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1 Basic notation

G : complex, connected, simply-connected,

semisimple Lie group

B ⊂ G : Borel subgroup

T ⊂ B : maximal torus

W ∼= NG(T )/T : Weyl group of g = Lie(G);

note that W ⊂ GL(h∗), where h = Lie(T )

∆ = ∆+ ⊔∆− ⊂ h∗ : (positive or negative) roots{
αi

}
i∈I : simple roots{

hi

}
i∈I : simple coroots

w0 ∈W : the longest element

B− := w0Bw0 ⊂ G : opposite Borel subgroup

X := G/B : flag manifold

X(w) := BwB/B ⊂ X = G/B :

Schubert variety for w ∈W ;

note that dimC X(w) = ℓ(w), the length of w
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Y (w) := B−wB/B ⊂ X = G/B :

opposite Schubert variety for w ∈W ;

note that codimC Y (w) = ℓ(w)

• Y (w) = w0X(w0w) for w ∈W

σw := [Y (w)] ∈ H2ℓ(w)(X;Z) :

cohomology class of Y (w)

σ(w0w) := [X(w0w)] ∈ H2ℓ(w)(X;Z) :

cohomology class of X(w0w);

note that σw = σ(w0w) for w ∈W

Fact

{σw}w∈W form an additive basis for H∗(X;Z) over

Z.
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Remark

For w ∈ W , X(w) and Y (w) meet transversally

at the point wB/B ∈ G/B = X.

Also, {σw}w∈W and {σ(w)}w∈W are dual bases

for H∗(X;Z) under the intersection pairing:∫
X

σw · σ(v) = δv,w for v, w ∈W
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2 (small) Quantum cohomology of G/B

X = G/B : flag manifold

qi, i ∈ I : variables

Z[q] := Z[qi, i ∈ I], with deg(qi) = 2nαi
, where

nαi
:= ⟨2ρ, hi⟩ = 2, with 2ρ :=

∑
α∈∆+

α ∈ P

We identify as follows

(including a duality pairing):

H2(X;Z) ∼= P, H2(X;Z) ∼= Q∨;

P =
⊕

i∈I Zϖi is the weight lattice,

Q∨ :=
⊕

i∈I Zhi is the coroot lattice.

Also, we identify

ϖi ←→ σri

hi ←→ σ(ri),

where ri ∈W is a simple reflection.
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• We have

H2(X;Z) ∋ σri = c1(L(ϖi)),

where L(ϖi) := G×Pi
C(ϖi).
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For d =
∑

i∈I diσ(ri) ∈ H2(X;Z), we set

qd :=
∏
i∈I

q
di
i

QH∗(X) := H∗(X;Z)⊗Z Z[q] (as a Z[q]-module);

{σw = σw⊗1}w∈W forms a basis for QH∗(X) over

Z[q].

σu ∗ σv :=
∑
d∈Q∨+

qd
∑
w∈W

Nw
u, v(d)σw,

where

d =
∑

i∈I diσ(ri) ∈ H2(X;Z) = Q∨,

Q∨+ :=
∑

i∈I Z≥0hi, and

Nw
u, v(d) : the 3-point, genus zero Gromov-Witten

invariant; this is the number of rational curves

φ : P1(C)→ X of multidegree d,

i.e., φ∗(P1(C)) = d =
∑

i∈I diσ(ri) ∈ H2(X;Z),

s.t. φ(p1) = g1Y (u), φ(p2) = g2Y (v), and

φ(p3) = g3Y (w) for three general g1, g2, g3 ∈ G

(p1, p2, p3 ∈ P1(C) : given, distinct)
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• Nw
u, v(0) =

∫
X

σu · σv · σw0w

(usual intersection number)

= the coefficient of σw in the classical product

σu · σv ∈ H∗(X;Z)
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• (Degree axiom) The second sum is over all

w ∈W s.t.

ℓ(w) = ℓ(u) + ℓ(v)−
∑
i∈I

dinαi
;

this follows from the dimension formula

dimC M0,3(X, d) = dimC X +

∫
d

c1(TX)

= ℓ(w0) + ⟨2ρ, d⟩

= ℓ(w0) +
∑
i∈I

di⟨2ρ, hi⟩

= ℓ(w0) +
∑
i∈I

dinαi
,

where M0,3(X, d) is the moduli space of stable

maps of (multi-)degree d from 3-pointed, genus

0 (projective, connected, reduced, nodal) curves

into X.

