Level-zero Lakshmibai-Seshadri paths and the quantum Schubert calculus

Satoshi Naito (Tokyo Institute of Technology)

Joint work with

C. Lenart, D. Sagaki, A. Schilling, and M. Shimozono

- 1 Basic notation
- G: complex, connected, simply-connected, semisimple Lie group
- $B \subset G$: Borel subgroup
- $T \subset B$: maximal torus

 $W \cong N_G(T)/T$: Weyl group of $\mathfrak{g} = \operatorname{Lie}(G)$; note that $W \subset \operatorname{GL}(\mathfrak{h}^*)$, where $\mathfrak{h} = \operatorname{Lie}(T)$

- $\Delta = \Delta_+ \sqcup \Delta_- \subset \mathfrak{h}^*$: (positive or negative) roots
- $ig\{lpha_iig\}_{i\in I}: ext{ simple roots }$
- $ig\{h_iig\}_{i\in I}: ext{ simple coroots }$
- $w_0 \in W: ext{ the longest element}$
- $B^-:=w_0Bw_0\subset G:$ opposite Borel subgroup
- X := G/B: flag manifold
- $X(w) := \overline{BwB/B} \subset X = G/B$:
- Schubert variety for $w \in W$;

note that $\dim_{\mathbb{C}} X(w) = \ell(w)$, the length of w

$$Y(w):=B^-wB/B\subset X=G/B:$$
opposite Schubert variety for $w\in W;$ note that $\operatorname{codim}_{\mathbb{C}}Y(w)=\ell(w)$

•
$$Y(w) = w_0 X(w_0 w)$$
 for $w \in W$

$$egin{aligned} &\sigma_w := [Y(w)] \in H^{2\ell(w)}(X;\mathbb{Z}): \ & ext{ cohomology class of }Y(w) \ &\sigma(w_0w) := [X(w_0w)] \in H^{2\ell(w)}(X;\mathbb{Z}): \ & ext{ cohomology class of }X(w_0w); \ & ext{ note that } \sigma_w = \sigma(w_0w) ext{ for } w \in W \end{aligned}$$

Fact

 $\{\sigma_w\}_{w\in W}$ form an additive basis for $H^*(X;\mathbb{Z})$ over $\mathbb{Z}.$

Remark

For $w \in W$, X(w) and Y(w) meet transversally at the point $wB/B \in G/B = X$.

Also, $\{\sigma_w\}_{w\in W}$ and $\{\sigma(w)\}_{w\in W}$ are dual bases for $H^*(X;\mathbb{Z})$ under the intersection pairing:

$$\int_X \sigma_w \cdot \sigma(v) = \delta_{v,w} \qquad ext{for } v, \, w \in W$$

$egin{aligned} 2 & (ext{small}) ext{ Quantum cohomology of } G/B \ X &= G/B : ext{flag manifold} \ q_i, \ i \in I : ext{variables} \ \mathbb{Z}[q] &:= \mathbb{Z}[q_i, \ i \in I], ext{ with } \deg(q_i) = 2n_{lpha_i}, ext{ where} \ n_{lpha_i} &:= \langle 2 ho, \ h_i angle = 2, ext{ with } 2 ho &:= \sum_{lpha \in \Delta_+} lpha \in P \ \end{aligned}$ We identify as follows (including a duality pairing): $H^2(X;\mathbb{Z}) \cong P, \qquad H_2(X;\mathbb{Z}) \cong Q^{ee}; \end{aligned}$

 $P = igoplus_{i \in I} \mathbb{Z} arpi_i$ is the weight lattice, $Q^{ee} := igoplus_{i \in I} \mathbb{Z} h_i$ is the coroot lattice.

Also, we identify

where $r_i \in W$ is a simple reflection.

