Character sheaves on a symmetric space and Kostka polynomials

Toshiaki Shoji

Nagoya University

July 27, 2012, Osaka

Kostka polynomials $K_{\lambda,\mu}(t)$

$$\lambda = (\lambda_1, \dots, \lambda_k) : \text{ partition of } n$$

$$\lambda_i \in \mathbb{Z}_{\geq 0}, \quad \lambda_1 \geq \dots \geq \lambda_k \geq 0, \quad \sum_i \lambda_i = n$$

$$\mathcal{P}_n = \{\text{partitions of } n\}$$

$$s_{\lambda}(x) = s_{\lambda}(x_1, \dots, x_k) \in \mathbb{Z}[x_1, \dots, x_k]$$
: Schur function
 $P_{\lambda}(x; t) = P_{\lambda}(x_1, \dots, x_k; t) \in \mathbb{Z}[x_1, \dots, x_k; t]$: Hall-Littlewood function

For $\lambda, \mu \in \mathcal{P}_n$, $\mathcal{K}_{\lambda,\mu}(t)$: Kostka polynomial defined by

$$s_{\lambda}(x) = \sum_{\mu \in \mathcal{P}_n} K_{\lambda,\mu}(t) P_{\mu}(x;t)$$

 $K_{\lambda,\mu}(t) \in \mathbb{Z}[t],$ $(K_{\lambda,\mu}(t))_{\lambda,\mu\in\mathcal{P}_n}$: transition matrix of two basis $\{s_{\lambda}(x)\}, \{P_{\mu}(x;t)\}$ of the space of homog. symm. poly. of degree n

Geometric realization of Kostka polynomials

In 1981, Lusztig gave a geometric realization of Kostka polynomials in connection with the closure of nilpotent orbits.

 $V = \mathbb{C}^n, \quad G = GL(V)$ $\mathcal{N} = \{x \in End(V) \mid x : nilpotent \} : nilpotent cone$

 $\mathcal{P}_n \simeq \mathcal{N}/G$

 $\lambda \leftrightarrow G$ -orbit $\mathcal{O}_{\lambda} \ni x$: Jordan type λ

• Closure relations :

$$\overline{\mathcal{O}}_{\lambda} = \coprod_{\mu \leq \lambda} \mathcal{O}_{\mu} \quad (\overline{\mathcal{O}}_{\lambda} : \text{ Zariski closure of } \mathcal{O}_{\lambda})$$

dominance order on \mathcal{P}_n

For
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
, $\mu = (\mu_1, \mu_2, \dots, \mu_k)$,
 $\mu \le \lambda \Leftrightarrow \sum_{i=1}^j \mu_i \le \sum_{i=1}^j \lambda_i$ for each j .

Notation: $n(\lambda) = \sum_{i\geq 1} (i-1)\lambda_i$

Define $\widetilde{K}_{\lambda,\mu}(t) = t^{n(\mu)} K_{\lambda,\mu}(t^{-1})$: modified Kostka polynomial

 $\mathcal{K} = \mathsf{IC}(\overline{\mathcal{O}}_{\lambda}, \mathbb{C})$: Intersection cohomology complex

$$K: \cdots \longrightarrow K_{i-1} \xrightarrow{d_{i-1}} K_i \xrightarrow{d_i} K_{i+1} \xrightarrow{d_{i+1}} \cdots$$

 $\mathcal{K} = (\mathcal{K}_i)$: bounded complex of \mathbb{C} -sheaves on $\overline{\mathcal{O}}_{\lambda}$

 $\begin{aligned} \mathcal{H}^{i} & \mathcal{K} = \operatorname{Ker} d_{i} / \operatorname{Im} d_{i-1} : i\text{-th cohomology sheaf} \\ \mathcal{H}^{i}_{x} & \mathcal{K} : \text{ the stalk at } x \in \overline{\mathcal{O}}_{\lambda} \text{ of } \mathcal{H}^{i} & \text{(finite dim. vecotr space over } \mathbb{C} \text{)} \\ \\ & \text{Known fact : } \mathcal{H}^{i} & \mathcal{K} = 0 \text{ for odd } i. \end{aligned}$