Note that the space M0,3(X, d) can be thought

of as a compactification of the set M0,3(X, d) of

isomorphism classes of 3-pointed maps of degree

d from P1(C) into X.
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3 Classical Chevalley formula

Fact

For αi ∈ Π and w ∈W , we have in H∗(X;Z)

σri · σw =
∑

β∈∆+

wrβ⋗w

⟨ϖi, hβ⟩σwrβ,

where hβ ∈ Q∨ is the dual root of β ∈ ∆+,

rβ is the associated reflection, and

wrβ ⋗ w ⇐⇒ ℓ(wrβ) = ℓ(w) + 1.
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4 Bruhat graph

vertices : elements of W

edges : w
β→ wrβ, β ∈ ∆+, if ℓ(wrβ) = ℓ(w) + 1.

Remark

For u, v ∈W , we have

v = urβ for β ∈ ∆+

if and only if there exists a T -invariant curve C

containing uB/B and vB/B in X = G/B;

note that [C] = hβ ∈ H2(X;Z).

–⇝ partial order (Bruhat order) on W , denoted

by > ; we write wrβ ⋗ w if w
β→ wrβ
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5 Quantum Chevalley formula

Fact (Fulton and Woodward)

For αi ∈ Π and w ∈W , we have in QH∗(X)

σri ∗ σw =
∑

β∈∆+

wrβ⋗w

⟨ϖi, hβ⟩σwrβ

+
∑

β∈∆+

ℓ(wrβ)=ℓ(w)+1−⟨2ρ, hβ⟩

qhβ⟨ϖi, hβ⟩σwrβ.

Remark For β ∈ ∆+, we have

⟨2ρ, hβ⟩ =
∫
Cβ

c1(TX),

where c1(TX) = 2ρ ∈ H2(X;Z), and

Cβ is a unique T -invariant curve in X containing

1B/B and rβB/B;

note that [Cβ] = hβ ∈ H2(X;Z).

In particular, for αi ∈ Π, we have

nαi
=

∫
X(ri)

c1(TX) = ⟨2ρ, hi⟩ = 2.
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N.B. The equality

ℓ(wrβ) = ℓ(w) + 1− ⟨2ρ, hβ⟩

above comes from the (co-)dimension computa-

tion of a certain closed (reduced, locally irreducible)

subscheme ev−11 (Y (u)) ∩ ev−12 (X(v)), u, v ∈ W ,

of the moduli space M0,3(X, d); recall that

dimC M0,3(X, d) = dimC X +

∫
d

c1(TX)

= ℓ(w0) + ⟨2ρ, d⟩.
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6 Quantum Bruhat graph

vertices : elements of W

edges : w
β→ wrβ, β ∈ ∆+, if

(1) wrβ ⋗ w, or

(2) ℓ(wrβ) = ℓ(w) + 1− ⟨2ρ, hβ⟩

Remark

This does NOT induce a poset structure on W ,

contrary to the usual Bruhat graph.
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7 Affine Lie algebras

ĝ := (C[t, t−1]⊗ g)⊕ Cc⊕ Cd :

untwisted affine Lie algebra/C

ĥ := h⊕ Cc⊕ Cd : Cartan subalgebra

Π̂ := Π ∪ {α0} ⊂ (ĥ)∗ : simple roots

Π̂∨ := Π∨ ∪ {h0} ⊂ ĥ : simple coroots

∆̂ := ∆̂+ ⊔ ∆̂− ⊂ (ĥ)∗ :

(positive or negative) roots

Ŵ ⊂ GL((ĥ)∗) : (affine) Weyl group

∆̂re := Ŵ Π̂ : real roots

Î := I ∪ {0}

c =
∑

j∈Î a
∨
j hj : canonical central element

δ =
∑

j∈Î ajαj : null root

Λi, i ∈ Î : fundamental weights

ϖi := Λi − a∨i Λ0, i ∈ I :

level-zero fundamental weights
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P̂ :=
(∑

i∈Î ZΛi

)
⊕ Zδ ⊂ (ĥ)∗ : weight lattice

P̂ 0 :=
{
λ ∈ P̂ | ⟨λ, c⟩ = 0

}
:

set of level-zero weights

cl : R⊗Z P̂ 0 ↠ (R⊗Z P̂ 0)/Rδ =
⊕

i∈I R cl(ϖi)

∼= h∗R =
⊕

i∈I Rαi

cl : Ŵ = W ⋉ Q∨→W , wtγ 7→ w,

which is a homomorphism;

note that for λ ∈ R⊗Z P̂ 0,

wtγλ = wλ− ⟨λ, γ⟩δ,

where w ∈W and γ ∈ Q∨.
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8 Lakshmibai-Seshadri paths

λ ∈ P =
⊕

i∈I Zϖi : (integral) weight

Assume that λ ∈ P is regular and dominant.