• We have

$$H^2(X;\mathbb{Z})
i \sigma_{r_i} = c_1(\mathcal{L}(arpi_i)),$$

where $\mathcal{L}(\varpi_i) := G imes_{P_i} \mathbb{C}(\varpi_i).$

For
$$d = \sum_{i \in I} d_i \sigma(r_i) \in H_2(X;\mathbb{Z}),$$
 we set $q^d := \prod_{i \in I} q_i^{d_i}$

 $egin{aligned} QH^*(X) &:= H^*(X;\mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{Z}[q] ext{ (as a } \mathbb{Z}[q] ext{-module}); \ \{\sigma_w &= \sigma_w \otimes 1\}_{w \in W} ext{ forms a basis for } QH^*(X) ext{ over } \mathbb{Z}[q]. \end{aligned}$

$$\sigma_u st \sigma_v := \sum_{d \in Q_+^ee} q^d \sum_{w \in W} N^w_{u,v}(d) \sigma_w,$$

where

$$egin{aligned} &d = \sum_{i \in I} d_i \sigma(r_i) \in H_2(X;\mathbb{Z}) = Q^ee, \ &Q_+^ee := \sum_{i \in I} \mathbb{Z}_{\geq 0} h_i, ext{ and } \end{aligned}$$

 $N_{u,v}^w(d)$: the 3-point, genus zero Gromov-Witten invariant; this is the number of rational curves $arphi: \mathbb{P}^1(\mathbb{C}) o X$ of multidegree d, i.e., $arphi_*(\mathbb{P}^1(\mathbb{C})) = d = \sum_{i \in I} d_i \sigma(r_i) \in H_2(X;\mathbb{Z})$, s.t. $arphi(p_1) = g_1 Y(u), \, arphi(p_2) = g_2 Y(v)$, and $arphi(p_3) = g_3 Y(w)$ for three general $g_1, g_2, g_3 \in G$ $(p_1, p_2, p_3 \in \mathbb{P}^1(\mathbb{C})$: given, distinct)

$$ullet \; N^w_{u,\,v}(0) = \int_X \sigma_u \cdot \sigma_v \cdot \sigma_{w_0 w} \; .$$

(usual intersection number)

 $= ext{ the coefficient of } \sigma_w ext{ in the classical product } \sigma_u \cdot \sigma_v \in H^*(X;\mathbb{Z})$

• (Degree axiom) The second sum is over all $w \in W$ s.t.

$$\ell(w) = \ell(u) + \ell(v) - \sum_{i \in I} d_i n_{lpha_i};$$

this follows from the dimension formula

$$egin{aligned} \dim_{\mathbb{C}}\overline{M}_{0,3}(X,d) &= \dim_{\mathbb{C}}X + \int_{d}c_{1}(T_{X}) \ &= \ell(w_{0}) + \langle 2
ho,\,d
angle \ &= \ell(w_{0}) + \sum_{i\in I}d_{i}\langle 2
ho,\,h_{i}
angle \ &= \ell(w_{0}) + \sum_{i\in I}d_{i}n_{lpha_{i}}, \end{aligned}$$

where $\overline{M}_{0,3}(X,d)$ is the moduli space of stable maps of (multi-)degree d from 3-pointed, genus 0 (projective, connected, reduced, nodal) curves into X.

Note that the space $\overline{M}_{0,3}(X,d)$ can be thought of as a compactification of the set $M_{0,3}(X,d)$ of isomorphism classes of 3-pointed maps of degree d from $\mathbb{P}^1(\mathbb{C})$ into X.

3 Classical Chevalley formula

Fact

For $\alpha_i \in \Pi$ and $w \in W$, we have in $H^*(X;\mathbb{Z})$

$$\sigma_{r_i} \cdot \sigma_w = \sum_{\substack{eta \in \Delta_+ \ wr_eta \geqslant w}} \langle arpi_i, \, h_eta
angle \sigma_{wr_eta},$$

where $h_{\beta} \in Q^{\vee}$ is the dual root of $\beta \in \Delta_+$, r_{β} is the associated reflection, and

$$wr_{eta}
ho w \quad \Longleftrightarrow \quad \ell(wr_{eta}) = \ell(w) + 1.$$

4 Bruhat graph

 $ext{vertices}: ext{ elements of } W \ ext{edges}: w \stackrel{eta}{ o} wr_eta, \, eta \in \Delta_+, ext{ if } \ell(wr_eta) = \ell(w) + 1.$

