K-Chevalley Rule for Kac-Moody Flag Manifolds

Cristian Lenart¹ M. Shimozono²

¹Department of Mathematics State University of New York, Albany

> ²Department of Mathematics Virginia Tech

2012 MSJ Schubert Workshop

G B T Kac-Moody "group" Borel max torus

$$X = G/B$$

thick Kac-Moody flag manifold

$$\begin{array}{l} X_w^\circ = B_- wB/B \\ X_w = \overline{X_w^\circ} = \bigsqcup_{v \geq w} X_v^\circ \\ X_{\mathrm{id}}^\circ \end{array}$$

Schubert cell (codim
$$\ell(w)$$
)
Schubert variety
big cell

$$X = \bigsqcup_{w \in W} X_w^{\circ}$$

Flag ind-variety

$$X_{\text{ind}} = \bigsqcup_{w \in W} BwB/B \subset X$$

G B T

Kac-Moody "group" Borel max torus

$$X = G/B$$

(0. 5. 5/5

$$X_{w}^{\circ} = B_{-}wB/B$$
 $X_{w} = \overline{X_{w}^{\circ}} = \bigsqcup_{v \geq w} X_{v}^{\circ}$
 X_{id}°

Schubert cell (codim $\ell(w)$) Schubert variety big cell

thick Kac-Moody flag manifold

$$X = \bigsqcup_{w \in W} X_w^{\circ}$$

Flag ind-variety

$$X_{\text{ind}} = \bigsqcup_{w \in W} BwB/B \subset X$$

Kac-Moody "group" Borel max torus

$$X = G/B$$

thick Kac-Moody flag manifold

$$X_{w}^{\circ} = B_{-}wB/B$$
 $X_{w} = \overline{X_{w}^{\circ}} = \bigsqcup_{v \geq w} X_{v}^{\circ}$
 X_{id}°

Schubert cell (codim $\ell(w)$) Schubert variety big cell

$$X = \bigsqcup_{w \in W} X_w^{\circ}$$

$$X_{\text{ind}} = \bigsqcup_{w \in W} BwB/B \subset X$$

G B T
Kac-Moody "group" Borel max torus

$$X = G/B$$

thick Kac-Moody flag manifold

$$X_{w}^{\circ} = B_{-}wB/B$$
 $X_{w} = \overline{X_{w}^{\circ}} = \bigsqcup_{v \geq w} X_{v}^{\circ}$
 X_{id}°

Schubert cell (codim $\ell(w)$) Schubert variety big cell

$$X = \bigsqcup_{w \in W} X_w^{\circ}$$

Flag ind-variety

$$X_{\mathsf{ind}} = \bigsqcup_{w \in W} BwB/B \subset X$$

Exhaustion of *X* by quasicompact open sets

 $S \subset W$ finite Bruhat order ideal $(w \in S \text{ and } v \leq w \Rightarrow v \in S)$

$$\Omega_S = \bigsqcup_{w \in S} X_w^{\circ} = \bigcup_{w \in S} w X_{\mathrm{id}}^{\circ}$$

$$wX_{\mathrm{id}}^{\circ} \cong X_{\mathrm{id}}^{\circ} \cong \operatorname{Spec} \mathbb{C}[x_1, x_2, \dots]$$
 if $\dim(X) = \infty$.

Exhaustion of X by quasicompact open sets

$$S \subset W$$
 finite Bruhat order ideal $(w \in S \text{ and } v \leq w \Rightarrow v \in S)$

$$\Omega_{\mathcal{S}} = \bigsqcup_{w \in \mathcal{S}} X_w^{\circ} = \bigcup_{w \in \mathcal{S}} w X_{\mathrm{id}}^{\circ}$$

$$wX_{\mathrm{id}}^{\circ} \cong X_{\mathrm{id}}^{\circ} \cong \operatorname{Spec} \mathbb{C}[x_1, x_2, \dots]$$
 if $\dim(X) = \infty$.

Exhaustion of *X* by quasicompact open sets

$$S \subset W$$
 finite Bruhat order ideal $(w \in S \text{ and } v \leq w \Rightarrow v \in S)$

$$\Omega_{\mathcal{S}} = \bigsqcup_{w \in \mathcal{S}} X_w^{\circ} = \bigcup_{w \in \mathcal{S}} w X_{\mathrm{id}}^{\circ}$$

$$wX_{\mathrm{id}}^{\circ}\cong X_{\mathrm{id}}^{\circ}\cong\operatorname{Spec}\mathbb{C}[x_1,x_2,\dots]$$
 if $\dim(X)=\infty.$

 $K_{B_{-}}^{*}(\Omega_{S})$ Grothendieck group of B_{-} -equivariant coherent sheaves on Ω_{S}

$$K_{B_{-}}^{*}(\Omega_{S}) = \bigoplus_{W \in \Omega_{S}} K_{B_{-}}^{*}(pt)O_{X_{W}}$$

$$K_{B_{-}}^{*}(X) := \lim_{\leftarrow} K_{B_{-}}^{*}(\Omega_{S})$$

$$\cong \prod_{w \in W} K_{B_{-}}^{*}(pt)O_{X_{w}}$$

$$K_{B_{-}}^{*}(pt) \cong K_{T}^{*}(pt) = R(T) = \mathbb{Z}[e^{\lambda} \mid \lambda \in \Lambda].$$

 $K_{B_{-}}^{*}(\Omega_{S})$ Grothendieck group of B_{-} -equivariant coherent sheaves on Ω_{S}

$$K_{B_{-}}^{*}(\Omega_{S}) = \bigoplus_{w \in \Omega_{S}} K_{B_{-}}^{*}(pt)O_{X_{w}}$$

$$K_{B_{-}}^{*}(X) := \lim_{\leftarrow} K_{B_{-}}^{*}(\Omega_{S})$$

$$\cong \prod_{w \in W} K_{B_{-}}^{*}(pt)O_{X_{w}}$$

$$K_{B_{-}}^{*}(pt) \cong K_{T}^{*}(pt) = R(T) = \mathbb{Z}[e^{\lambda} \mid \lambda \in \Lambda].$$