For u, v ∈W s.t. u > v in the Bruhat order, and

a ∈ Q s.t. 0 < a < 1,

an a-chain for (u, v) is a sequence

u = u0 ⋗ u1 ⋗ · · · ⋗ un−1 ⋗ un = v

of elements of W s.t.

a⟨λ, hβk
⟩ ∈ Z for 1 ≤ k ≤ n,

where uk−1 ⋗ uk = uk−1rβk
for βk ∈ ∆+.

16



A Lakshmibai-Seshadri (LS) path of shape λ ∈ P

(λ : regular and dominant) is a pair of sequences

(v1 > v2 > · · · > vs ;

0 = a0 < a1 < · · · < as = 1),

with vi ∈W and ai ∈ Q, s.t.

∃ak-chain for (vk, vk+1) for all 1 ≤ k ≤ s− 1.

LS(λ) : set of LS paths of shape λ
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9 Level-zero LS paths

λ ∈ P̂ 0 : level-zero weight

Ŵ ⊂ GL((ĥ)∗) : affine Weyl group

For µ, ν ∈ Ŵλ, we write µ > ν if there exist a

sequence

µ = µ0, µ1, . . . , µn−1, µn = ν

of elements of Ŵλ and a sequence

β1, . . . , βn ∈ ∆̂re ∩ ∆̂+

s.t. for all 1 ≤ k ≤ n,

µk = rβk
µk−1, ⟨µk−1, hβk

⟩ < 0.

–⇝ partial order on Ŵλ ⊂ (ĥ)∗

For µ, ν ∈ Ŵλ s.t. µ > ν in the (partial) order

above, we define:

dist(µ, ν) := the maximal length n of all possible

sequences above for (µ, ν);

we write ν → µ if µ > ν and dist(µ, ν) = 1.
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For µ > ν ∈ Ŵλ and a ∈ Q with 0 < a < 1, an

a-chain for (µ, ν) is a sequence

µ = µ0← µ1← · · · ← µn = ν

of elements of Ŵλ s.t.

a⟨µk−1, hβk
⟩ ∈ Z<0 for 1 ≤ k ≤ n,

where µk = rβk
µk−1 for βk ∈ ∆̂re ∩ ∆̂+.

A (level-zero) LS path of shape λ ∈ P̂ 0 is a pair

of sequences

(ν1 > ν2 > · · · > νs ;

0 = a0 < a1 < · · · < as = 1),

with νi ∈ Ŵλ and ai ∈ Q, s.t.

∃ak-chain for (νk, νk+1) for all 1 ≤ k ≤ s− 1.

L̂S(λ) : set of level-zero LS paths of shape λ ∈ P̂ 0
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Assume (for simplicity) that λ ∈ P̂ 0 is level-zero

dominant and regular, i.e.,

⟨λ, hi⟩ > 0 for all i ∈ I.

Theorem 1.

For µ, ν ∈ Ŵλ, we have

ν → µ

if and only if

W cl(λ) ∋ cl(ν)→ cl(µ) ∈W cl(λ)

is an edge in the quantum Bruhat graph.

Here we identify h∗R ⊃W cl(λ)↔W since the

stabilizer Wcl(λ) is trivial.
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10 Quantum LS paths

Assume (for simplicity) that λ ∈ P̂ 0 is level-zero

dominant and regular, i.e.,

⟨λ, hi⟩ > 0 for all i ∈ I.

For x, y ∈W and a ∈ Q with 0 < a < 1,

a directed a-path from y to x is a directed path

x = y0
β1← y1

β2← y2
β3← · · · βn← yn = y

in the quantum Bruhat graph, with βk ∈ ∆+, s.t.

a⟨cl(λ), hβk
⟩ ∈ Z for all 1 ≤ k ≤ n.
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A quantum LS path of shape λ ∈ P̂ 0 (level-zero

dominant and regular) is a pair of sequences

(x1, x2, . . . , xs ; 0 = a0 < a1 < · · · < as = 1),

with xi ∈W and a ∈ Q, s.t.

∃directed ak-path from xk+1 to xk

for all 1 ≤ k ≤ s− 1.

QLS(λ) : set of quantum LS paths of shape λ
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For

π = (ν1 > ν2 > · · · > νs ;

0 = a0 < a1 < · · · < as = 1) ∈ L̂S(λ),

we set

cl(π) := (cl(ν1), cl(ν2), . . . , cl(νs) ;

0 = a0 < a1 < · · · < as = 1)

From Theorem 1, it follows that

L̂S(λ)cl :=
{
cl(π) | π ∈ L̂S(λ)

}
⊂ QLS(λ).

Here we identify

W cl(λ)↔W

since the stabilizer Wcl(λ) is trivial.

In fact, we can prove:

Theorem 2.