<u>Remark</u>

For $u, v \in W$, we have

$$v=ur_eta ext{ for }eta\in\Delta_+$$

if and only if there exists a T-invariant curve Ccontaining uB/B and vB/B in X = G/B; note that $[C] = h_{\beta} \in H_2(X; \mathbb{Z}).$

 \longrightarrow partial order (Bruhat order) on W, denoted by > ; we write $wr_{\beta} > w$ if $w \stackrel{\beta}{\rightarrow} wr_{\beta}$

5 Quantum Chevalley formula

<u>Fact</u> (Fulton and Woodward)

For $\alpha_i \in \Pi$ and $w \in W$, we have in $QH^*(X)$

$$egin{aligned} \sigma_{r_i} st \sigma_w &= \sum_{\substack{eta \in \Delta_+ \ wr_eta \geqslant w}} \langle arpi_i, \, h_eta
angle \sigma_{wr_eta} \ &+ \sum_{\substack{eta \in \Delta_+ \ \ell(wr_eta) = \ell(w) + 1 - \langle 2
ho, \, h_eta
angle}} q^{h_eta} \langle arpi_i, \, h_eta
angle \sigma_{wr_eta}. \end{aligned}$$

<u>Remark</u> For $\beta \in \Delta_+$, we have

$$\langle 2
ho,\,h_eta
angle = \int_{C_eta} c_1(T_X),$$

where $c_1(T_X)=2
ho\in H^2(X;\mathbb{Z}),$ and

 C_{eta} is a unique *T*-invariant curve in *X* containing 1B/B and $r_{eta}B/B;$

 $ext{ note that } [C_eta] = h_eta \in H_2(X;\mathbb{Z}).$

In particular, for $\alpha_i \in \Pi$, we have

$$n_{lpha_i} = \int_{X(r_i)} c_1(T_X) = \langle 2
ho,\, h_i
angle = 2.$$

<u>N.B.</u> The equality

$$\ell(wr_eta) = \ell(w) + 1 - \langle 2
ho,\,h_eta
angle$$

above comes from the (co-)dimension computation of a certain closed (reduced, locally irreducible) subscheme $ev_1^{-1}(Y(u)) \cap ev_2^{-1}(X(v)), u, v \in W$, of the moduli space $\overline{M}_{0,3}(X,d)$; recall that

$$egin{aligned} \dim_{\mathbb{C}}\overline{M}_{0,3}(X,d) &= \dim_{\mathbb{C}}X + \int_{d}c_{1}(T_{X}) \ &= \ell(w_{0}) + \langle 2
ho,\,d
angle. \end{aligned}$$

6 Quantum Bruhat graph

vertices : elements of W

$$egin{aligned} ext{edges} &: w \stackrel{eta}{ o} wr_eta, \, eta \in \Delta_+, ext{ if} \ & (1) \,\, wr_eta \geqslant w, ext{ or} \ & (2) \,\, \ell(wr_eta) = \ell(w) + 1 - \langle 2
ho, \, h_eta
angle \end{aligned}$$

<u>Remark</u>

This does NOT induce a poset structure on W, contrary to the usual Bruhat graph.

7 Affine Lie algebras

$$\widehat{\mathfrak{g}} := (\mathbb{C}[t, t^{-1}] \otimes \mathfrak{g}) \oplus \mathbb{C}c \oplus \mathbb{C}d :$$

untwisted affine Lie algebra/ \mathbb{C}
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ Cartan subalgebra
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ Cartan subalgebra
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ Cartan subalgebra
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ Cartan subalgebra
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ Cartan subalgebra
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ Cartan subalgebra
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ Cartan subalgebra
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ Cartan subalgebra
 $\widehat{\mathfrak{h}} := \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d :$ ($\widehat{\mathfrak{h}}$)* : simple roots
 $\widehat{\mathfrak{h}} := \widehat{\mathfrak{h}} \cup \{\mathfrak{h}_0\} \subset \widehat{\mathfrak{h}} :$ simple coroots
 $\widehat{\mathfrak{h}} := \widehat{\mathfrak{h}} \cup \{\mathfrak{h}_0\} \subset \widehat{\mathfrak{h}} :$ (positive or negative) roots
 $\widehat{\mathfrak{h}} := i \oplus \widehat{\mathfrak{h}} \oplus :$ (affine) Weyl group
 $\widehat{\mathfrak{h}}_{\mathrm{re}} := \widehat{W} \widehat{\mathfrak{h}} :$ real roots
 $\widehat{\mathfrak{l}} := I \cup \{0\}$
 $c = \sum_{j \in \widehat{I}} a_j \alpha_j :$ null root
 $\Lambda_i, i \in \widehat{I} :$ fundamental weights
 $\varpi_i := \Lambda_i - a_i^{\vee} \Lambda_0, i \in I :$
level-zero fundamental weights