Theorem (Lusztig)

For $x \in \mathcal{O}_{\mu}$,

$$\widetilde{{\mathcal K}}_{\lambda,\mu}(t)=t^{n(\lambda)}\sum_{i>0}(\dim_{\mathbb C}{\mathcal H}^{2i}_{{\mathrm x}}{\mathcal K})t^i$$

In particular, $K_{\lambda,\mu}[t] \in \mathbb{Z}_{\geq 0}[t]$. (theorem of Lascoux-Schützenberger)

Representation theory of $GL_n(\mathbb{F}_q)$

$$\mathbb{F}_q$$
 : finite field of q elements with ch $\mathbb{F}_q = p$
 $\overline{\mathbb{F}}_q$: algebraic closure of \mathbb{F}_q

$$G = GL_n(\overline{\mathbb{F}}_q) \supset B = \left\{ \begin{pmatrix} * & \cdots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & * \end{pmatrix} \right\} \supset U = \left\{ \begin{pmatrix} 1 & \cdots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

B : Borel subgroup, U : maximal unipotent subgroup

$$F: G \to G, (g_{ij}) \mapsto (g_{ij}^{q}) : \text{Frobenius map}$$

$$G^{F} = \{g \in G \mid F(g) = g\} = G(\mathbb{F}_{q}) : \text{finite subgroup}$$

$$\operatorname{Ind}^{G^{F}} 1 : \operatorname{the character of } G^{F} \text{ obtained by inducing up } 1$$

 $\operatorname{Ind}_{B^F}^{G^{\prime}}1$: the character of G^{F} obtained by inducing up 1_{B^F}

$$\operatorname{Ind}_{B^{F}}^{G^{F}} 1 = \sum_{\lambda \in \mathcal{P}_{n}} (\operatorname{deg} \chi^{\lambda}) \rho^{\lambda},$$

 ρ^{λ} : irreducible character of G^{F} corresp. to $\chi^{\lambda} \in S_n^{\wedge} \simeq \mathcal{P}_n$.

 $\mathcal{G}_{\mathsf{uni}} = \{ g \in \mathcal{G} \mid u: \mathsf{unipotent} \} \subset \mathcal{G}, \quad \mathcal{G}_{\mathsf{uni}} \simeq \mathcal{N}, u \leftrightarrow u-1 \}$

- $G_{\text{uni}}/G \simeq \mathcal{P}_n, \quad \mathcal{O}_\lambda \leftrightarrow \lambda$
- \mathcal{O}_{λ} : *F*-stable $\Longrightarrow \mathcal{O}_{\lambda}^{F}$: single *G*^{*F*}-orbit, $u_{\lambda} \in \mathcal{O}_{\lambda}^{F}$

Theorem (Green)

$$\rho^{\lambda}(u_{\mu}) = \widetilde{K}_{\lambda,\mu}(q)$$

Remark : Lusztig's result \implies the character values of ρ^{λ} at **unipotent** elements are described in terms of intersection cohomology complex.

Theory of character sheaves \implies describes all the character values of any irreducible characters in terms of certain simple perverse sheaves.

6 / 1

Enhanced nilpotent cone

$$\lambda = (\lambda^{(1)}, \dots, \lambda^{(r)}), \quad \sum_{i=1}^{r} |\lambda^{(i)}| = n : r$$
-partition of n

 $\mathcal{P}_{n,r}$: the set of *r*-partitions of *n*

S (2004) : for $\lambda, \mu \in \mathcal{P}_{n,r}$, introduced $K_{\lambda,\mu}(t) \in \mathbb{Q}(t)$: **Kostka functions associated to complex reflection groups** as the transition matrix between the bases of Schur functions $\{s_{\lambda}(x)\}$ and "Hall-Littlewood functions" $\{P_{\mu}(x;t)\}$.