 $K_{B_{-}}^{*}(\Omega_{S})$ Grothendieck group of B_{-} -equivariant coherent sheaves on Ω_{S}

$$K_{B_{-}}^{*}(\Omega_{S}) = \bigoplus_{w \in \Omega_{S}} K_{B_{-}}^{*}(pt)O_{X_{w}}$$

$$\mathcal{K}^*_{B_-}(X) := \lim_{\leftarrow} \mathcal{K}^*_{B_-}(\Omega_{\mathcal{S}})$$

$$\cong \prod_{w \in W} \mathcal{K}^*_{B_-}(pt) \mathcal{O}_{X_w}$$

$$K_{B_{-}}^{*}(pt) \cong K_{T}^{*}(pt) = R(T) = \mathbb{Z}[e^{\lambda} \mid \lambda \in \Lambda].$$

 $K_{B_{-}}^{*}(\Omega_{S})$ Grothendieck group of B_{-} -equivariant coherent sheaves on Ω_{S}

$$K_{B_{-}}^{*}(\Omega_{S}) = \bigoplus_{w \in \Omega_{S}} K_{B_{-}}^{*}(pt)O_{X_{w}}$$

$$\mathcal{K}^*_{B_-}(X) := \lim_{\leftarrow} \mathcal{K}^*_{B_-}(\Omega_{\mathcal{S}})$$

$$\cong \prod_{w \in W} \mathcal{K}^*_{B_-}(pt) \mathcal{O}_{X_w}$$

$$\mathsf{K}^*_\mathsf{B_-}(\mathsf{p} t) \cong \mathsf{K}^*_\mathsf{T}(\mathsf{p} t) = \mathsf{R}(\mathsf{T}) = \mathbb{Z}[\mathsf{e}^\lambda \mid \lambda \in \Lambda].$$

K-GKM ring

$$X^T = WB/B \cong W$$
 T -fixed points in X
 $\operatorname{res}: K_{B_-}^*(X) \hookrightarrow K_{B_-}^*(X^T) \cong \operatorname{Fun}(W, R(T))$
 $i_W: \{pt\} \to \{wB/B\} \subset X^T \subset X$
 $\operatorname{res}(c)(w) = i_W^*(c)$ for $c \in K_{B_-}^*(X)$, $w \in W$.

 $f:W\to R(T)$ satisfies the K-GKM (Goresky-Kottwitz-Macpherson) condition [Harada,Henriques,Holm] if

$$f(s_{\alpha}w) - f(w) \in (1 - e^{\alpha})R(T)$$
 for all α , w

Theorem

[Kostant and Kumar for Xind] [Kashiwara; Lam, Schilling, S. for X]

$$K_R^*(X) \cong \{f: W \to R(T) \mid f \text{ satisfies } K\text{-}GKM\}$$

K-GKM ring

$$X^T = WB/B \cong W$$
 T -fixed points in X

$$\operatorname{res}: K_{B_-}^*(X) \hookrightarrow K_{B_-}^*(X^T) \cong \operatorname{Fun}(W, R(T))$$

$$i_W: \{pt\} \to \{wB/B\} \subset X^T \subset X$$

$$\operatorname{res}(c)(w) = i_W^*(c) \quad \text{for } c \in K_{B_-}^*(X), \ w \in W.$$

 $f:W\to R(T)$ satisfies the K-GKM (Goresky-Kottwitz-Macpherson) condition [Harada,Henriques,Holm] if

$$f(s_{\alpha}w) - f(w) \in (1 - e^{\alpha})R(T)$$
 for all α , w

Theorem

[Kostant and Kumar for X_{ind}] [Kashiwara; Lam, Schilling, S. for X]

 $K_{\mathsf{R}}^* \; (X) \cong \{f : W \to R(T) \mid f \; \text{satisfies K-GKM} \}$

K-GKM ring

$$X^T = WB/B \cong W$$
 T -fixed points in X
 $\operatorname{res}: K_{B_-}^*(X) \hookrightarrow K_{B_-}^*(X^T) \cong \operatorname{Fun}(W, R(T))$
 $i_W: \{pt\} \to \{wB/B\} \subset X^T \subset X$
 $\operatorname{res}(c)(w) = i_W^*(c)$ for $c \in K_{B_-}^*(X)$, $w \in W$.

 $f:W\to R(T)$ satisfies the K-GKM (Goresky-Kottwitz-Macpherson) condition [Harada,Henriques,Holm] if

$$f(s_{\alpha}w) - f(w) \in (1 - e^{\alpha})R(T)$$
 for all α , w

Theorem

[Kostant and Kumar for X_{ind}] [Kashiwara; Lam, Schilling, S. for X]

$$K_{B_{-}}^{*}(X) \cong \{f: W \rightarrow R(T) \mid f \text{ satisfies K-GKM}\}.$$

Let $\psi^{\mathbf{v}}: \mathbf{W} \to \mathbf{R}(\mathbf{T})$ be the image of $\mathbf{O}_{X_{\mathbf{v}}}$ under res.

```
Theorem [Kostant, Kumar] [Lam, Schilling, S.] The functions \{\psi^v \mid v \in W\} are uniquely determined by:
```

* For $w \neq id$ let $ws_i < w$. Then

```
\psi^{V}(w) = \begin{cases} v_{-}(ws_{i}) & \text{if } vs_{i} > v \\ (1 - e^{-wa_{i}})\psi^{vs_{i}}(w) + e^{-wa_{i}}\psi^{V}(ws_{i}) & \text{if } vs_{i} < v \end{cases}
```

Let $\psi^{\nu}: W \to R(T)$ be the image of $O_{X_{\nu}}$ under res.