 $\widehat{P} := \left(\sum_{i \in \widehat{I}} \mathbb{Z} \Lambda_i
ight) \oplus \mathbb{Z} \delta \subset (\widehat{\mathfrak{h}})^* : ext{ weight lattice } \widehat{P}^0 := \left\{ \lambda \in \widehat{P} \mid \langle \lambda, \, c
angle = 0
ight\} :$

set of level-zero weights

$$\mathrm{cl}:\mathbb{R}\otimes_{\mathbb{Z}}\widehat{P}^{0} woheadrightarrow (\mathbb{R}\otimes_{\mathbb{Z}}\widehat{P}^{0})/\mathbb{R}\delta=igoplus_{i\in I}\mathbb{R}\operatorname{cl}(arpi_{i})\ \cong\mathfrak{h}_{\mathbb{R}}^{*}=igoplus_{i\in I}\mathbb{R}lpha_{i}$$

$$\mathrm{cl}:\widehat{W}=W\ltimes Q^{ee}
ightarrow W,\,wt_{\gamma}\mapsto w,$$
which is a homomorphism;
note that for $\lambda\in\mathbb{R}\otimes_{\mathbb{Z}}\widehat{P}^{0},$

$$wt_\gamma\lambda=w\lambda-\langle\lambda,\,\gamma
angle\delta,$$

where $w \in W$ and $\gamma \in Q^{\vee}$.

8 Lakshmibai-Seshadri paths

 $\lambda \in P = igoplus_{i \in I} \mathbb{Z} arpi_i: ext{ (integral) weight }$

Assume that $\lambda \in P$ is regular and dominant.

For $u, v \in W$ s.t. u > v in the Bruhat order, and $a \in \mathbb{Q}$ s.t. 0 < a < 1,

an *a*-chain for (u, v) is a sequence

 $u=u_0
ightarrow u_1
ightarrow \ \cdots \
ightarrow u_{n-1}
ightarrow u_n = v$

of elements of W s.t.

 $a\langle\lambda,\,h_{eta_k}
angle\in\mathbb{Z}\quad ext{for }1\leq k\leq n,$

 $ext{ where } u_{k-1} > u_k = u_{k-1} r_{eta_k} ext{ for } eta_k \in \Delta_+.$

A Lakshmibai-Seshadri (LS) path of shape $\lambda \in P$ (λ : regular and dominant) is a pair of sequences

$$(v_1 > v_2 > \cdots > v_s\,; \ 0 = a_0 < a_1 < \cdots < a_s = 1),$$
 with $v_i \in W$ and $a_i \in \mathbb{Q},$ s.t.

 $\exists a_k$ -chain for (v_k, v_{k+1}) for all $1 \leq k \leq s-1$.

 $\mathrm{LS}(\lambda): ext{ set of LS paths of shape } \lambda$

9 Level-zero LS paths $\lambda \in \widehat{P}^0$: level-zero weight $\widehat{W} \subset \operatorname{GL}((\widehat{\mathfrak{h}})^*)$: affine Weyl group For $\mu, \nu \in \widehat{W}\lambda$, we write $\mu > \nu$ if there exist a sequence

$$\mu=\mu_0,\,\mu_1,\,\ldots,\,\mu_{n-1},\,\mu_n=
u$$

of elements of $\widehat{W}\lambda$ and a sequence

$$eta_1,\,\ldots,\,eta_n\in\widehat{\Delta}_{\mathrm{re}}\cap\widehat{\Delta}_+$$

s.t. for all $1 \leq k \leq n$,

$$\mu_k = r_{eta_k} \mu_{k-1}, \quad \langle \mu_{k-1}, \, h_{eta_k}
angle < 0.$$

 \dashrightarrow partial order on $\widehat{W}\lambda\subset (\widehat{\mathfrak{h}})^*$

For $\mu, \nu \in \widehat{W}\lambda$ s.t. $\mu > \nu$ in the (partial) order above, we define:

dist (μ, ν) := the maximal length n of all possible sequences above for (μ, ν) ;

we write $\nu \to \mu$ if $\mu > \nu$ and $dist(\mu, \nu) = 1$.