Achar-Henderson (2008) : geometric realization of Kostka functions for r = 2

 $V = \mathbb{C}^n$, \mathcal{N} : nilpotent cone $\mathcal{N} \times V$: **enhanced nilpotent cone**, action of G = GL(V)Achar-Henderson, Travkin :

$$(\mathcal{N} imes V)/G \simeq \mathcal{P}_{n,2}, \quad \mathcal{O}_{\boldsymbol{\lambda}} \leftrightarrow \boldsymbol{\lambda}$$

 $\mathcal{K} = \mathsf{IC}(\overline{\mathcal{O}}_{\boldsymbol{\lambda}}, \mathbb{C})$: Intersection cohomology complex

Theorem (Achar-Henderson)

 $\mathcal{H}^i \mathcal{K} = 0$ for odd *i*. For $\lambda, \mu \in \mathcal{P}_{n,2}$, and $(x, v) \in \mathcal{O}_{\mu} \subseteq \overline{\mathcal{O}}_{\lambda}$,

$$t^{a(\boldsymbol{\lambda})}\sum_{i\geq 0} (\dim_{\mathbb{C}}\mathcal{H}^{2i}_{(x,v)}\mathcal{K})t^{2i} = \widetilde{\mathcal{K}}_{\boldsymbol{\lambda},\boldsymbol{\mu}}(t),$$

where
$$a(\boldsymbol{\lambda}) = 2n(\lambda^{(1)}) + 2n(\lambda^{(2)}) + |\lambda^{(2)}|$$
 for $\boldsymbol{\lambda} = (\lambda^{(1)}, \lambda^{(2)})$.

$$\mathcal{N} imes V \rightsquigarrow {\sf G}_{{\sf uni}} imes V \hookrightarrow {\sf G} imes V$$
 (over $\overline{\mathbb{F}}_q$) : action of ${\sf G} = {\it GL}(V)$

Finkelberg-Ginzburg-Travkin (2008) : Theory of character sheaves on $G \times V$ (certain *G*-equiv. simple perverse sheaves)

$$\implies$$
 "character table" of $(G \times V)^F$

good basis of the space of G^F -invariant functions on $(G \times V)^F$

Finite symmetric space $GL_{2n}(\mathbb{F}_q)/Sp_{2n}(\mathbb{F}_q)$

 $G = GL(V) \simeq GL_{2n}(\overline{\mathbb{F}}_a), \quad V = (\overline{\mathbb{F}}_a)^{2n}, \quad \operatorname{ch} \mathbb{F}_a \neq 2$ $\theta: G \to G, \ \theta(g) = J^{-1}({}^tg^{-1})J:$ involution, $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$ $K := \{g \in G \mid \theta(g) = g\} \simeq Sp_{2n}(\overline{\mathbb{F}}_{q}) \quad G/K : \text{symmetric space over } \overline{\mathbb{F}}_{q}$ $G^F \simeq GL_{2n}(\mathbb{F}_a) \supset Sp_{2n}(\mathbb{F}_a) \simeq K^F$ G^F acts on $G^F/K^F \rightsquigarrow 1_{KF}^{G^F}$: induced representation $H(G^F, K^F) := \operatorname{End}_{G^F}(1_{K^F}^{G^F})$: Hecke algebra asoc. to (G^F, K^F)

H(G^F, K^F) : commutative algebra
H(G^F, K^F)[∧] : natural labeling by (GL^F_n)[∧]
K^F\G^F/K^F : natural labeling by { conj. classes of GL^F_n}

Theorem (Bannai-Kawanka-Song, 1990)

The character table of $H(G^F, K^F)$ can be obtained from the character table of GL_n^F by replacing $q \mapsto q^2$.

Geometric setting for G/K

$$egin{aligned} \mathsf{G}^{\iota heta} &= \{ \mathsf{g} \in \mathsf{G} \mid heta(\mathsf{g}) = \mathsf{g}^{-1} \} \ &= \{ \mathsf{g} heta(\mathsf{g})^{-1} \mid \mathsf{g} \in \mathsf{G} \}, \end{aligned}$$

where $\iota: G \to G, g \mapsto g^{-1}$.

The map $G \to G$, $g \mapsto g\theta(g)^{-1}$ gives isom. $G/K \xrightarrow{\sim} G^{\iota\theta}$.

K acts by left mult $\curvearrowright G/K \simeq G^{\iota\theta} \curvearrowleft K$ acts by conjugation.