Theorem

[Kostant,Kumar] [Lam, Schilling, S.] The functions $\{\psi^{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\}$ are uniquely determined by:

- $\psi^{\mathsf{V}}(\mathrm{id}) = \delta_{\mathsf{V},\mathrm{id}}$ for $\mathsf{V} \in \mathsf{W}$.
- For $w \neq id$ let $ws_i < w$. Then

$$\psi^{\mathsf{V}}(\mathsf{W}) = \begin{cases} \psi^{\mathsf{V}}(\mathsf{W}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i > \mathsf{V} \\ (1 - e^{-\mathsf{W}\alpha_i})\psi^{\mathsf{V}\mathsf{s}_i}(\mathsf{W}) + e^{-\mathsf{W}\alpha_i}\psi^{\mathsf{V}}(\mathsf{W}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i < \mathsf{V}. \end{cases}$$

Let $\psi^{\nu}: W \to R(T)$ be the image of $O_{X_{\nu}}$ under res.

Theorem

[Kostant,Kumar] [Lam, Schilling, S.] The functions $\{\psi^{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\}$ are uniquely determined by:

- $\psi^{\mathsf{v}}(\mathrm{id}) = \delta_{\mathsf{v},\mathrm{id}}$ for $\mathsf{v} \in \mathsf{W}$.
- For $w \neq id$ let $ws_i < w$. Then

$$\psi^{\mathsf{V}}(\mathsf{W}) = \begin{cases} \psi^{\mathsf{V}}(\mathsf{W}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i > \mathsf{V} \\ (1 - e^{-\mathsf{W}\alpha_i})\psi^{\mathsf{V}\mathsf{s}_i}(\mathsf{W}) + e^{-\mathsf{W}\alpha_i}\psi^{\mathsf{V}}(\mathsf{W}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i < \mathsf{V}. \end{cases}$$

Let $\psi^{\mathbf{v}}: \mathbf{W} \to \mathbf{R}(\mathbf{T})$ be the image of $O_{X_{\mathbf{v}}}$ under res.

Theorem

[Kostant,Kumar] [Lam, Schilling, S.] The functions $\{\psi^{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\}$ are uniquely determined by:

- $\psi^{\mathsf{v}}(\mathrm{id}) = \delta_{\mathsf{v},\mathrm{id}}$ for $\mathsf{v} \in \mathsf{W}$.
- For $w \neq id$ let $ws_i < w$. Then

$$\psi^{\mathsf{v}}(\mathsf{w}) = \begin{cases} \psi^{\mathsf{v}}(\mathsf{w}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i > \mathsf{v} \\ (1 - e^{-\mathsf{w}\alpha_i})\psi^{\mathsf{v}\mathsf{s}_i}(\mathsf{w}) + e^{-\mathsf{w}\alpha_i}\psi^{\mathsf{v}}(\mathsf{w}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i < \mathsf{v}. \end{cases}$$

Let $\psi^{\mathbf{v}}: \mathbf{W} \to \mathbf{R}(\mathbf{T})$ be the image of $O_{X_{\mathbf{v}}}$ under res.

Theorem

[Kostant,Kumar] [Lam, Schilling, S.] The functions $\{\psi^{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\}$ are uniquely determined by:

- $\psi^{\mathsf{v}}(\mathrm{id}) = \delta_{\mathsf{v},\mathrm{id}}$ for $\mathsf{v} \in \mathsf{W}$.
- For $w \neq id$ let $ws_i < w$. Then

$$\psi^{\mathsf{v}}(\mathsf{w}) = \begin{cases} \psi^{\mathsf{v}}(\mathsf{w}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i > \mathsf{v} \\ (1 - e^{-\mathsf{w}\alpha_i})\psi^{\mathsf{v}\mathsf{s}_i}(\mathsf{w}) + e^{-\mathsf{w}\alpha_i}\psi^{\mathsf{v}}(\mathsf{w}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i < \mathsf{v}. \end{cases}$$

Let $\psi^{\mathbf{v}}: \mathbf{W} \to \mathbf{R}(\mathbf{T})$ be the image of $O_{X_{\mathbf{v}}}$ under res.

Theorem

[Kostant,Kumar] [Lam, Schilling, S.] The functions $\{\psi^{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\}$ are uniquely determined by:

- $\psi^{\mathsf{v}}(\mathrm{id}) = \delta_{\mathsf{v},\mathrm{id}}$ for $\mathsf{v} \in \mathsf{W}$.
- For $w \neq id$ let $ws_i < w$. Then

$$\psi^{\mathsf{v}}(\mathsf{w}) = \begin{cases} \psi^{\mathsf{v}}(\mathsf{w}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i > \mathsf{v} \\ (1 - e^{-\mathsf{w}\alpha_i})\psi^{\mathsf{v}\mathsf{s}_i}(\mathsf{w}) + e^{-\mathsf{w}\alpha_i}\psi^{\mathsf{v}}(\mathsf{w}\mathsf{s}_i) & \text{if } \mathsf{v}\mathsf{s}_i < \mathsf{v}. \end{cases}$$

Line bundles

weight $\lambda \in \Lambda$

Line bundle class $L^{\lambda} \in K_{\mathcal{B}}^{*}(X)$.

$$i_w^*(L^\lambda) = L^\lambda(w) = e^{w\lambda}$$
 for $w \in W$.

Divisor Schubert class

$$O_{s_i}=1-e^{\omega_i}L^{-\omega_i}$$
 in $K_{B_-}^*(X)$

 ω_i fundamental weight

Line bundles

weight $\lambda \in \Lambda$

Line bundle class $L^{\lambda} \in K_{B_{-}}^{*}(X)$.

$$i_w^*(L^\lambda) = L^\lambda(w) = e^{w\lambda}$$
 for $w \in W$.

Divisor Schubert class

$$O_{s_i} = 1 - e^{\omega_i} L^{-\omega_i} \quad \text{in } K_{B_-}^*(X)$$

 ω_i fundamental weight

Line bundles

weight $\lambda \in \Lambda$

Line bundle class $L^{\lambda} \in K_{B_{-}}^{*}(X)$.

$$i_w^*(L^\lambda) = L^\lambda(w) = e^{w\lambda}$$
 for $w \in W$.

Divisor Schubert class

$$O_{s_i} = 1 - e^{\omega_i} L^{-\omega_i}$$
 in $K_{B_-}^*(X)$

 ω_i fundamental weight

Define $b_{v,\lambda}^w \in R(T)$ by

$$L^{\lambda}O_{v}=\sum_{w}b_{v,\lambda}^{w}O_{w}.$$

For dim(X) $< \infty$ the elements L^{λ} generate $K_{B_{-}}^{*}(X)$.

