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1 Basic notation

G : complex, connected, simply-connected,

semisimple Lie group
B C G : Borel subgroup
T C B : maximal torus

W = Ng(T)/T : Weyl group of g = Lie(G);
note that W C GL(b*), where h = Lie(T)

A=A, LIA_C §h*: (positive or negative) roots
{ai}z‘el : simple roots

{hi}z‘el : simple coroots

wo € W : the longest element

B~ := woBwy C G : opposite Borel subgroup

X := G /B : flag manifold

X(w) :=BwB/BC X =G/B:
Schubert variety for w € W
note that dim¢ X (w) = £(w), the length of w



Y(w):=B-wB/BC X =G/B:
opposite Schubert variety for w € W;
note that codim¢ Y (w) = £(w)

o Y(w) =wiX(wyw) for w € W

0w = [Y(w)] € H*")(X;7) :
cohomology class of Y (w)
o(wow) := [X (wow)] € H?*)(X;7) :
cohomology class of X (wow);

note that o, = o(wow) for w € W

Fact

{ow}wew form an additive basis for H*(X;Z) over
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Remark

For w € W, X(w) and Y (w) meet transversally
at the point wB/B € G/B = X.
Also, {0y }wew and {o(w)}ycw are dual bases

for H*(X;Z) under the intersection pairing:

/ Ow* (V) = Oy for v, w e W
X



2 (small) Quantum cohomology of G/B
X = G/B : flag manifold
qgi;, © € I : variables
Z1q] := Z|q., © € I], with deg(q;) = 2n,,, where
Na; := (2p, h;) =2, with 2p:=) .\ a € P
We identify as follows
(including a duality pairing):

H*(X;Z) 2 P,  Hy(X;Z) = QY
P = @, ; Zw; is the weight lattice,

Q" := @,.; Zh; is the coroot lattice.

Also, we identify

h; <+— o(r),

where r; € W is a simple reflection.



e We have
H*(X;Z) 3 oy, = c1(L(w3)),

where L(w;) := G X p, C(w;).



Ford =) , ;d;o(r;) € Hy(X;Z), we set

qd — H quiz‘

el
QH*(X) := H*(X;7Z) ®z7Z|q] (as a Z[q]-module);
{ow = 00w ®1}ew forms a basis for QH*(X) over
Zlql.
Oy % Oy 1= Z q° Z N;‘:,v(d)aw,
deQi weWw

where

d=73 ,.;dio(r;) € Hy(X;7Z) = Q,

QY := > ;cr Z>oh;, and

N ,L’;‘jv(d) : the 3-point, genus zero Gromov-Witten
invariant; this is the number of rational curves
¢ : P1(C) — X of multidegree d,

ie., p.(PY(C)) =d = >icr dio (1) € Ha(X;5Z),
s.t. o(p1) = g1Y (u), ¢(p2) = 92Y (v), and

¢(p3) = g3Y (w) for three general g, g2, g3 € G
(p1, P2, p3 € PY(C) : given, distinct)



o N2 = [ ouou ou
’ X

(usual intersection number)
— the coeflicient of o, in the classical product

Ou- 0y € H(X;7)



e (Degree axiom) The second sum is over all

w € W s.t.
L(w) = L(u) + £(v) — ) ding;
this follows from the dimension formula
dime Mo 5(X, d) = dime X + /d ¢1(Tx)
= £(wo) + (2p, d)
= £(wo) + Y _di(2p, h;)

el

— E(wo) =+ Z dinaia
icl
where M 3(X,d) is the moduli space of stable

maps of (multi-)degree d from 3-pointed, genus

0 (projective, connected, reduced, nodal) curves

into X.

Note that the space M, 3(X,d) can be thought
of as a compactification of the set My 3(X,d) of

isomorphism classes of 3-pointed maps of degree

d from P!(C) into X.



3 Classical Chevalley formula

Fact
For o; € Il and w € W, we have in H*(X;Z)

Or;, * Ow — Z <wi7 h,@>0"wr57
peAy

’lU’l"B>’lU

where hg € QV is the dual root of 8 € A,

rg 1s the associated reflection, and

wrg>w < L(wrg) = L(w) + 1.



4 Bruhat graph

vertices : elements of W

edges : w L wrg, B € Ay, if L(wrg) = £(w) + 1.

Remark

For u, v € W, we have
v=urg for 3 € A,

if and only if there exists a T-invariant curve C
containing uB/B and vB/B in X = G/B;
note that [C] = hg € Hy(X ;7).

—~ partial order (Bruhat order) on W, denoted

by > ; we write wrg > w if w LA wrg
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5 Quantum Chevalley formula

Fact (Fulton and Woodward)

For o; € Il and w € W, we have in QH*(X)

O, % Oy = (wiy ha)Owr
B

peA
wrﬁ>w

+ Z qhﬁ<wi7 h',8>0'wr5-
BeAy
L(wrg)=L(w)+1—(2p, hg)

Remark For B € A,, we have

(2p, hg) = / &1(Tx),

Cp
where ¢, (Tx) = 2p € H*(X;Z), and

Cs is a unique T-invariant curve in X containing
1B/B and rgB/B;
note that [C] = hg € H2(X;Z).

