expansion swap": $\mathfrak{b} \leq \mathfrak{r}$ and \mathfrak{b} an edge label of x:

(III) "resuscitation swap": $b > \mathfrak{r}$ (or no b): $\bullet \mathfrak{r} \mapsto \mathfrak{r} \bullet \mathfrak{r}$ (IV) "horizontal swap": (by examples)



Schubert calculus via root datum and sliding laws

Fact: [Thomas-Y., '12] Eqjdt is a well-defined algorithm: if T is semistandard and lattice, Eqjdt(T) is a *formal sum* of semistandard and lattice tableaux.

Let
$$S_{\mu} = \boxed{\begin{array}{c|c} 1 & 1 & 1 \\ 2 & 2 \end{array}}$$
 be the **highest weight tableau**.

Theorem: [Thomas-Y., '12] Let T be a lattice semistandard tableau of content μ . Then:

(I) Eqrect(T) is μ -highest weight for any choice of rectification.

(II) The coefficient $[S_{\mu}]$ Eqrect(T) is invariant for these choices.

(III) $[S_{\mu}]$ Eqrect(T) can be computed directly from T.

Theorem: [Thomas-Y., '12] $E_{\lambda,\mu}^{\nu} = \sum_{T} [S_{\mu}] \text{Eqrect}(T)$, where the sum is over lattice semistandard tableaux of shape ν/λ and having content μ .

Consequences; equivariant K-theory of Grassmannians

These results lead to proofs of the "standard" rule for $E_{\lambda,\mu}^{\nu}$.

The standard rule suggests conjectural generalizations, e.g.:

Equivariant *K*-theory of Grassmannians: The rule merges the increasing tableau rule for *K*-theory and the "standard" equivariant rule. Thus we use **increasing tableau with edge labels**. However, we also allow box labels to be marked with \star . But, *if i and i* + 1 *appear in a row, only i* + 1 *can be* \star -*marked*. **Conjecture:** [Thomas-Y., '08-'12]

$$(EK)^{\mathcal{V}}_{\lambda,\mu}(\mathrm{Gr}_k(\mathbb{C}^n)) = \sum_T \mathrm{sgn}(T) \cdot \mathrm{wt}_K(T)$$

where the sum is over all $T \in \text{EqINC}(\nu/\lambda, |\mu|)$ such that $\text{KErect}(T) = T_{\mu}$ and $\text{sgn}(T) = (-1)^{\#\star's \text{ in } T} + \#\text{edge labels in } T + |\nu| - |\lambda| - |\mu|$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Can simply turn off features to get our earlier rules.
- Alternative to conjecture of A. Knutson-R. Vakil from 2004.
- Recently, [Knutson '10] uses puzzles to solve a different equivariant K-theory problem.
- Easily seen to be positive in the sense of [Anderson-Griffeth-Miller '09]
- Hope semistandard version (work in progress) will lead to proof.

向下 イヨト イヨト

Adjoint Schubert calculus (joint project in progress with D. Searles)

Adjoint varieties are the "next simplest" after the (co)minuscule varieties.

- G/P is adjoint if P is associated to an adjoint weight ω (means ω equals the highest weight of Φ⁺)
- These are classified (see next two slides)
- ω is **coadjoint** if it is adjoint for the dual root system

・ 同 ト ・ ヨ ト ・ ヨ ト

Classification of adjoint varieties (classical types)

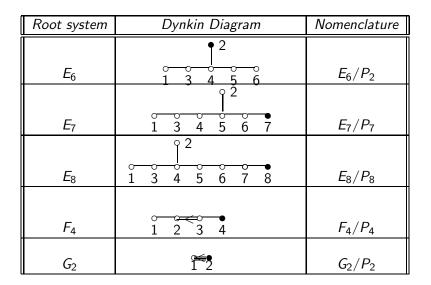
Root system	Dynkin Diagram	Nomenclature		
	• <u> </u>			
A _n	$1 2 \cdots k \cdots n$	$\mathrm{Flags}(1,n-1;\mathbb{C}^n)$		
B _n	$1 2 \cdots n$	OG(2, 2n + 1)		
	●──○──○ ── ∞			
$C_n, n \geq 3$	$1 2 \cdots \cdots n$	\mathbb{P}^{2n-1}		
	• • • • • • • •			
$D_n, n \ge 4$	$1 2 \cdots m \stackrel{\circ}{-} 1$	<i>OG</i> (2, 2 <i>n</i>)		

3 ×

< E

A ■

Classification of adjoint varieties (exceptional types)



Alexander Yong University of Illinois at Urbana-Champaign Schubert calculus via root datum and sliding laws

<ロ> (四) (四) (三) (三)

3

Adjoint combinatorics

The adjoint spaces are interesting for our theme since *none* of the following minuscule properties hold in general:

- $\Lambda_{G/P}$ is a planar poset
- λ is a lower order ideal
- Bruhat order is just containment of shapes

But these are "almost true".