For $dim(X) = \infty$ they do not.

In affine type they still determine the product in $K_{B_{-}}^{*}(X)$ [Kashiwara,S.].

Define $b_{v,\lambda}^w \in R(T)$ by

$$L^{\lambda}O_{v}=\sum_{w}b_{v,\lambda}^{w}O_{w}.$$

For dim(X) $< \infty$ the elements L^{λ} generate $K_{B_{-}}^{*}(X)$.

For $dim(X) = \infty$ they do not.

In affine type they still determine the product in $K_{B_{-}}^{*}(X)$ [Kashiwara,S.].

Define $b_{v,\lambda}^w \in R(T)$ by

$$L^{\lambda}O_{v}=\sum_{w}b_{v,\lambda}^{w}O_{w}.$$

For dim(X) $< \infty$ the elements L^{λ} generate $K_{B_{-}}^{*}(X)$.

For $dim(X) = \infty$ they do not.

In affine type they still determine the product in $K_{B_{-}}^{*}(X)$ [Kashiwara,S.].

Define $b_{v,\lambda}^w \in R(T)$ by

$$L^{\lambda}O_{v}=\sum_{w}b_{v,\lambda}^{w}O_{w}.$$

For dim(X) $< \infty$ the elements L^{λ} generate $K_{B_{-}}^{*}(X)$.

For $dim(X) = \infty$ they do not.

In affine type they still determine the product in $K_{B_{-}}^{*}(X)$ [Kashiwara,S.].

Define $b_{v,\lambda}^w \in R(T)$ by

$$L^{\lambda}O_{v}=\sum_{w}b_{v,\lambda}^{w}O_{w}.$$

For dim(X) $< \infty$ the elements L^{λ} generate $K_{B_{-}}^{*}(X)$.

For $dim(X) = \infty$ they do not.

In affine type they still determine the product in $K_{B_{-}}^{*}(X)$ [Kashiwara,S.].

Theorem (Lenart, S.)

Explicit effective (cancellation-free) formulas for $b_{\mathbf{v},\lambda}^{\mathbf{w}}$ for λ dominant and for λ antidominant.

Two combinatorial versions

- Using Lakshmibai-Seshadri (LS) paths (canonical Littelmann paths)
- Using the alcove path model of [Lenart, Postnikov]

Theorem (Lenart, S.)

Explicit effective (cancellation-free) formulas for $b_{\mathbf{v},\lambda}^{\mathbf{w}}$ for λ dominant and for λ antidominant.

Two combinatorial versions

- Using Lakshmibai-Seshadri (LS) paths (canonical Littelmann paths)
- Using the alcove path model of [Lenart, Postnikov]

Theorem (Lenart, S.)

Explicit effective (cancellation-free) formulas for $b_{\mathbf{v},\lambda}^{\mathbf{w}}$ for λ dominant and for λ antidominant.

Two combinatorial versions:

- Using Lakshmibai-Seshadri (LS) paths (canonical Littelmann paths)
- Using the alcove path model of [Lenart, Postnikov]

Theorem (Lenart, S.)

Explicit effective (cancellation-free) formulas for $b_{\mathbf{v},\lambda}^{\mathbf{w}}$ for λ dominant and for λ antidominant.

Two combinatorial versions:

- Using Lakshmibai-Seshadri (LS) paths (canonical Littelmann paths)
- Using the alcove path model of [Lenart, Postnikov]

Theorem (Lenart, S.)

Explicit effective (cancellation-free) formulas for $b_{\mathbf{v},\lambda}^{\mathbf{w}}$ for λ dominant and for λ antidominant.

Two combinatorial versions:

- Using Lakshmibai-Seshadri (LS) paths (canonical Littelmann paths)
- Using the alcove path model of [Lenart, Postnikov]

Theorem (Lenart, S.)

Explicit effective (cancellation-free) formulas for $b_{\mathbf{v},\lambda}^{\mathbf{w}}$ for λ dominant and for λ antidominant.

Two combinatorial versions:

- Using Lakshmibai-Seshadri (LS) paths (canonical Littelmann paths)
- Using the alcove path model of [Lenart, Postnikov]

Idea of proof

- Push-pull (divided difference) operator on Schubert classes leads to recurrence for $b_{\nu\lambda}^{w}$.
- Show the LS path formula satisfies the recurrence.
- Deduce alcove path formula using a new direct bijection from LS paths to alcove paths.

Idea of proof

- Push-pull (divided difference) operator on Schubert classes leads to recurrence for $b_{\nu\lambda}^{w}$.
- Show the LS path formula satisfies the recurrence.
- Deduce alcove path formula using a new direct bijection from LS paths to alcove paths.

Idea of proof

- Push-pull (divided difference) operator on Schubert classes leads to recurrence for $b_{\nu\lambda}^w$.
- Show the LS path formula satisfies the recurrence.
- Deduce alcove path formula using a new direct bijection from LS paths to alcove paths.

(λ, b) -Bruhat order

Fix dominant λ . For $b \in \mathbb{Q}$, define

$$W \lessdot_{\lambda,b} WS_{\alpha}$$

if

$$w \lessdot ws_{\alpha}$$
 and $b\langle \alpha^{\vee}, \lambda \rangle \in \mathbb{Z}$

An LS path of shape λ is a pair of sequences $p = (b_i; \sigma_i)$

$$0 = b_1 < b_2 < \cdots < b_m < b_{m+1} = 1$$
 $b_i \in \mathbb{Q}$

and

$$\sigma_1 <_{\lambda,b_2} \sigma_2 <_{\lambda,b_3} \cdots <_{\lambda,b_m} \sigma_m \qquad \sigma_i \in W/W_{\lambda}.$$

This data specifies a piecewise linear path given by walking along the vectors

$$b_m \sigma_m \lambda$$
, , ..., $b_2 \sigma_2 \lambda$, $b_1 \sigma_1 \lambda$.

$$\iota(p) = \sigma_m$$
 is the initial direction of p
 $\phi(p) = \sigma_1$ is the final direction of p

An LS path of shape λ is a pair of sequences $p = (b_i; \sigma_i)$

$$0 = b_1 < b_2 < \cdots < b_m < b_{m+1} = 1$$
 $b_i \in \mathbb{Q}$

and

$$\sigma_1 <_{\lambda,b_2} \sigma_2 <_{\lambda,b_3} \cdots <_{\lambda,b_m} \sigma_m \qquad \sigma_i \in W/W_{\lambda}.$$

This data specifies a piecewise linear path given by walking along the vectors

$$b_m \sigma_m \lambda$$
, , ..., $b_2 \sigma_2 \lambda$, $b_1 \sigma_1 \lambda$.