 $K \setminus G/K \simeq \{K \text{-conjugates of } G^{\iota\theta}\}$

Henderson : Geometric reconstruction of BKS (not complete)

Lie algerba analogue

$$\begin{split} \mathfrak{g} &= \mathfrak{gl}_{2n}, \quad \theta: \mathfrak{g} \to \mathfrak{g}: \text{ involution, } \mathfrak{g} = \mathfrak{g}^{\theta} \oplus \mathfrak{g}^{-\theta}, \\ \mathfrak{g}^{\pm \theta} &= \{x \in \mathfrak{g} \mid \theta(x) = \pm x\}, \quad \text{K-stable subspace of } \mathfrak{g} \\ \mathfrak{g}_{\mathsf{nil}}^{-\theta} &= \mathfrak{g}^{-\theta} \cap \mathcal{N}_{\mathfrak{g}}: \text{ analogue of nilpotent cone } \mathcal{N}, \text{ K-stable subset of } \mathfrak{g}^{-\theta} \end{split}$$

$$\mathfrak{g}_{\mathsf{nil}}^{-\theta}/\mathsf{K}\simeq\mathcal{P}_n,\quad\mathcal{O}_\lambda\leftrightarrow\lambda$$

Theorem (Henderson + BKS, 2008) Let $K = IC(\overline{\mathcal{O}}_{\lambda}, \overline{\mathbb{Q}}_{I}), x \in \mathcal{O}_{\mu} \subset \overline{\mathcal{O}}_{\lambda}$. Then $\mathcal{H}^{i}K = 0$ unless $i \equiv 0 \pmod{4}$, and

$$t^{2n(\lambda)}\sum_{i\geq 0}(\dim\mathcal{H}^{4i}_{\mathrm{x}}\mathcal{K})t^{2i}=\widetilde{\mathcal{K}}_{\lambda,\mu}(t^2)$$

Exotic symmetric space $GL_{2n}/Sp_{2n} \times V$ (Joint work with K. Sorlin)

 $G = GL(V) \simeq GL_{2n}(\overline{\mathbb{F}}_{q}), \quad \dim V = 2n, \quad K = G^{\theta}.$

 $\mathcal{X} = G^{\iota\theta} \times V : K$ action

Problem

- Find a good class of K-equivariant simple perverse sheaves on $G^{\iota\theta} \times V$, i.e., "character sheaves" on $G^{\iota\theta} \times V$
- Find a good basis of K^F -equivariant functions on $(G^{\iota\theta} \times V)^F$, i.e., "irreducible characters" of $(G^{\iota\theta} \times V)^F$, and compute their values, i.e., computation of the "character table"

Remark : $\mathcal{X}_{uni} := G_{uni}^{\iota\theta} \times V \simeq \mathfrak{g}_{nil}^{-\theta} \times V$: **Kato's exotic nilcone**

Kato $\mathcal{X}_{uni}/K \simeq (\mathfrak{g}_{nil}^{-\theta} \times V)/K \simeq \mathcal{P}_{n,2}, \quad \mathcal{O}_{\mu} \leftrightarrow \mu \in \mathcal{P}_{n,2}$

Natural bijection with GL_p -orbits of enhanced nilcone, compatible with closure relations (Achar-Henderson)

Constrcution of character sheaves on $\ensuremath{\mathcal{X}}$

 $T \subset B \ \theta$ -stable maximal torus, θ -stable Borel sdubgroup of G M_n : maximal isotropic subspace of V stable by B^{θ}

$$\begin{split} \widetilde{\mathcal{X}} &= \{ (x, v, gB^{\theta}) \in G^{\iota\theta} \times V \times K/B^{\theta} \mid g^{-1}xg \in B^{\iota\theta}, g^{-1}x \in M_n \} \\ \pi : \widetilde{\mathcal{X}} \to \mathcal{X}, (x, v, gB^{\theta}) \mapsto (x, v), \\ \alpha : \widetilde{\mathcal{X}} \to T^{\iota\theta}, (x, v, gB^{\theta}) \mapsto \overline{g^{-1}xg}, \quad (b \mapsto \overline{b} : \text{projection } B^{\iota\theta} \to T^{\iota\theta}) \end{split}$$

$$T^{\iota\theta} \xleftarrow{\alpha} \widetilde{\mathcal{X}} \xrightarrow{\pi} \mathcal{X}$$