For $\mu > \nu \in \widehat{W}\lambda$ and $a \in \mathbb{Q}$ with 0 < a < 1, an *a*-chain for (μ, ν) is a sequence

$$\mu = \mu_0 \leftarrow \mu_1 \leftarrow \cdots \leftarrow \mu_n =
u$$

of elements of $\widehat{W}\lambda$ s.t.

$$a\langle \mu_{k-1},\,h_{eta_k}
angle\in\mathbb{Z}_{<0}\quad ext{for }1\leq k\leq n,$$

where $\mu_k = r_{eta_k} \mu_{k-1} ext{ for } eta_k \in \widehat{\Delta}_{ ext{re}} \cap \widehat{\Delta}_+.$

A (level-zero) LS path of shape $\lambda \in \widehat{P}^0$ is a pair of sequences

 $(
u_1 >
u_2 > \dots >
u_s;$ $0 = a_0 < a_1 < \dots < a_s = 1),$ with $u_i \in \widehat{W}\lambda$ and $a_i \in \mathbb{Q}$, s.t. $\exists a_k$ -chain for $(
u_k, \,
u_{k+1})$ for all $1 \leq k \leq s - 1.$

 $\widehat{\operatorname{LS}}(\lambda): ext{ set of level-zero LS paths of shape } \lambda \in \widehat{P}^0$

Assume (for simplicity) that $\lambda \in \widehat{P}^0$ is level-zero dominant and regular, i.e.,

$$\langle \lambda, h_i
angle > 0 \quad ext{for all } i \in I.$$

Theorem 1.

For $\mu, \nu \in \widehat{W}\lambda$, we have

 $u
ightarrow \mu$

if and only if

$$W \operatorname{cl}(\lambda) \ni \operatorname{cl}(
u) \to \operatorname{cl}(\mu) \in W \operatorname{cl}(\lambda)$$

is an edge in the quantum Bruhat graph.

Here we identify $\mathfrak{h}^*_{\mathbb{R}} \supset W \operatorname{cl}(\lambda) \leftrightarrow W$ since the stabilizer $W_{\operatorname{cl}(\lambda)}$ is trivial.

10 Quantum LS paths

Assume (for simplicity) that $\lambda \in \widehat{P}^0$ is level-zero dominant and regular, i.e.,

$$\langle \lambda,\, h_i
angle > 0 \quad ext{for all } i \in I.$$

For $x, y \in W$ and $a \in \mathbb{Q}$ with 0 < a < 1, a directed *a*-path from y to x is a directed path

$$x = y_0 \stackrel{eta_1}{\leftarrow} y_1 \stackrel{eta_2}{\leftarrow} y_2 \stackrel{eta_3}{\leftarrow} \cdots \stackrel{eta_n}{\leftarrow} y_n = y$$

in the quantum Bruhat graph, with $\beta_k \in \Delta_+$, s.t.

 $a \langle \mathrm{cl}(\lambda), \, h_{eta_k}
angle \in \mathbb{Z} \quad ext{for all } 1 \leq k \leq n.$

A quantum LS path of shape $\lambda \in \widehat{P}^0$ (level-zero dominant and regular) is a pair of sequences

$$(x_1, x_2, \ldots, x_s; 0 = a_0 < a_1 < \cdots < a_s = 1),$$

with $x_i \in W$ and $a \in \mathbb{Q}$, s.t.
 ^{\exists} directed a_k -path from x_{k+1} to x_k
for all $1 \leq k \leq s - 1.$