 $\iota(p) = \sigma_m$ is the initial direction of p $\phi(p) = \sigma_1$ is the final direction of p

An LS path of shape λ is a pair of sequences $p = (b_i; \sigma_i)$

$$0 = b_1 < b_2 < \cdots < b_m < b_{m+1} = 1$$
 $b_i \in \mathbb{Q}$

and

$$\sigma_1 <_{\lambda,b_2} \sigma_2 <_{\lambda,b_3} \cdots <_{\lambda,b_m} \sigma_m \qquad \sigma_i \in W/W_{\lambda}.$$

This data specifies a piecewise linear path given by walking along the vectors

$$b_m \sigma_m \lambda$$
, , ..., $b_2 \sigma_2 \lambda$, $b_1 \sigma_1 \lambda$.

 $\iota(p) = \sigma_m$ is the initial direction of p

$$\phi(p) = \sigma_1$$
 is the final direction of p

An LS path of shape λ is a pair of sequences $p = (b_i; \sigma_i)$

$$0 = b_1 < b_2 < \cdots < b_m < b_{m+1} = 1$$
 $b_i \in \mathbb{Q}$

and

$$\sigma_1 <_{\lambda,b_2} \sigma_2 <_{\lambda,b_3} \cdots <_{\lambda,b_m} \sigma_m \qquad \sigma_i \in W/W_{\lambda}.$$

This data specifies a piecewise linear path given by walking along the vectors

$$b_m \sigma_m \lambda$$
, , ..., $b_2 \sigma_2 \lambda$, $b_1 \sigma_1 \lambda$.

 $\iota(p) = \sigma_m$ is the initial direction of p

$$\phi(p) = \sigma_1$$
 is the final direction of p

An LS path of shape λ is a pair of sequences $p = (b_i; \sigma_i)$

$$0 = b_1 < b_2 < \cdots < b_m < b_{m+1} = 1$$
 $b_i \in \mathbb{Q}$

and

$$\sigma_1 <_{\lambda,b_2} \sigma_2 <_{\lambda,b_3} \cdots <_{\lambda,b_m} \sigma_m \qquad \sigma_i \in W/W_{\lambda}.$$

This data specifies a piecewise linear path given by walking along the vectors

$$b_m \sigma_m \lambda$$
, , ..., $b_2 \sigma_2 \lambda$, $b_1 \sigma_1 \lambda$.

 $\iota(p) = \sigma_m$ is the initial direction of p $\phi(p) = \sigma_1$ is the final direction of p

Littelmann's Theorem

 λ dominant

Theorem (Littelmann)

The set of LS paths of shape λ affords the crystal graph of the irreducible integrable G-module of highest weight λ .

Deodhar's lift "up"

$$vW_{\lambda} = \sigma \leq \tau \text{ in } W/W_{\lambda}.$$

Theorem (Deodhar)

There is a unique Bruhat-minimum $w \in W$ such that

$$v \le w$$
 and $wW_{\lambda} = \tau$

Deodhar's lift "up"

$$vW_{\lambda} = \sigma \leq \tau \text{ in } W/W_{\lambda}.$$

Theorem (Deodhar)

There is a unique Bruhat-minimum $w \in W$ such that

$$v \le w$$
 and $wW_{\lambda} = \tau$.

$$\begin{array}{cccc} \mathbf{V} & \leq & \mathbf{W} \\ \downarrow & & \vdots \\ \sigma & < & \tau \end{array}$$

Deodhar's lift "up"

$$vW_{\lambda} = \sigma \leq \tau \text{ in } W/W_{\lambda}.$$

Theorem (Deodhar)

There is a unique Bruhat-minimum $w \in W$ such that

$$v \le w$$
 and $wW_{\lambda} = \tau$.

$$\begin{array}{cccc} \mathbf{V} & \leq & \mathbf{W} \\ & \vdots \\ & \vdots \\ \sigma & \leq & \tau \end{array}$$

$$\mathbf{W} = \mathrm{up}(\mathbf{V}, \tau)$$

Let
$$v = v_0 \in W$$
, $p = (b_i; \sigma_i)$ an LS path with $vW_{\lambda} = \sigma_0 \le \sigma_1 = \phi(p)$.

$$v = v_0$$

$$\downarrow \\
vW_{\lambda} = \sigma_0 \leq \sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_m$$
 $v_i = \operatorname{up}(v_{i-1}, \sigma_i)$

Let
$$v = v_0 \in W$$
, $p = (b_i; \sigma_i)$ an LS path with $vW_{\lambda} = \sigma_0 \le \sigma_1 = \phi(p)$.

Let
$$v = v_0 \in W$$
, $p = (b_i; \sigma_i)$ an LS path with $vW_{\lambda} = \sigma_0 \le \sigma_1 = \phi(p)$.

$$v = v_0 \le v_1 \le v_2$$

$$\downarrow \qquad \vdots \qquad \vdots \qquad \vdots$$

$$vW_{\lambda} = \sigma_0 \le \sigma_1 \le \sigma_2 \le \cdots \le \sigma_m$$

$$v_i = \operatorname{up}(v_{i-1}, \sigma_i)$$

Let
$$v = v_0 \in W$$
, $p = (b_i; \sigma_i)$ an LS path with $vW_{\lambda} = \sigma_0 \leq \sigma_1 = \phi(p)$.