One combinatorial commonality: the adjoint node, i.e., the highest node of $\Lambda_{G/P}$ (i.e., ω).

Example: $\Lambda_{\operatorname{Flags}(1,n-1,\mathbb{C}^{n-1})}$ within the ambient poset Ω_{GL_n} .

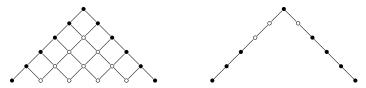


Figure: $\Lambda_{Fl_{1,n-1;n}}$, Ω_{GL_n} and a shape (for n = 6)

Adjoint combinatorics (cont)

Example:

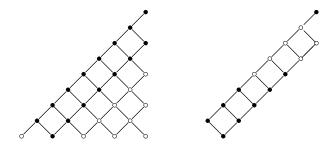


Figure: $\Lambda_{OG(2,2n+1)}$, $\Omega_{SO_{2n+1}}$ and a shape (for n = 5)

The short roots of $\Lambda_{OG(2,2n+1)}$ consist of the middle pair of nonadjoint nodes.

• 3 > •

Adjoint combinatorics (cont)

Example:

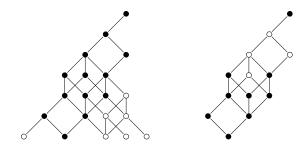


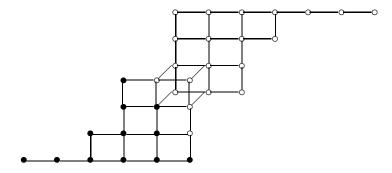
Figure: $\Lambda_{OG(2,2n)}$, $\Omega_{SO_{2n}}(\mathbb{C})$ and a shape (for n = 5)

G/P = OG(2, 2n) is the simplest one where $\Lambda_{G/P}$ is non-planar. In fact, only this non-planarity can appear in the adjoint varieties.

A (2) × A (2) × A (2) ×

Adjoint combinatorics (cont)

Example: A shape in Λ_{E_7/P_7} :



The adjoint node (not used in this case) is the rightmost node.

A > A > A >

Index the Schubert classes by $\overline{\lambda} = (\lambda, \bullet)$ or $\overline{\lambda} = (\lambda, \circ)$ depending on whether the adjoint node is used or not.

Fact: If G/P is adjoint then:

(i)
$$|\Lambda_{G/P}|$$
 is odd.
(ii) If $\overline{\lambda} = (\lambda, \circ)$ then $|\lambda| < \frac{1}{2} |\Lambda_{G/P}|$.
(iii) If $\overline{\lambda} = (\lambda, \bullet)$ then $|\lambda| > \frac{1}{2} |\Lambda_{G/P}|$
(iv) λ is a lower order ideal in the poset $\Lambda_{G/P} \setminus \{\text{adjoint node}\}$
(v) $(\lambda, \circ) \prec (\mu, \circ)$ and $(\lambda, \bullet) \prec (\mu, \bullet)$ if and only if $\lambda \subseteq \mu$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Main results for (co)adjoint G/P's

Theorem (summary): [Searles-Y., '12+] For classical (co)adjoint G/P's we have explicit nonnegative product rules. They imply:

• In type A_{n-1} ; $FI_{1,n-1;n}$: $C_{\overline{\lambda},\overline{\mu}}^{\overline{\nu}}(FI_{1,n-1;n}) \in \{0,1\}$

$$C_{(\lambda,\circ),(\mu,\bullet)}^{(\lambda+\mu,\bullet)}(Fl_{1,n-1;n}), C_{(\lambda,\bullet),(\mu,\circ)}^{(\lambda+\mu,\bullet)}(Fl_{1,n-1;n}), C_{(\lambda,\circ),(\mu,\circ)}^{(\lambda+\mu,\circ)}(Fl_{1,n-1;n}), \\ C_{(\lambda,\circ),(\mu,\circ)}^{((\lambda+\mu)^{\star},\bullet)}(Fl_{1,n-1;n}), C_{(\lambda,\circ),(\mu,\circ)}^{((\lambda+\mu)_{\star},\bullet)}(Fl_{1,n-1;n}) = 1.$$