 $\operatorname{QLS}(\lambda)$: set of quantum LS paths of shape λ

For

$$egin{aligned} \pi &= (
u_1 >
u_2 > \cdots >
u_s\,; \ 0 &= a_0 < a_1 < \cdots < a_s = 1) \in \widehat{\mathrm{LS}}(\lambda), \end{aligned}$$

we set

$${
m cl}(\pi) := ({
m cl}(
u_1),\, {
m cl}(
u_2),\, \dots,\, {
m cl}(
u_s)\,; \ 0 = a_0 < a_1 < \dots < a_s = 1)$$

From Theorem 1, it follows that

$$\widehat{\mathrm{LS}}(\lambda)_{\mathrm{cl}} := ig\{\mathrm{cl}(\pi) \mid \pi \in \widehat{\mathrm{LS}}(\lambda)ig\} \subset \mathrm{QLS}(\lambda).$$

Here we identify

$$W\operatorname{cl}(\lambda)\leftrightarrow W$$

since the stabilizer $W_{\mathrm{cl}(\lambda)}$ is trivial.

In fact, we can prove:

Theorem 2.

$$\widehat{\mathrm{LS}}(\lambda)_{\mathrm{cl}} = \mathrm{QLS}(\lambda).$$

11 Representations

Let $\lambda \in P$ be a dominant integral weight

 $V(\lambda):$ the irreducible, finite-dimensional, highest weight $U_q(\mathfrak{g})$ -module over $\mathbb{C}(q)$ of highest weight λ

Fact (Littelmann, Joseph, Kashiwara)

The crystal basis of $V(\lambda)$ is isomorphic to the crystal $LS(\lambda)$ of all LS paths of shape λ . In particular,

$$\ch{V}(\lambda) = \sum_{\pi\in \mathrm{LS}(\lambda)} e^{\pi(1)},$$

where

$$egin{aligned} \pi(1) &= \sum_{k=1}^s (a_k - a_{k-1}) w_k \lambda \ &= w_s \lambda + \sum_{k=1}^{s-1} a_k (w_k \lambda - w_{k+1} \lambda) \in P \end{aligned}$$

Let $\lambda = \sum_{i \in I} m_i arpi_i \in \widehat{P}^0$, with $m_i \in \mathbb{Z}_{\geq 0}$ for $i \in I$.

Theorem 3.

We have an isomorphism of $U'_q(\widehat{\mathfrak{g}})$ -crystals:

$$\widehat{\mathrm{LS}}(\lambda)_{\mathrm{cl}}\cong igotimes_{i\in I} ig(\widehat{\mathrm{LS}}(arpi_i)_{\mathrm{cl}}ig)^{\otimes m_i}$$

Theorem 4.

For each $i \in I$, $\widehat{LS}(\varpi_i)_{cl}$ is isomorphic to the crystal basis of the level-zero fundamental representation $W(\varpi_i)$ of $U'_q(\widehat{\mathfrak{g}})$, which was introduced by Kashiwara. Here, $W(\varpi_i)$ is a finite-dimensional, irreducible $U'_q(\widehat{\mathfrak{g}})$ -module over $\mathbb{C}(q)$. $egin{aligned} &U_q'(\widehat{\mathfrak{g}}) = U_q([\widehat{\mathfrak{g}},\,\widehat{\mathfrak{g}}]), \ & ext{where} \ [\widehat{\mathfrak{g}},\,\widehat{\mathfrak{g}}] = (\mathbb{C}[t,\,t^{-1}]\otimes\mathfrak{g})\oplus\mathbb{C}c \end{aligned}$

Note that

finite-dim. level-zero rep. of $U_q'(\widehat{\mathfrak{g}})$ (of type I)

= finite-dim. rep. of $U_q(L(\mathfrak{g}))$,

where $L(\mathfrak{g}) := \mathbb{C}[t, t^{-1}] \otimes \mathfrak{g};$

the irreducible ones are

" ℓ "-highest weight representations,

which are parametrized by Drinfeld polynomials (instead of usual highest weights).

Here, " ℓ "-highest weight rep. are highest weight rep. w.r.t. the triangular decomposition:

$$L(\mathfrak{g})=L(\mathfrak{n}_{-})\oplus L(\mathfrak{h})\oplus L(\mathfrak{n}_{+}),$$

where $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ is the usual triangular decomposition.