K-Chevalley rule, LS paths, dominant weight

$$L^{\lambda}O_{v}=\sum_{w}b_{v,\lambda}^{w}O_{w}$$

ι neorem [Pittie,Ram for dim(X) < ∞] [Lenart, S.] $^{+}$ For λ dominant

$$b_{V,\lambda}^W = \sum_{p} e^{p(1)}$$

where p is an LS path of shape $\lambda,\,vW_\lambda \leq \phi(p)$ and $\operatorname{up}(v,p)=w.$

K-Chevalley rule, LS paths, dominant weight

$$L^{\lambda}O_{v}=\sum_{w}b_{v,\lambda}^{w}O_{w}$$

Theorem

[Pittie,Ram for dim(X) $< \infty$] [Lenart, S.] For λ dominant

$$b_{v,\lambda}^{w} = \sum_{p} e^{p(1)}$$

where p is an LS path of shape λ , $vW_{\lambda} \leq \phi(p)$ and up(v,p) = w.

Deodhar's lift down

$$\sigma \leq \tau = wW_{\lambda} \text{ in } W/W_{\lambda}$$

There is a unique Bruhat-maximum $v \in W$ such that

$$v \le w$$
 and $vW_{\lambda} = \sigma$.

Deodhar's lift down

$$\sigma \leq \tau = wW_{\lambda} \text{ in } W/W_{\lambda}$$

There is a unique Bruhat-maximum $v \in W$ such that

$$v \le w$$
 and $vW_{\lambda} = \sigma$.

$$\begin{array}{cccc} \mathbf{v} & \leq & \mathbf{w} \\ \vdots & & \downarrow \\ \sigma & < & \tau \end{array}$$

Deodhar's lift down

$$\sigma \leq \tau = wW_{\lambda} \text{ in } W/W_{\lambda}$$

There is a unique Bruhat-maximum $v \in W$ such that

$$v \le w$$
 and $vW_{\lambda} = \sigma$.

$$\begin{array}{cccc} \mathbf{V} & \leq & \mathbf{W} \\ \vdots & & & \\ \vdots & & & \\ \boldsymbol{\sigma} & \leq & \boldsymbol{\tau} \end{array}$$

$$V = \text{down}(W, \sigma)$$

K-Chevalley rule: LS paths, antidominant weight

Theorem

[Griffeth,Ram for dim(X) $< \infty$] [Lenart, S.] For λ dominant

$$b_{v,-\lambda}^{w} = (-1)^{\ell(w)-\ell(v)} \sum_{p} e^{-p(1)}$$

where p is an LS path of shape λ with $\iota(p) \leq wW_{\lambda}$ and down(w,p) = v.

λ -hyperplanes

λ dominant weight

A λ -hyperplane is a pair $h = (\alpha^{\vee}, k)$ with α^{\vee} a coroot, $k \in \mathbb{Z}$, and

$$0 \le k < \langle \alpha^{\vee}, \lambda \rangle.$$

$$H_{\alpha^{\vee},k} = \{ x \in \Lambda_{\mathbb{R}} \mid \langle \alpha^{\vee}, x \rangle = k \}$$

Relative height of h: rht(h) $\in \mathbb{Q}$

$$0 \le \operatorname{rht}(h) = \frac{k}{\langle \alpha^{\vee}, \lambda \rangle} < 1$$

λ -hyperplanes

λ dominant weight

A λ -hyperplane is a pair $h = (\alpha^{\vee}, k)$ with α^{\vee} a coroot, $k \in \mathbb{Z}$, and

$$0 \le k < \langle \alpha^{\vee}, \lambda \rangle.$$

$$H_{\alpha^{\vee},k} = \{ x \in \Lambda_{\mathbb{R}} \mid \langle \alpha^{\vee}, x \rangle = k \}$$

Relative height of h: rht(h) $\in \mathbb{Q}$

$$0 \le \operatorname{rht}(h) = \frac{k}{\langle \alpha^{\vee}, \lambda \rangle} < 1$$

λ -hyperplanes

λ dominant weight

A λ -hyperplane is a pair $h = (\alpha^{\vee}, k)$ with α^{\vee} a coroot, $k \in \mathbb{Z}$, and

$$0 \le k < \langle \alpha^{\vee}, \lambda \rangle.$$

$$H_{\alpha^{\vee},k} = \{ x \in \Lambda_{\mathbb{R}} \mid \langle \alpha^{\vee}, x \rangle = k \}$$

Relative height of h: rht(h) $\in \mathbb{Q}$

$$0 \le \operatorname{rht}(h) = \frac{k}{\langle \alpha^{\vee}, \lambda \rangle} < 1$$

lex order on λ -hyperplanes

Fix any total order $1 < 2 < \cdots < r$ on the Dynkin node set I.

$$\alpha^{\vee} = \sum_{i=1}^{r} c_i \alpha_i^{\vee} \qquad \beta^{\vee} = \sum_{i=1}^{r} d_i \alpha_i^{\vee}$$

$$(\alpha^{\vee}, k) < (\beta^{\vee}, \ell)$$

means

$$\frac{1}{\langle \alpha^{\vee}, \lambda \rangle}(k, c_1, c_2, \dots, c_r) <_{\text{lex}} \frac{1}{\langle \beta^{\vee}, \lambda \rangle}(\ell, d_1, d_2, \dots, d_r).$$

In particular

$$\mathbf{rht}(\alpha^{\vee}, k) = \frac{k}{\langle \alpha^{\vee}, \lambda \rangle} \leq \frac{\ell}{\langle \beta^{\vee}, \lambda \rangle} = \mathbf{rht}(\beta^{\vee}, \ell)$$

lex order on λ -hyperplanes

Fix any total order $1 < 2 < \cdots < r$ on the Dynkin node set I.

$$lpha^{\vee} = \sum_{i=1}^{r} c_{i} \alpha_{i}^{\vee} \qquad \beta^{\vee} = \sum_{i=1}^{r} d_{i} \alpha_{i}^{\vee}$$

$$(\alpha^{\vee}, k) < (\beta^{\vee}, \ell)$$

means

$$\frac{1}{\langle \alpha^{\vee}, \lambda \rangle}(k, c_1, c_2, \dots, c_r) <_{\text{lex}} \frac{1}{\langle \beta^{\vee}, \lambda \rangle}(\ell, d_1, d_2, \dots, d_r).$$