 \mathcal{E} : tame local system on $\mathcal{T}^{\iota\theta} \rightsquigarrow \mathcal{K}_{\mathcal{T},\mathcal{E}} = \pi_* \alpha^* \mathcal{E}[\dim \mathcal{X}]$ $\mathcal{K}_{\mathcal{T},\mathcal{E}}$: semisimple perverse sheaf on \mathcal{X}

Definition $\widehat{\mathcal{X}}$: (Character sheaves on \mathcal{X}) *K*-equiv. simple perverse sheaves on \mathcal{X} , appearing as a direct summand of various $K_{\mathcal{T},\mathcal{E}}$.

$\mathbb{F}_q\text{-structures}$ on $\chi_{\mathcal{T},\mathcal{E}}$ and Green functions

 (T, \mathcal{E}) as before Assume T : F-stable, (but B: not necessarily F-stable), $F^*\mathcal{E} \xrightarrow{\sim} \mathcal{E}$. Obtain canonical isomorphism $\varphi : F^*K_{T,\mathcal{E}} \xrightarrow{\sim} K_{T,\mathcal{E}}$

Define a characteristic function $\chi_{K,\varphi}$ of $K = K_{T,\mathcal{E}}$ by

$$\chi_{\mathcal{K},\varphi}(z) = \sum_{i} (-1)^{i} \operatorname{Tr}(\varphi, \mathcal{H}_{z}^{i}\mathcal{K}) \qquad (z \in \mathcal{X}^{F})$$
$$\chi_{\mathcal{K},\varphi}: \ \mathcal{K}^{F}\text{-invariant function on } \mathcal{X}^{F}$$
Put $\chi_{\mathcal{T},\mathcal{E}} = \chi_{\mathcal{K}_{\mathcal{T},\mathcal{E}},\varphi} \text{ for each } (\mathcal{T},\mathcal{E}).$

Proposition-Definition

 $\chi_{\mathcal{T},\mathcal{E}}|_{\mathcal{X}_{uni}^F}$ is independent of the choice of \mathcal{E} on $\mathcal{T}^{\iota\theta}$. We define $Q_{\mathcal{T}}: \mathcal{X}_{uni}^F \to \overline{\mathbb{Q}}_I$ by $Q_{\mathcal{T}} = \chi_{\mathcal{T},\mathcal{E}}|_{\mathcal{X}_{uni}^F}$, and call it **Green function** on \mathcal{X}_{uni}^F .

15 / 1

Character formula

For $s \in G^{\iota\theta}$, semisimple, $Z_G(s)$: θ -stable, and $Z_G(s) \times V$ has a similar structure as $\mathcal{X} = G^{\iota\theta} \times V$. Then Green function $Q_{T'}^{Z_G(s)}$ (T': θ -stable maximal torus in $Z_G(s)$) can be defined similar to Q_T

Theorem (Character formula)

Let $s, u \in (G^{\iota\theta})^F$ be such that su = us, with s: semisimple, u: unipotent. Assume that $\mathcal{E} = \mathcal{E}_{\vartheta}$: *F*-stable tame local system on $T^{\iota\theta}$ with $\vartheta \in (T^{\iota\theta,F})^{\wedge}$. Then

$$\chi_{T,\mathcal{E}}(su,v) = |Z_{\mathcal{K}}(s)^{\mathcal{F}}|^{-1} \sum_{\substack{x \in \mathcal{K}^{\mathcal{F}} \\ x^{-1}sx \in T^{\iota\theta,\mathcal{F}}}} Q_{xTx^{-1}}^{Z_{\mathcal{G}}(s)}(u,v)\vartheta(x^{-1}sx)$$

Remark The computation of the function $\chi_{T,\mathcal{E}}$ is reduced to the computation of Green functions $Q_{xTx^{-1}}^{Z_G(s)}$ for various semisimple $s \in G^{\iota\theta}$.