12 On grading

Let

$$egin{aligned} \eta &= (x_1,\,x_2,\,\ldots,\,x_s\,; \ &0 &= a_0 < a_1 < \cdots < a_s = 1) \in \mathrm{QLS}(\lambda). \end{aligned}$$

For each $1 \leq k \leq s - 1$, we can take a shortest directed path d_k from x_{k+1} to x_k , which is automatically a directed a_k -path:

$$\mathrm{d}_k: x_k = y_0 \stackrel{eta_1}{\leftarrow} y_1 \stackrel{eta_2}{\leftarrow} y_2 \stackrel{eta_3}{\leftarrow} \cdots \stackrel{eta_n}{\leftarrow} y_n = x_{k+1}.$$

We set

$$\mathrm{wt}(\mathrm{d}_k):=\sum_{\substack{1\leq k\leq n\ \ell(y_{k-1})=\ell(y_k)+1-\langle 2
ho,\,h_{eta_k}
angle}}h_{eta_k}\in Q^ee;$$

this depends only on x_k and x_{k+1} , and is denoted by $d_{\min}(x_{k+1}, x_k)$ (due to Postnikov).

Theorem 5.

Let $\lambda = \sum_{i \in I} m_i \varpi_i \in \widehat{P}^0$, with $m_i \in \mathbb{Z}_{\geq 0}$ for $i \in I$. For each $\eta \in \text{QLS}(\lambda) = \widehat{\text{LS}}(\lambda)_{\text{cl}}$ of the form:

$$egin{aligned} \eta &= (x_1,\,x_2,\,\ldots,\,x_s\,; \ &0 &= a_0 < a_1 < \cdots < a_s = 1) \in \mathrm{QLS}(\lambda), \end{aligned}$$

we have

$$\mathrm{Deg}_\lambda(\eta) = -\sum_{k=1}^{s-1} (1-a_k) \langle \lambda,\, d_{\min}(x_{k+1},\, x_k)
angle.$$

Here, $\text{Deg}_{\lambda}(\eta) \in \mathbb{Z}_{\leq 0}$ for $\eta \in \widehat{\text{LS}}(\lambda)_{\text{cl}}$ was originally defined to be the nagative -K of the coefficient K of the null root δ in the expression

$$\pi(1)=\lambda-eta+K\delta,\,\,eta\in Q_+,K\in\mathbb{Z}_{\geq 0},$$

where $\pi \in \widehat{LS}_0(\lambda)$ is a unique level-zero LS path s.t. $\operatorname{cl}(\pi) = \eta$ and the "initial direction" ν_1 of π is in $\lambda - Q_+$.

Remark

 $\widehat{\mathfrak{g}}$: affine Lie algebra of type $A_N^{(1)}$. For each $\mu \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \operatorname{cl}(\varpi_i)$, we have

$$K_{\mu^t,\,\lambda^+}(q) = \sum_{\substack{\eta\in \widehat{\mathrm{LS}}(\lambda)_{\mathrm{cl}}\ e_j\eta=0\ (j\in I)\ \eta(1)=\mu}} q^{-\operatorname{Deg}_\lambda(\eta)}.$$

Here, the right-hand side is a "weighted" branching multiplicity of the tensor product $U'_q(\hat{\mathfrak{g}})$ -module $\bigotimes_{i \in I} W(\varpi_i)$ w.r.t. the canonical subalgebra $U_q(\mathfrak{g})$, and $K_{\mu^t,\lambda^+}(q)$ is the Kostka-Foulkes polynomial associated to the partitions μ^t and λ^+ , with $|\mu| = |\lambda^+|$.

\underline{Fact} (Postnikov)

Fix $u, v \in W$. For each $w \in W$, the coefficient of σ_v in $\sigma_u * \sigma_w \in QH^*(X)$ is divisible by $q^{d_{\min}(u,v)}$. Also, $\exists w \in W$ s.t. the coefficient of σ_v in $\sigma_u * \sigma_w$ equals $q^{d_{\min}(u,v)}$ times a nonzero integer.