In particular

$$\operatorname{rht}(\alpha^{\vee}, k) = \frac{k}{\langle \alpha^{\vee}, \lambda \rangle} \leq \frac{\ell}{\langle \beta^{\vee}, \lambda \rangle} = \operatorname{rht}(\beta^{\vee}, \ell)$$

lex order on λ -hyperplanes

Fix any total order $1 < 2 < \cdots < r$ on the Dynkin node set I.

$$lpha^{\vee} = \sum_{i=1}^{r} c_{i} lpha_{i}^{\vee} \qquad eta^{\vee} = \sum_{i=1}^{r} d_{i} lpha_{i}^{\vee}$$

$$(lpha^{\vee}, k) < (eta^{\vee}, \ell)$$

means

$$\frac{1}{\langle \alpha^{\vee}, \lambda \rangle}(k, c_1, c_2, \dots, c_r) <_{\mathsf{lex}} \frac{1}{\langle \beta^{\vee}, \lambda \rangle}(\ell, d_1, d_2, \dots, d_r).$$

In particular

$$\operatorname{rht}(\alpha^{\vee}, k) = \frac{k}{\langle \alpha^{\vee}, \lambda \rangle} \leq \frac{\ell}{\langle \beta^{\vee}, \lambda \rangle} = \operatorname{rht}(\beta^{\vee}, \ell)$$

$$egin{aligned} h &= (lpha^ee, k) \ lpha^ee_h &= lpha^ee \ k_h &= k \ s_h &= s_{lpha^ee} \end{aligned}$$

$$(h_1,h_2,\ldots,h_q)$$
 is $[v,w]$ -adapted if $v=v_0\lessdot v_1\lessdot v_2\lessdot\cdots\lessdot v_q=w$

$$egin{aligned} & m{h} = (lpha^ee, m{k}) \ & lpha^ee_{m{h}} = lpha^ee \ & m{k}_{m{h}} = m{k} \ & m{s}_{m{h}} = m{s}_{lpha^ee} \end{aligned}$$

$$(h_1,h_2,\dots,h_q)$$
 is $[v,w]$ -adapted if
$$v=v_0\lessdot v_1\lessdot v_2\lessdot\dots\lessdot v_q=w$$
 where $v_i=v_{i-1}s_{h_i}$.

$$egin{aligned} h &= (lpha^ee, k) \ \hat{oldsymbol{s}}_h &= t_{klpha} oldsymbol{s}_{lpha^ee} \in \operatorname{\mathsf{Aut}}(\Lambda_\mathbb{R}) \ & ext{reflection across hyperplane } H_{lpha^ee, k}. \end{aligned}$$

Theorem (Lenart, S.) For λ dominant,

$$b^w_{v,\lambda} = \sum_{h_1 < h_2 < \dots < h_q} e^{v \hat{s}_{h_1} \dots \hat{s}_{h_q} \lambda}$$

where (h_1, \ldots, h_q) is [v, w]-adapted.

$$egin{aligned} h &= (lpha^ee, k) \ \hat{oldsymbol{s}}_h &= t_{klpha} oldsymbol{s}_{lpha^ee} \in \operatorname{\mathsf{Aut}}(\Lambda_\mathbb{R}) \ & ext{reflection across hyperplane } H_{lpha^ee, k}. \end{aligned}$$

Theorem (Lenart, S.)

For λ dominant,

$$b_{v,\lambda}^{w} = \sum_{h_1 < h_2 < \dots < h_q} e^{v \hat{s}_{h_1} \dots \hat{s}_{h_q} \lambda}$$

where (h_1, \ldots, h_q) is [v, w]-adapted.

Fix v. There is a crystal graph isomorphism

{ [
$$v$$
, w]-adapted $h_1 < h_2 < \cdots < h_q$ for some $w \ge v$ } \longleftrightarrow { LS paths p of shape λ with $\phi(p) \ge v$ }

$$V = V_0 \stackrel{h_1}{\lessdot} V_1 \stackrel{h_2}{\lessdot} \cdots \stackrel{h_q}{\lessdot} V_q = W$$

Recall
$$0 \le \operatorname{rht}(h_1) \le \operatorname{rht}(h_2) \le \cdots \le \operatorname{rht}(h_q) < 1$$
.

- Let $0 < b_2 < b_3 < \cdots < b_m < 1$ be the distinct relative heights (and set $b_1 = 0$).
- Forget all vs except those where the relative height jumps Call these $z_1 < z_2 < \cdots < z_m$.
- Take cosets $\sigma_i = z_i W_{\lambda}$

Fix v. There is a crystal graph isomorphism

$$\{ \ [v,w] \text{-adapted} \ h_1 < h_2 < \cdots < h_q \ \text{for some} \ w \geq v \ \} \longleftrightarrow \\ \{ \ \mathsf{LS} \ \mathsf{paths} \ p \ \mathsf{of \ shape} \ \lambda \ \mathsf{with} \ \phi(p) \geq v \ \}$$

$$v = v_0 \stackrel{h_1}{\lessdot} v_1 \stackrel{h_2}{\lessdot} \cdots \stackrel{n_q}{\lessdot} v_q = w$$

Recall
$$0 \le \operatorname{rht}(h_1) \le \operatorname{rht}(h_2) \le \cdots \le \operatorname{rht}(h_q) < 1$$
.

- Let $0 < b_2 < b_3 < \cdots < b_m < 1$ be the distinct relative heights (and set $b_1 = 0$).
- Forget all vs except those where the relative height jumps Call these $z_1 < z_2 < \cdots < z_m$.
- Take cosets $\sigma_i = z_i W_{\lambda}$

Fix v. There is a crystal graph isomorphism

{ [
$$v$$
, w]-adapted $h_1 < h_2 < \cdots < h_q$ for some $w \ge v$ } \longleftrightarrow { LS paths p of shape λ with $\phi(p) \ge v$ }

$$v = v_0 \stackrel{h_1}{\lessdot} v_1 \stackrel{h_2}{\lessdot} \cdots \stackrel{h_q}{\lessdot} v_q = w$$

Recall $0 \le \operatorname{rht}(h_1) \le \operatorname{rht}(h_2) \le \cdots \le \operatorname{rht}(h_q) < 1$.