L̂S(λ)cl = QLS(λ).
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11 Representations

Let λ ∈ P be a dominant integral weight

V (λ) : the irreducible, finite-dimensional, highest

weight Uq(g)-module over C(q) of highest weight

λ

Fact (Littelmann, Joseph, Kashiwara)

The crystal basis of V (λ) is isomorphic to the

crystal LS(λ) of all LS paths of shape λ.

In particular,

chV (λ) =
∑

π∈LS(λ)

eπ(1),

where

π(1) =
s∑

k=1

(ak − ak−1)wkλ

= wsλ +

s−1∑
k=1

ak(wkλ− wk+1λ) ∈ P
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Let λ =
∑

i∈I miϖi ∈ P̂ 0, with mi ∈ Z≥0 for i ∈ I.

Theorem 3.

We have an isomorphism of U ′q(ĝ)-crystals:

L̂S(λ)cl ∼=
⊗
i∈I

(
L̂S(ϖi)cl

)⊗mi

Theorem 4.

For each i ∈ I, L̂S(ϖi)cl is isomorphic to

the crystal basis of the level-zero fundamen-

tal representation W (ϖi) of U ′q(ĝ), which was

introduced by Kashiwara. Here, W (ϖi) is

a finite-dimensional, irreducible U ′q(ĝ)-module

over C(q).
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U ′q(ĝ) = Uq([ĝ, ĝ]),

where [ĝ, ĝ] = (C[t, t−1]⊗ g)⊕ Cc

Note that

finite-dim. level-zero rep. of U ′q(ĝ) (of type I)

= finite-dim. rep. of Uq(L(g)),

where L(g) := C[t, t−1]⊗ g;

the irreducible ones are

“ℓ”-highest weight representations,

which are parametrized by Drinfeld polynomials

(instead of usual highest weights).

Here, “ℓ”-highest weight rep. are highest weight

rep. w.r.t. the triangular decomposition:

L(g) = L(n−)⊕ L(h)⊕ L(n+),

where g = n− ⊕ h ⊕ n+ is the usual triangular

decomposition.
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12 On grading

Let

η = (x1, x2, . . . , xs ;

0 = a0 < a1 < · · · < as = 1) ∈ QLS(λ).

For each 1 ≤ k ≤ s − 1, we can take a shortest

directed path dk from xk+1 to xk, which is auto-

matically a directed ak-path:

dk : xk = y0
β1← y1

β2← y2
β3← · · · βn← yn = xk+1.

We set

wt(dk) :=
∑

1≤k≤n
ℓ(yk−1)=ℓ(yk)+1−⟨2ρ, hβk

⟩

hβk
∈ Q∨;

this depends only on xk and xk+1, and is denoted

by dmin(xk+1, xk) (due to Postnikov).
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Theorem 5.

Let λ =
∑

i∈I miϖi ∈ P̂ 0, with mi ∈ Z≥0 for

i ∈ I. For each η ∈ QLS(λ) = L̂S(λ)cl of the

form:

η = (x1, x2, . . . , xs ;

0 = a0 < a1 < · · · < as = 1) ∈ QLS(λ),

we have

Degλ(η) = −
s−1∑
k=1

(1− ak)⟨λ, dmin(xk+1, xk)⟩.

Here, Degλ(η) ∈ Z≤0 for η ∈ L̂S(λ)cl was origi-

nally defined to be the nagative −K of the coef-

ficient K of the null root δ in the expression

π(1) = λ− β + Kδ, β ∈ Q+,K ∈ Z≥0,

where π ∈ L̂S0(λ) is a unique level-zero LS path

s.t. cl(π) = η and the “initial direction” ν1 of π

is in λ−Q+.
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Remark

ĝ : affine Lie algebra of type A
(1)
N .

For each µ ∈
∑

i∈I Z≥0 cl(ϖi), we have

Kµt, λ+(q) =
∑

η∈L̂S(λ)cl
ejη=0 (j∈I)

η(1)=µ

q−Degλ(η).

Here, the right-hand side is

a “weighted” branching multiplicity of

the tensor product U ′q(ĝ)-module
⊗

i∈I W (ϖi)

w.r.t. the canonical subalgebra Uq(g), and

Kµt, λ+(q) is

the Kostka-Foulkes polynomial associated to

the partitions µt and λ+, with |µ| = |λ+|.

Fact (Postnikov)

Fix u, v ∈W . For each w ∈W , the coefficient of

σv in σu ∗ σw ∈ QH∗(X) is divisible by qdmin(u, v).

Also, ∃w ∈W s.t. the coefficient of σv in σu ∗ σw

equals qdmin(u, v) times a nonzero integer.
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