Orthogonality relations

Theorem (Orthogonality relations for $\chi_{T,\mathcal{E}}$)

Assume that T, T' are F-stable, θ -stable maximal tori in G as before. Let $\mathcal{E} = \mathcal{E}_{\vartheta}, \mathcal{E}' = \mathcal{E}_{\vartheta'}$ be tame local systems on $T^{\iota\theta}, T'^{\iota\theta}$ with $\vartheta \in (T^{\iota\theta,F})^{\wedge}, \vartheta' \in (T'^{\iota\theta,F})^{\wedge}$. Then

$$|\mathcal{K}^{F}|^{-1} \sum_{(x,v)\in\mathcal{X}^{F}} \chi_{\mathcal{T},\mathcal{E}}(x,v) \chi_{\mathcal{T}',\mathcal{E}'}(x,v)$$

= $|\mathcal{T}^{\theta,F}|^{-1} |\mathcal{T}'^{\theta,F}|^{-1} \sum_{\substack{n\in N_{\mathcal{K}}(\mathcal{T}^{\theta},\mathcal{T}'^{\theta})^{F}\\t\in\mathcal{T}^{\iota\theta,F}}} \vartheta(t)\vartheta'(n^{-1}tn)$

Theorem(Orthogonality relations for Green functions)

$$|\mathcal{K}^{\mathcal{F}}|^{-1}\sum_{(u,v)\in\mathcal{X}_{\text{uni}}^{\mathcal{F}}}Q_{\mathcal{T}}(u,v)_{\mathcal{T}'}(u,v)=\frac{N_{\mathcal{K}}(\mathcal{T}^{\theta},\mathcal{T}'^{\theta})^{\mathcal{F}}|}{|\mathcal{T}^{\theta,\mathcal{F}}||\mathcal{T}'^{\theta,\mathcal{F}}|}$$

Toshiaki Shoji (Nagoya University) Character sheaves on a symmetric space and

Springer correspondence

We consider the case $\mathcal{E} = \overline{\mathbb{Q}}_{I}$: constant sheaf on $\mathcal{T}^{\iota\theta}$. Then $K_{T,\mathcal{E}} = \pi_{*}\overline{\mathbb{Q}}_{I}[\dim \mathcal{X}]$. $M_{0} \subset M_{1} \subset \cdots \subset M_{n}$: isotorpic flag stable by B^{θ} Define $\mathcal{X}_{m} = \bigcup_{g \in \mathcal{K}} g(B^{\iota\theta} \times M_{m})$. Then \mathcal{X}_{m} : closed in $\mathcal{X} = \mathcal{X}_{n}$, $\mathcal{X}_{0} \subset \mathcal{X}_{1} \subset \cdots \subset \mathcal{X}_{n} = \mathcal{X}$.

 $W_n = N_K(T^{ heta})/T^{ heta}$: Weyl group of type C_n , $W_n^{\wedge} \simeq \mathcal{P}_{n,2}$

Proposition 1

 $\pi_* \bar{\mathbb{Q}}_I[\dim \mathcal{X}]$: a semisimple perverse sheaf with W_n -action, is decomposed as

$$\pi_* \bar{\mathbb{Q}}_I[\operatorname{\mathsf{dim}} \mathcal{X}] \simeq igoplus_{oldsymbol{\mu} \in \mathcal{P}_{n,2}} V_{oldsymbol{\mu}} \otimes \mathsf{IC}(\mathcal{X}_{m(oldsymbol{\mu})}, \mathcal{L}_{oldsymbol{\mu}})[\operatorname{\mathsf{dim}} \mathcal{X}_{m(oldsymbol{\mu})}],$$

 V_{μ} : standard irred. W_n -module, $m(\mu) = |\mu^{(1)}|$ for $\mu = (\mu^{(1)}, \mu^{(2)})$, \mathcal{L}_{μ} : local system on a smooth open subset of $\mathcal{X}_{m(\mu)}$.