$$\begin{split} & \mathcal{L}_{(\lambda,\circ),(\mu,\circ)}^{(\nu,\circ)}(\mathcal{L}G(2,2n)), C_{(\lambda,\bullet),(\mu,\circ)}^{(\nu,\bullet)}(\mathcal{L}G(2,2n)), C_{(\lambda,\circ),(\mu,\bullet)}^{(\nu,\bullet)}(\mathcal{L}G(2,2n)) \\ & = C_{\lambda,\mu}^{\nu}(\operatorname{Gr}_2(\mathbb{C}^{2n-1})); \end{split}$$

$$\begin{array}{ll} \mathsf{II.} \\ C_{(\lambda,\circ),(\mu,\circ)}^{(\nu,\bullet)}(\mathcal{L}G(2,2n)) \ = \ C_{\lambda,\mu}^{\nu^{\star}}(\operatorname{Gr}_{2}(\mathbb{C}^{2n-1})) + C_{\lambda,\mu}^{\nu_{\star}}(\operatorname{Gr}_{2}(\mathbb{C}^{2n-1})). \end{array}$$

Main results for (co)adjoint G/P's

Theorem (summary, continued): [Searles-Y., '12] • In type B_n ; OG(2, 2n + 1):

$$C^{\overline{\nabla}}_{\overline{\lambda},\overline{\mu}}(OG(2,2n+1)) = 2^{\operatorname{short}(\overline{\nu}) - (\operatorname{short}(\overline{\lambda}) + \operatorname{short}(\overline{\mu}))} C^{\overline{\nu}}_{\overline{\lambda},\overline{\mu}}(LG(2,2n)),$$

where $\operatorname{short}(\overline{\lambda})$ is the number of short roots of $\overline{\lambda}$, etc.

• In type D_n ; OG(2, 2n): if $(\overline{\lambda}, \overline{\mu}, \overline{\nu})$ is of "main type" then

1.

$$C_{(\lambda,\circ),(\mu,\circ)}^{(\nu,\circ)}(OG(2,2n)), C_{(\lambda,\bullet),(\mu,\circ)}^{(\nu,\bullet)}(OG(2,2n)), C_{(\lambda,\circ),(\mu,\bullet)}^{(\nu,\bullet)}(OG(2,2n)) = 2^{fakeshort(\pi(\nu))-(fakeshort(\pi(\lambda))+fakeshort(\pi(\mu)))}C_{\pi(\lambda),\pi(\mu)}^{\pi(\nu)}(Gr_{2}(\mathbb{C}^{2n-2}))$$
11.

$$C_{(\lambda,\circ),(\mu,\circ)}^{(\nu,\bullet)}(OG(2,2n)) = 2^{fakeshort(\pi(\nu))-(fakeshort(\pi(\lambda))+fakeshort(\pi(\mu)))} \times (C_{\pi(\lambda),\pi(\mu)}^{\pi(\nu)*}(\operatorname{Gr}_{2}(\mathbb{C}^{2n-2})) + C_{\pi(\lambda),\pi(\mu)}^{\pi(\nu)*}(\operatorname{Gr}_{2}(\mathbb{C}^{2n-2}))).$$

÷

向下 イヨト イヨト

- ► Earlier work of [Chaput-Perrin '12] (generalizing [Thomas-Y., 09]) gives a jeu de taquin rule when |λ|, |μ|, |ν| < ¹/₂|Λ_{G/P}|.
- ➤ Our product rules build on the LR rule for Gr₂(C²ⁿ) (easy) to one for LG(2, 2n) (demands an "adjoint node sliding operation") to one for OG(2, 2n) which projects to the LG(2, 2n) case (sort of) and demands a number of "disambiguation rules".
- Ideally, one wants a root-system uniform rule. However, the rules we have show some similarities with each other and the (co)minuscule rule of [Thomas-Y., '09].

- 4 回 ト 4 ヨ ト 4 ヨ ト

We have some control of the structure constants. For example:

Adjoint									
B _n	Cn	D _n	G ₂	<i>F</i> ₄	E ₆	E ₇	E ₈		
8	1	8	3	8	7	33	975		
Coadjoint									
	В,	, C,	, G2	2 F.	ļ.				
	2	2	2	12	2				
	-	8 1 <i>B</i> ,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Table: Maximum values of $C^{\nu}_{\lambda,\mu}(G/P)$

(In fact, we know exactly what values can occur in each case.)

(4月) (4日) (4日)

We have examined the use of root datum and sliding to study Schubert calculus of G/P in various cohomology theories.

- (Grassmannians): sliding methods extending classical jeu de taquin give us a fairly complete understanding.
- (Minuscules): these methods show promise. For K-theory, they led to explicit (now proved) rules.
- (Beyond minuscules): we discussed the adjoint varieties as a natural step.

・ 同 ト ・ ヨ ト ・ ヨ ト …