- Let $0 < b_2 < b_3 < \cdots < b_m < 1$ be the distinct relative heights (and set $b_1 = 0$).
- Forget all vs except those where the relative height jumps. Call these $z_1 < z_2 < \cdots < z_m$.
- Take cosets $\sigma_i = z_i W_{\lambda}$.

Fix v. There is a crystal graph isomorphism

{ [
$$v$$
, w]-adapted $h_1 < h_2 < \cdots < h_q$ for some $w \ge v$ } \longleftrightarrow { LS paths p of shape λ with $\phi(p) \ge v$ }

$$v = v_0 \stackrel{h_1}{\lessdot} v_1 \stackrel{h_2}{\lessdot} \cdots \stackrel{h_q}{\lessdot} v_q = w$$

Recall $0 \le \operatorname{rht}(h_1) \le \operatorname{rht}(h_2) \le \cdots \le \operatorname{rht}(h_q) < 1$.

- Let $0 < b_2 < b_3 < \cdots < b_m < 1$ be the distinct relative heights (and set $b_1 = 0$).
- Forget all vs except those where the relative height jumps. Call these $z_1 < z_2 < \cdots < z_m$.
- Take cosets $\sigma_i = z_i W_{\lambda}$.

Fix v. There is a crystal graph isomorphism

{ [
$$v$$
, w]-adapted $h_1 < h_2 < \cdots < h_q$ for some $w \ge v$ } \longleftrightarrow { LS paths p of shape λ with $\phi(p) \ge v$ }

$$v = v_0 \stackrel{h_1}{\lessdot} v_1 \stackrel{h_2}{\lessdot} \cdots \stackrel{n_q}{\lessdot} v_q = w$$

Recall $0 \le \operatorname{rht}(h_1) \le \operatorname{rht}(h_2) \le \cdots \le \operatorname{rht}(h_q) < 1$.

- Let $0 < b_2 < b_3 < \cdots < b_m < 1$ be the distinct relative heights (and set $b_1 = 0$).
- Forget all vs except those where the relative height jumps. Call these $z_1 < z_2 < \cdots < z_m$.
- Take cosets $\sigma_i = z_i W_{\lambda}$.

Alcove model feature

Demazure module inside highest weight module

$$U_q(\mathfrak{b}_+)\cdot V_{W\lambda}\subset V(\lambda)$$

Opposite Demazure module:

$$U_q(\mathfrak{b}_-)\cdot v_{w\lambda}\subset V(\lambda)$$

In the alcove model the crystal graphs of (opposite) Demazure crystals can be generated using only \mathbb{Z} -labeled Bruhat (co)covers and lex order on branches; no signature rule is needed

Alcove model feature

Demazure module inside highest weight module

$$U_q(\mathfrak{b}_+)\cdot V_{W\lambda}\subset V(\lambda)$$

Opposite Demazure module:

$$U_q(\mathfrak{b}_-)\cdot v_{w\lambda}\subset V(\lambda)$$

In the alcove model the crystal graphs of (opposite) Demazure crystals can be generated using only \mathbb{Z} -labeled Bruhat (co)covers and lex order on branches; no signature rule is needed.

Gaf affine type

Consider LS paths of shape λ of level zero, projected to classical weight lattice.

[Lenart, Naito, Sagaki, Schilling, S.]

- Get tensor product of Kirillov-Reshetikhin crystals
- Combinatorics is controlled by quantum Chevalley rule in QH*(G/P) where G is finite-dimensional and P is given by the stabilizer of λ.
- Character is Macdonald specialization $P_{\lambda}(x; q, 0)$.

Gaf affine type

Consider LS paths of shape λ of level zero, projected to classical weight lattice.

[Lenart, Naito, Sagaki, Schilling, S.]

- Get tensor product of Kirillov-Reshetikhin crystals.
- Combinatorics is controlled by quantum Chevalley rule in QH*(G/P) where G is finite-dimensional and P is given by the stabilizer of λ.
- Character is Macdonald specialization $P_{\lambda}(x; q, 0)$.

Gaf affine type

Consider LS paths of shape λ of level zero, projected to classical weight lattice.

[Lenart, Naito, Sagaki, Schilling, S.]

- Get tensor product of Kirillov-Reshetikhin crystals.
- Combinatorics is controlled by quantum Chevalley rule in QH*(G/P) where G is finite-dimensional and P is given by the stabilizer of λ.
- Character is Macdonald specialization $P_{\lambda}(x; q, 0)$.

Gaf affine type

Consider LS paths of shape λ of level zero, projected to classical weight lattice.

[Lenart, Naito, Sagaki, Schilling, S.]

- Get tensor product of Kirillov-Reshetikhin crystals.
- Combinatorics is controlled by quantum Chevalley rule in QH*(G/P) where G is finite-dimensional and P is given by the stabilizer of λ.
- Character is Macdonald specialization $P_{\lambda}(x; q, 0)$.

Gaf affine type

Consider LS paths of shape λ of level zero, projected to classical weight lattice.

[Lenart, Naito, Sagaki, Schilling, S.]

- Get tensor product of Kirillov-Reshetikhin crystals.
- Combinatorics is controlled by quantum Chevalley rule in QH*(G/P) where G is finite-dimensional and P is given by the stabilizer of λ.
- Character is Macdonald specialization $P_{\lambda}(x; q, 0)$.

$G_{\rm af}$ affine type

Consider LS paths of shape λ of level zero, projected to classical weight lattice.

[Lenart, Naito, Sagaki, Schilling, S.]

- Get tensor product of Kirillov-Reshetikhin crystals.
- Combinatorics is controlled by quantum Chevalley rule in QH*(G/P) where G is finite-dimensional and P is given by the stabilizer of λ.
- Character is Macdonald specialization $P_{\lambda}(x; q, 0)$.