Theorem (Springer correspondence)

For each $\mu \in \mathcal{P}_{n,2}$,

$\mathsf{IC}(\mathcal{X}_{m(\boldsymbol{\mu})},\mathcal{L}_{\boldsymbol{\mu}})|_{\mathcal{X}_{\mathsf{uni}}}\simeq \mathit{IC}(\overline{\mathcal{O}}_{\boldsymbol{\mu}},\bar{\mathbb{Q}}_l)\qquad(\mathsf{up \ to \ shift}).$

Hence $V_{\mu} \mapsto \mathcal{O}_{\mu}$ gives a bijective correspondence $W_n^{\wedge} \simeq \mathcal{X}_{\text{uni}}/K$.

Remark

- Springer correspondence was first proved by Kato for the exotic nilcone by using Ginzburg theroy on affine Hecke algebras.
- ② The proof of the theorem is divided into two steps. In the first step, we show the existence of the bijection $W_n^{\wedge} \xrightarrow{\sim} X_{uni}/K$. In the second step, we determine this map explcitly, by using an analogy of the restriction theorem due to Lusztig.

Green functions and Springer correspondence

We denote by T_w *F*-stable, θ -stable maximal torus of *G* corresp. to $w \in W_n \subset S_{2n}$.

For $A_{\mu} = IC(\overline{\mathcal{O}}_{\mu}, \overline{\mathbb{Q}}_{l})[\dim \mathcal{O}_{\mu}]$, we have a unique isomorphism $\varphi_{\mu} : F^*A_{\mu} \simeq A_{\mu}$ induced from $\varphi : F^*K_{T_1,\overline{\mathbb{Q}}_{l}} \simeq K_{T_1,\overline{\mathbb{Q}}_{l}}$

By using the Springer correspondence, we have

$$\mathcal{Q}_{\mathcal{T}_{\mathsf{W}}} = (-1)^{\dim \mathcal{X} - \dim \mathcal{X}_{\mathsf{uni}}} \sum_{\boldsymbol{\mu} \in \mathcal{P}_{n,2}} \chi^{\boldsymbol{\mu}}(w) \chi_{\mathcal{A}_{\boldsymbol{\mu}}, arphi_{\boldsymbol{\mu}}};$$

where χ^{μ} is the irreducible characters of W_n corresp. to V_{μ} .

Define, for each $\lambda \in \mathcal{P}_{n,2}$,

$$Q_{\boldsymbol{\lambda}} = |W_n|^{-1} \sum_{w \in W_n} \chi^{\boldsymbol{\lambda}}(w) Q_{\mathcal{T}_w}$$

Then by using the orthogonality relations for Green functions, we have

Proposition 2 For $\lambda, \mu \in \mathcal{P}_{n,2}$, $|\mathcal{K}^F|^{-1} \sum_{(u,v) \in \mathcal{X}_{uni}^F} Q_\lambda(u,v) Q_\mu(u,v)$ $= |W_n|^{-1} \sum_{w \in W_n} |T_w^{\theta,F}|^{-1} \chi^\lambda(w) \chi^\mu(w).$

Remark By definition, we have

$$Q_{\boldsymbol{\lambda}} = (-1)^{\dim \mathcal{X} - \dim \mathcal{X}_{\mathrm{uni}}} \chi_{A_{\boldsymbol{\lambda},\varphi_{\boldsymbol{\lambda}}}}$$

for $A_{\lambda} = \mathsf{IC}(\overline{\mathcal{O}}_{\lambda}, \overline{\mathbb{Q}}_{I})[\dim \mathcal{O}_{\lambda}].$

21 / 1

Characterization of Kostka polynomials

For any character χ of W_n , we define

$$R(\chi) = \frac{\prod_{i=1}^{n} (t^{2i} - 1)}{|W_n|} \sum_{w \in W_n} \frac{\varepsilon(w)\chi(w)}{\det_{V_0}(t - w)}$$

where ε : sign character of W_n , and V_0 : reflection module of W_n . $R(\chi) =$ graded multiplicity of χ in the coinvariant algerba $R(W_n)$. Define a matrix $\Omega = (\omega_{\lambda,\mu})_{\lambda,\mu \in \mathcal{P}_{n,2}}$ by

$$\omega_{\boldsymbol{\lambda},\boldsymbol{\mu}} = t^{\boldsymbol{N}} R(\chi^{\boldsymbol{\lambda}} \otimes \chi^{\boldsymbol{\mu}} \otimes \varepsilon).$$