In particular, for o; € II, we have

Na,; = Cl(Tx) = <2p, hz> = 2.
X (r;)
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N.B. The equality

t(wrp) = £(w) + 1 — (2p, hp)

above comes from the (co-)dimension computa-

tion of a certain closed (reduced, locally irreducible)
subscheme ev; (Y (u)) N evy, (X (v)), u,v € W,
of the moduli space M 3(X,d); recall that

dim@ Mo’g(X, d) = dlm@X -+ /Cl(Tx)
d

— £(wo) + (2p, d).
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6 Quantum Bruhat graph
vertices : elements of W

edges : w ﬁ) wrg, 3 € AL, if
(1) wrg > w, or
(2) £(wry) = £(w) + 1 — (2p, hy)

Remark

This does NOT induce a poset structure on W,
contrary to the usual Bruhat graph.
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7 Affine Lie algebras

g:=(Ct,t7'|®g) dCcdhCd :
untwisted affine Lie algebra/C
6 = bh P Cc @ Cd : Cartan subalgebra

AN

II:=IIU {ao} C (h)* : simple roots
IV := I1V U {ho} C b : simple coroots

= AL UA_ C (6)* :

(positive or negative) roots

>

W C GL((E)\)*) : (affine) Weyl group

Are .= WII : real roots

I:=1U{o0}

C= ) ict a/h; : canonical central element
0 =) _c;ajoy : null root

A, 1 € I : fundamental weights

w; = A; —alAg, 1 €1 :

level-zero fundamental weights
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P = (ZiefZA’i> P 7.0 C (G)* : weight lattice

P :={AecP|{\c)=0):

set of level-zero weights
cl:R®z P° - (R ®z P°) /RS = @,.; Rcl(w;)
= bg = Djer Ray

cl:ﬁ\/:W[xQV%W,wt,yl—)’w,
which is a homomorphism;

note that for A € R Q7 1307
wt,y)\ = WA — <>‘7 7)57

where w € W and ~ € Q.
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8 Lakshmibai-Seshadri paths

A€ P =, 2w, : (integral) weight

Assume that A € P is regular and dominant.

For u, v € W s.t. u > v in the Bruhat order, and
a€eQst. 0<a<l,

an a-chain for (u, v) is a sequence
U=Uy> UL > *++ >Up1> Uy =V
of elements of W s.t.
a(\, hg,) € Z for1l <k < n,

where ug_1 > up, = up_17g, for B, € A,.
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A Lakshmibai-Seshadri (LS) path of shape A € P

(X : regular and dominant) is a pair of sequences

(v1 > V2 >+ ¢+ > Vg
O=ap<a; < <a,=1),

with v; € W and a; € Q, s.t.

Jag-chain for (v, viyq) forall 1 < k < s — 1.

LS(A) : set of LS paths of shape A
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9 Level-zero LS paths
A € P°: level-zero weight
W C GL((H)*) : affine Weyl group

For u, v € ﬁ\/)\, we write u > v if there exist a

sequerice

= Hos K1y ««y Un—1y Un =V

of elements of W and a sequence

Biy oovy Bn € Are N AL

s.t. for all 1 < k < n,

M = T8 k-1, (k-1 h,Bk> < 0.

—~ partial order on WA C (E]\)*

For p, v € WA s.t. p > v in the (partial) order

above, we define:

dist(u, v) := the maximal length n of all possible
sequences above for (u, v);

we write v — p if p > v and dist(p, v) = 1.
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Foru>u€ﬁ\/)\andaEQwithO<a<1,an

a-chain for (u, v) is a sequence
T T e T e T
of elements of W s.t.
a{ptr—1, hg,) € Zoo for 1 <k < n,

where p, = rg pur—1 for B € Are N 3+.

A (level-zero) LS path of shape A\ € P is a pair

of sequences

(V1 > v > 00 > vy
O:a0<a1<"’<as:1)7

with v; € W and a; € Q, s.t.

Jay-chain for (v, i) forall 1 < k < s — 1.

I/S()\) . set of level-zero LS paths of shape A € P°
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Assume (for simplicity) that A € P? is level-zero

dominant and regular, i.e.,

(A, h;) >0 for allz € I.

Theorem 1.

For p, v € ﬁ\/)\, we have
v —
if and only if
W cl(A) 3 cl(v) — cl(p) € W cl(A)
is an edge in the quantum Bruhat graph.

Here we identify b, DO W cl(A) <+ W since the

stabilizer W) is trivial.
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10 Quantum LS paths

Assume (for simplicity) that A € P? is level-zero

dominant and regular, i.e.,
(A, h;) >0 for all z € I.