Define a partial order $\lambda \leq \mu$ on $\mathcal{P}_{n,2}$ by the condition for any j;

$$\sum_{i=1}^{j} (\lambda_i^{(1)} + \lambda_i^{(2)}) \le \sum_{i=1}^{j} (\mu_i^{(1)} + \mu_i^{(2)})$$
$$\sum_{i=0}^{j} (\lambda_i^{(1)} + \lambda_i^{(2)}) + \lambda_{j+1}^{(1)} \le \sum_{0=1}^{j} (\mu_i^{(1)} + \mu_i^{(2)}) + \mu_{j+1}^{(1)}.$$

Theorem (S)

There exists a unique matrices $P = (p_{\lambda,\mu}), \Lambda = (\xi_{\lambda,\mu})$ over $\mathbb{Q}[t]$ satisfying the equation

$P\Lambda^{t}P = \Omega$

subject to the condition that $\boldsymbol{\Lambda}$ is a diagonal matrix and

$$p_{oldsymbol{\lambda},oldsymbol{\mu}} = egin{cases} 0 & ext{unless } oldsymbol{\mu} \leq oldsymbol{\lambda} \ t^{oldsymbol{a}(oldsymbol{\lambda})} & ext{if } oldsymbol{\mu} = oldsymbol{\lambda}. \end{cases}$$

Then the entry $p_{\lambda,\mu}$ coincides with $\widetilde{K}_{\lambda,\mu}(t)$.

Remark. Under this setup, we have

$$\omega_{\boldsymbol{\lambda},\boldsymbol{\mu}}(\boldsymbol{q}) = |\mathcal{K}^{\mathcal{F}}||W_{n}|^{-1} \sum_{w \in W_{n}} |T_{w}^{\theta,\mathcal{F}}|^{-1} \chi^{\boldsymbol{\lambda}}(w) \chi^{\boldsymbol{\mu}}(w).$$

Conjecture of Achar-Henderson

Main Theorem

Let \mathcal{O}_{λ} be the orbit in \mathcal{X}_{uni} corresp. to $\lambda \in \mathcal{P}_{n,2}$, and put $K = \mathsf{IC}(\overline{\mathcal{O}}_{\lambda}, \overline{\mathbb{Q}}_{l})$. Then for $(x, v) \in \mathcal{O}_{\mu} \subset \overline{\mathcal{O}}_{\lambda}$, we have $\mathcal{H}^{i}K = 0$ unless $i \equiv 0 \pmod{4}$, and

$$t^{a(\boldsymbol{\lambda})}\sum_{i\geq 0} (\dim \mathcal{H}^{4i}_{(x,v)}K)t^{2i} = \widetilde{K}_{\boldsymbol{\lambda},\boldsymbol{\mu}}(t).$$

Remarks.

- The theorem was first proved (for the exotic nilcone over C) by Kato by a different meothod.
- ⁽²⁾ By a similar argument, we can (re)prove a result of Henderson concerning the orbits in $G^{\iota\theta} \simeq \mathfrak{g}^{-\theta}$, without appealing the result from BKS.

K^{F} -invariant functions on $(G^{\iota\theta} \times V)^{F}$

Let $\widehat{\mathcal{X}}$ be the set of character sheaves on $\mathcal{X} = G^{\iota\theta} \times V$.

Put
$$\widehat{\mathcal{X}}^F = \{A \in \widehat{\mathcal{X}} \mid F^*A \simeq A\}.$$

For each $A \in \widehat{\mathcal{X}}^F$, fix an isomorphism $\varphi_A : F^*A \xrightarrow{\sim} A$, and consider the characteristic function χ_{A,φ_A} .

Let $C_q(\mathcal{X})$ be the $\overline{\mathbb{Q}}_l$ -space of \mathcal{K}^F -invariant functions on \mathcal{X}^F .

Theorem

• There exists an algorithm of computing χ_{A,φ_A} for each $A \in \widehat{\mathcal{X}}^F$.

2 The set
$$\{\chi_{A,\varphi_A} \mid A \in \widehat{\mathcal{X}}^F\}$$
 gives a basis of $C_q(\mathcal{X})$.