For x, y € W and a € Q with 0 < a < 1,
a directed a-path from y to x is a directed path

g g g Bn
T=Yp Y1 Yoo Yy = Y
in the quantum Bruhat graph, with 8y € A,, s.t.

a(cl(M), hg,) € Z foralll <k < n.
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A quantum LS path of shape \ &€ P (level-zero

dominant and regular) is a pair of sequences
(3319 Ly eeey g3 0=ap < a1 << a; = 1)7

with ; € W and a € Q, s.t.
Idirected aj-path from x;, to x

foralll1 < k< s—1.

QLS(A) : set of quantum LS paths of shape A
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For

™= (1 >Vve> > Vs
0O=ap<a; <+ <a,=1)€LSN),

we set
cl(w) := (cl(vq), cl(v2), ..., cl(vs);
O=ay<a;<:-<as;=1)
From Theorem 1, it follows that
LS(A)a := {cl(7) | # € LS(A)} C QLS(N).
Here we identify
Wecl(\) < W

since the stabilizer W, is trivial.

In fact, we can prove:

Theorem 2.

LS(A)a = QLS(A).
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11 Representations

Let A € P be a dominant integral weight

V(M) : the irreducible, finite-dimensional, highest

weight U,(g)-module over C(q) of highest weight
A

Fact (Littelmann, Joseph, Kashiwara)

The crystal basis of V(A) is isomorphic to the
crystal LS(A) of all LS paths of shape A.

In particular,

chV(A) = Z e™ ),
weLS(A)

where
(1) = Z(ak — Q1) WEA
k=1

s—1

= w\ + Z aip(wgA — w1 A) € P
k=1
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Let A = Y,., mywo; € P, with m; € Zsq fori € I.

Theorem 3.

We have an isomorphism of U/(g)-crystals:

LS(A)a = X)(LS(wi)a) ™

el

Theorem 4.

For each 7 € 1, I/S(wi)cl is isomorphic to
the crystal basis of the level-zero fundamen-
tal representation W (w;) of U/(g), which was
introduced by Kashiwara. Here, W (wo;) is
a finite-dimensional, irreducible U é(ﬁ)-module

over C(q).
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U,(8) = Uy([g, a]),
where [g, g] = (C[t, t7!'] ® g) ® Cc
Note that
finite-dim. level-zero rep. of U/(g) (of type I)
= finite-dim. rep. of U,(L(g)),

where L(g) := C[t, t7!] ® g;

the irreducible ones are
“£”-highest weight representations,

which are parametrized by Drinfeld polynomials
(instead of usual highest weights).
Here, “¢”-highest weight rep. are highest weight

rep. w.r.t. the triangular decomposition:

L(g) = L(n_) ® L(h) ® L(n,),

where g = n_ @ h @ ny is the usual triangular

decomposition.
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12 On grading

Let

77:(3319 L2y ooy Lgy

O=ap< a1 < - <as=1) € QLS(\).

For each 1 < k < s — 1, we can take a shortest
directed path di from x;.; to x;, which is auto-
matically a directed ai-path:

B B B Bn
dk:a:k:y()(—lyl<—2y2<—3---<—yn:wk+1.

We set

wt(dy) 1= > hg, € Q";

1<k<n
€(yr—1)=C(yr)+1—(2p, hg, )

this depends only on x; and xg,1, and is denoted

by dumin(ri1, k) (due to Postnikov).
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Theorem 5.

Let A = ) ,.;myw; € 130, with m; € Z>( for
¢t € I. For each n € QLS(\) = I/S()\)cl of the

form:

N = (x1, Tay «..y Ts;

O:a0<a1<...<as

1) € QLS(N),

we have

Dega(n) = — >_(1 = @) (A din(@isas ).

Here, Deg,(n) € Z<o for n € LS(M\)a was origi-
nally defined to be the nagative — K of the coef-

ficient K of the null root 0 in the expression
77(1) =A—-—0B+ Ko, B € Qi, K € ZZO?

where w € I/SO()\) is a unique level-zero LS path

s.t. cl(w) = n and the “initial direction” v, of 7

is in A — Q..
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Remark

g : affine Lie algebra of type Ag\l,).

For each pu € > . .;Z>¢cl(w;), we have

icl
K, a+(q) = Z g~ Pesa(m),
neﬁ(k)cl
ejn=0 (JEI)
n(1)=p

Here, the right-hand side is

a “weighted” branching multiplicity of

the tensor product U, (g)-module &, ; W (w;)
w.r.t. the canonical subalgebra U,(g), and
Kt 2+(q) is

the Kostka-Foulkes polynomial associated to

the partitions pu! and A*, with |u| = |AT].

Fact (Postnikov)

Fix u, v € W. For each w € W, the coefficient of
o, in o, * 0, € QH*(X) is divisible by g%min(%:?),
Also, 7w € W s.t. the coefficient of o, in o, * oy,

equals g%in(*?) times a nonzero integer.
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